Estimating the dynamic early life exposure to PFOA and PFOS of the HELIX children: Emerging profiles via prenatal exposure, breastfeeding, and diet.
Children
Human biomonitoring
In utero
Longitudinal cohorts
PBPK model
Reverse dosimetry
Journal
Environment international
ISSN: 1873-6750
Titre abrégé: Environ Int
Pays: Netherlands
ID NLM: 7807270
Informations de publication
Date de publication:
02 Apr 2024
02 Apr 2024
Historique:
received:
26
10
2023
revised:
29
03
2024
accepted:
31
03
2024
medline:
10
4
2024
pubmed:
10
4
2024
entrez:
9
4
2024
Statut:
aheadofprint
Résumé
In utero and children's exposure to per- and polyfluoroalkyl substances (PFAS) is a major concern in health risk assessment as early life exposures are suspected to induce adverse health effects. Our work aims to estimate children's exposure (from birth to 12 years old) to PFOA and PFOS, using a Physiologically-Based Pharmacokinetic (PBPK) modelling approach. A model for PFAS was updated to simulate the internal PFAS exposures during the in utero life and childhood, and including individual characteristics and exposure scenarios (e.g., duration of breastfeeding, weight at birth, etc.). Our approach was applied to the HELIX cohort, involving 1,239 mother-child pairs with measured PFOA and PFOS plasma concentrations at two sampling times: maternal and child plasma concentrations (6 to 12 y.o). Our model predicted an increase in plasma concentrations during fetal development and childhood until 2 y.o when the maximum concentrations were reached. Higher plasma concentrations of PFOA than PFOS were predicted until 2 y.o, and then PFOS concentrations gradually became higher than PFOA concentrations. From 2 to 8 y.o, mean concentrations decreased from 3.1 to 1.88 µg/L or ng/mL (PFOA) and from 4.77 to 3.56 µg/L (PFOS). The concentration-time profiles vary with the age and were mostly influenced by in utero exposure (on the first 4 months after birth), breastfeeding (from 5 months to 2 (PFOA) or 5 (PFOS) y.o of the children), and food intake (after 3 (PFOA) or 6 (PFOS) y.o of the children). Similar measured biomarker levels can correspond to large differences in the simulated internal exposures, highlighting the importance to investigate the children's exposure over the early life to improve exposure classification. Our approach demonstrates the possibility to simulate individual internal exposures using PBPK models when measured biomarkers are scarce, helping risk assessors in gaining insight into internal exposure during critical windows, such as early life.
Identifiants
pubmed: 38593693
pii: S0160-4120(24)00207-1
doi: 10.1016/j.envint.2024.108621
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
108621Informations de copyright
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.