Enzymatic phosphatization of fish scales-a pathway for fish fossilization.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
09 Apr 2024
Historique:
received: 03 01 2024
accepted: 05 04 2024
medline: 10 4 2024
pubmed: 10 4 2024
entrez: 9 4 2024
Statut: epublish

Résumé

Phosphatized fish fossils occur in various locations worldwide. Although these fossils have been intensively studied over the past decades they remain a matter of ongoing research. The mechanism of the permineralization reaction itself remains still debated in the community. The mineralization in apatite of a whole fish requires a substantial amount of phosphate which is scarce in seawater, so the origin of the excess is unknown. Previous research has shown that alkaline phosphatase, a ubiquitous enzyme, can increase the phosphate content in vitro in a medium to the degree of saturation concerning apatite. We applied this principle to an experimental setup where fish scales were exposed to commercial bovine alkaline phosphatase. We analyzed the samples with SEM and TEM and found that apatite crystals had formed on the remaining soft tissue. A comparison of these newly formed apatite crystals with fish fossils from the Solnhofen and Santana fossil deposits showed striking similarities. Both are made up of almost identically sized and shaped nano-apatites. This suggests a common formation process: the spontaneous precipitation from an oversaturated solution. The excess activity of alkaline phosphatase could explain that effect. Therefore, our findings could provide insight into the formation of well-preserved fossils.

Identifiants

pubmed: 38594297
doi: 10.1038/s41598-024-59025-3
pii: 10.1038/s41598-024-59025-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8347

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : 348043586, GA 2688/1-1
Organisme : Deutsche Forschungsgemeinschaft
ID : 348043586, BI 504/15-1

Informations de copyright

© 2024. The Author(s).

Références

Pan, Y., Fürsich, F. T., Chellouche, P. & Hu, L. Taphonomy of fish concentrations from the upper Jurassic Solnhofen Plattenkalk of Southern Germany. njgpa 292, 73–92 (2019).
doi: 10.1127/njgpa/2019/0809
Long, J. A. & Trinajstic, K. The Late Devonian Gogo formation Lägerstatte of Western Australia: Exceptional early vertebrate preservation and diversity. Annu. Rev. Earth Planet. Sci. 38, 255–279 (2010).
doi: 10.1146/annurev-earth-040809-152416
Martill, D. M. Preservation of fish in the Cretaceous Santana formation of Brazil. Palaeontology 31, 1–18 (1988).
Grande, L. An updated review of the fish faunas from the Green River formation, the World’s most productive freshwater Lagerstätten. In Eocene Biodiversity: Unusual Occurrences and Rarely Sampled Habitats (ed. Gunnell, G. F.) 1–38 (Springer, Boston, 2001).
Grandi, F. et al. Exceptional preservation of large fossil vertebrates in a volcanic setting (Camp dels Ninots, Spain). Hist. Biol. 35, 1234–1249 (2023).
doi: 10.1080/08912963.2022.2085570
Kitanaka, R., Tsuboi, M. & Ozaki, Y. Biogenic apatite in carbonate concretions with and without fossils investigated in situ by micro-Raman spectroscopy. Sci. Rep. 13, 9714 (2023).
doi: 10.1038/s41598-023-36566-7 pubmed: 37322242 pmcid: 10272169
Melendez, I. et al. Biomarkers reveal the role of photic zone euxinia in exceptional fossil preservation: An organic geochemical perspective. Geology 41, 123–126 (2013).
doi: 10.1130/G33492.1
Grice, K., Holman, A. I., Plet, C. & Tripp, M. Fossilised biomolecules and biomarkers in carbonate concretions from Konservat-Lagerstätten. Minerals 9, 158 (2019).
doi: 10.3390/min9030158
Melendez, I., Grice, K. & Schwark, L. Exceptional preservation of Palaeozoic steroids in a diagenetic continuum. Sci. Rep. 3, 2768 (2013).
doi: 10.1038/srep02768 pubmed: 24067597 pmcid: 3783881
Briggs, D. E. G. The role of decay and mineralization in the preservation of soft-bodied fossils. Annu. Rev. Earth Planet. Sci. 31, 275–301 (2003).
doi: 10.1146/annurev.earth.31.100901.144746
Mähler, B. et al. Adipocere formation in biofilms as a first step in soft tissue preservation. Sci. Rep. 12, 10122 (2022).
doi: 10.1038/s41598-022-14119-8 pubmed: 35710834 pmcid: 9203803
Gäb, F. et al. Experimental taphonomy of fish—Role of elevated pressure, salinity and pH. Sci. Rep. 10, 7839 (2020).
doi: 10.1038/s41598-020-64651-8 pubmed: 32398712 pmcid: 7217852
Wilby, P. R. & Briggs, D. E. Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues. Geobios 30, 493–502 (1997).
doi: 10.1016/S0016-6995(97)80056-3
Mähler, B. et al. Time-dependent microbial shifts during crayfish decomposition in freshwater and sediment under different environmental conditions. Sci. Rep. 13, 1539 (2023).
doi: 10.1038/s41598-023-28713-x pubmed: 36707669 pmcid: 9883499
Janssen, K., Mähler, B., Mccoy, V., Rust, J. & Bierbaum, G. The complex role of microbial metabolic activity in fossilization. Biol. Rev. Camb. Philos. Soc. https://doi.org/10.1111/brv.12806 (2021).
doi: 10.1111/brv.12806 pubmed: 34649299
Clements, T. & Gabbott, S. Exceptional preservation of fossil soft tissues. Encycl. Life Sci. https://doi.org/10.1002/9780470015902.a0029468 (2022).
doi: 10.1002/9780470015902.a0029468
Briggs, D. E. & Kear, A. J. Fossilization of soft tissue in the laboratory. Science 259, 1439–1442 (1993).
doi: 10.1126/science.259.5100.1439 pubmed: 17801278
Briggs, D. E. G. & Kear, A. J. Decay and preservation of polychaetes: Taphonomic thresholds in soft-bodied organisms. Paleobiology 19, 107–135 (1993).
doi: 10.1017/S0094837300012343
Planavsky, N. J. et al. The evolution of the marine phosphate reservoir. Nature 467, 1088–1090 (2010).
doi: 10.1038/nature09485 pubmed: 20981096
Sharoni, S. & Halevy, I. Rates of seafloor and continental weathering govern Phanerozoic marine phosphate levels. Nat. Geosci. 16, 75–81 (2023).
doi: 10.1038/s41561-022-01075-1
Bowers, G. N. Jr. & McComb, R. B. Measurement of total alkaline phosphatase activity in human serum. Clin. Chem. 21, 1988–1995 (1975).
doi: 10.1093/clinchem/21.13.1988 pubmed: 163
He, Z.-W. et al. Clarification of phosphorus fractions and phosphorus release enhancement mechanism related to pH during waste activated sludge treatment. Bioresour. Technol. 222, 217–225 (2016).
doi: 10.1016/j.biortech.2016.10.010 pubmed: 27718404
Yakushev, E. V., Podymov, O. I. & Chasovnikov, V. K. The Black sea. Oceanography 18, 48 (2005).
doi: 10.5670/oceanog.2005.41
Omelon, S., Ariganello, M., Bonucci, E., Grynpas, M. & Nanci, A. A review of phosphate mineral nucleation in biology and geobiology. Calcif. Tissue Int. 93, 382–396 (2013).
doi: 10.1007/s00223-013-9784-9 pubmed: 24077874 pmcid: 3824353
Lee, D.-H. et al. A novel psychrophilic alkaline phosphatase from the metagenome of tidal flat sediments. BMC Biotechnol. 15, 1 (2015).
doi: 10.1186/s12896-015-0115-2 pubmed: 25636680 pmcid: 4335783
Zaheer, R., Morton, R., Proudfoot, M., Yakunin, A. & Finan, T. M. Genetic and biochemical properties of an alkaline phosphatase PhoX family protein found in many bacteria. Environ. Microbiol. 11, 1572–1587 (2009).
doi: 10.1111/j.1462-2920.2009.01885.x pubmed: 19245529
Ouyang, J. et al. Activated sludge and other aerobic suspended culture processes. Water Environ. Res. 92, 1717–1725 (2020).
doi: 10.1002/wer.1427 pubmed: 32762078
Sebastian, M. & Ammerman, J. W. The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA. ISME J. 3, 563–572 (2009).
doi: 10.1038/ismej.2009.10 pubmed: 19212430
Cosmidis, J. et al. Calcium-phosphate biomineralization induced by alkaline phosphatase activity in Escherichia coli: Localization, kinetics, and potential signatures in the fossil record. Front. Earth Sci. 3, 84 (2015).
doi: 10.3389/feart.2015.00084
Skouri-Panet, F. et al. In vitro and in silico evidence of phosphatase diversity in the biomineralizing bacterium Ramlibacter tataouinensis. Front. Microbiol. 8, 2592 (2018).
doi: 10.3389/fmicb.2017.02592 pubmed: 29375498 pmcid: 5768637
Dhami, N. K. et al. Microbially mediated fossil concretions and their characterization by the latest methodologies: A review. Front. Microbiol. https://doi.org/10.3389/fmicb.2023.1225411 (2023).
doi: 10.3389/fmicb.2023.1225411 pubmed: 37840715 pmcid: 10576451
Mobley, D. M., Chengappa, M. M., Kadel, W. L. & Stuart, J. G. Effect of pH, temperature and media on acid and alkaline phosphatase activity in ‘clinical’ and ‘nonclinical’ isolates of Bordetella bronchiseptica. Can. J. Comp. Med. 48, 175–178 (1984).
pubmed: 6722645 pmcid: 1236033
Srivastava, A. et al. Enzyme promiscuity in natural environments: Alkaline phosphatase in the ocean. ISME J. 15, 3375–3383 (2021).
doi: 10.1038/s41396-021-01013-w pubmed: 34050259 pmcid: 8528806
Le-Vinh, B., Akkuş-Dağdeviren, Z. B., Le, N.-M.N., Nazir, I. & Bernkop-Schnürch, A. Alkaline phosphatase: A reliable endogenous partner for drug delivery and diagnostics. Adv. Ther. 5, 2100219 (2022).
doi: 10.1002/adtp.202100219
Zhou, Y., Zhang, T., Jin, S., Chen, S. & Zhang, Y. Effects of Escherichia coli alkaline phosphatase PhoA on the mineralization of dissolved organic phosphorus. Water 13, 3315 (2021).
doi: 10.3390/w13233315
Fernley, H. N. & Bisaz, S. Studies on alkaline phosphatase. Phosphorylation of calf-intestinal alkaline phosphatase by 32P-labelled pyrophosphate. Biochem. J. 107, 279–283 (1968).
doi: 10.1042/bj1070279 pubmed: 4295986 pmcid: 1198654
Luo, H., Benner, R., Long, R. A. & Hu, J. Subcellular localization of marine bacterial alkaline phosphatases. Proc. Natl. Acad. Sci. 106, 21219–21223 (2009).
doi: 10.1073/pnas.0907586106 pubmed: 19926862 pmcid: 2795515
Martiny, A. C., Jørgensen, T. M., Albrechtsen, H.-J., Arvin, E. & Molin, S. Long-term succession of structure and diversity of a biofilm formed in a model drinking water distribution system. Appl. Environ. Microbiol. 69, 6899–6907 (2003).
doi: 10.1128/AEM.69.11.6899-6907.2003 pubmed: 14602654 pmcid: 262284
Temperton, B., Gilbert, J. A., Quinn, J. P. & McGrath, J. W. Novel analysis of oceanic surface water metagenomes suggests importance of polyphosphate metabolism in oligotrophic environments. PLoS One 6, e16499 (2011).
doi: 10.1371/journal.pone.0016499 pubmed: 21305044 pmcid: 3030594
Monds, R. D., Newell, P. D., Schwartzman, J. A. & O’Toole, G. A. Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1. Appl. Environ. Microbiol. 72, 1910–1924 (2006).
doi: 10.1128/AEM.72.3.1910-1924.2006 pubmed: 16517638 pmcid: 1393216
Hong, S. et al. Identification and characterization of alkaline phosphatase gene phoX in Microcystis aeruginosa PCC7806. 3 Biotech 11, 218 (2021).
doi: 10.1007/s13205-021-02774-z pubmed: 33968563 pmcid: 8052394

Auteurs

Fabian Gäb (F)

Institute of Geosciences, University of Bonn, Bonn, Germany.

Gabriele Bierbaum (G)

Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.

Richard Wirth (R)

Deutsches GeoForschungsZentrum (GFZ), Section 3.5 Interface Geochemistry, Potsdam, Germany.

Christoph Bultmann (C)

Radiomed Group Practice for Radiology and Nuclear Medicine, Wiesbaden, Germany.

Brianne Palmer (B)

Bonn Institute of Organismic Biology, Division of Palaeontology, University of Bonn, Bonn, Germany.

Kathrin Janssen (K)

Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.

Sabina Karačić (S)

Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany. Sabina.Karacic@ukbonn.de.

Classifications MeSH