The role of stroke-induced immunosuppression as a predictor of functional outcome in the neurorehabilitation setting.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
09 Apr 2024
09 Apr 2024
Historique:
received:
31
01
2024
accepted:
01
04
2024
medline:
10
4
2024
pubmed:
10
4
2024
entrez:
9
4
2024
Statut:
epublish
Résumé
Stroke affects the interconnection between the nervous and immune systems, leading to a down-regulation of immunity called stroke-induced immunosuppression (SII). The primary aim of this study is to investigate SII role as a predictor of functional, neurological, and motor outcomes in the neurorehabilitation setting (NRB). We conducted a prospective observational study enrolling post-acute stroke patients hospitalized for neurorehabilitation. At NRB admission (T
Identifiants
pubmed: 38594322
doi: 10.1038/s41598-024-58562-1
pii: 10.1038/s41598-024-58562-1
doi:
Banques de données
ClinicalTrials.gov
['NCT05889169']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8320Subventions
Organisme : Ministero della Salute
ID : Ricerca Corrente 2022-2024
Informations de copyright
© 2024. The Author(s).
Références
Meisel, C., Schwab, J. M., Prass, K., Meisel, A. & Dirnagl, U. Central nervous system injury-induced immune deficiency syndrome. Nat. Rev. Neurosci. 6(10), 775–786. https://doi.org/10.1038/nrn1765 (2005).
doi: 10.1038/nrn1765
pubmed: 16163382
Shi, K., Wood, K., Shi, F.-D., Wang, X. & Liu, Q. Stroke-induced immunosuppression and poststroke infection. Stroke Vasc. Neurol. 3(1), 34–41. https://doi.org/10.1136/svn-2017-000123 (2018).
doi: 10.1136/svn-2017-000123
pubmed: 29600006
pmcid: 5870641
van Gemmeren, T. et al. Early post-stroke infections are associated with an impaired function of neutrophil granulocytes. J. Clin. Med. 9(3), 872. https://doi.org/10.3390/jcm9030872 (2020).
doi: 10.3390/jcm9030872
pubmed: 32209993
pmcid: 7141520
Fu, Y., Liu, Q., Anrather, J. & Shi, F. D. Immune interventions in stroke. Nat. Rev. Neurol. 11(9), 524–535. https://doi.org/10.1038/NRNEUROL.2015.144 (2015).
doi: 10.1038/NRNEUROL.2015.144
pubmed: 26303850
pmcid: 4851339
Zahorec, R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratislava Med. J. 122(7), 474–488. https://doi.org/10.4149/BLL_2021_078 (2021).
doi: 10.4149/BLL_2021_078
Celikbilek, A., Ismailogullari, S. & Zararsiz, G. Neutrophil to lymphocyte ratio predicts poor prognosis in ischemic cerebrovascular disease. J. Clin. Lab. Anal. 28(1), 27–31. https://doi.org/10.1002/jcla.21639 (2014).
doi: 10.1002/jcla.21639
pubmed: 24375839
Ozgen, E. et al. The relationship between neutrophil/lymphocyte, monocyte/ /lymphocyte, platelet/lymphocyte ratios and clinical outcomes after ninety days in patients who were diagnosed as having acute ischemic stroke in the emergency room and underwent a mechanical throm. Bratislava Med. J. 121(09), 634–639. https://doi.org/10.4149/BLL_2020_102 (2020).
doi: 10.4149/BLL_2020_102
Giede-Jeppe, A. et al. Lymphocytopenia is an independent predictor of unfavorable functional outcome in spontaneous intracerebral hemorrhage. Stroke 47(5), 1239–1246. https://doi.org/10.1161/STROKEAHA.116.013003 (2016).
doi: 10.1161/STROKEAHA.116.013003
pubmed: 27073240
Wang, L. et al. Neutrophil to lymphocyte ratio predicts poor outcomes after acute ischemic stroke: A cohort study and systematic review. J. Neurol. Sci. 406, 116445. https://doi.org/10.1016/j.jns.2019.116445 (2019).
doi: 10.1016/j.jns.2019.116445
pubmed: 31521961
Li, W. et al. Prognostic value of neutrophil-to-lymphocyte ratio in stroke: A systematic review and meta-analysis. Front. Neurol. 12, 686983. https://doi.org/10.3389/fneur.2021.686983 (2021).
doi: 10.3389/fneur.2021.686983
pubmed: 34630275
pmcid: 8497704
Sarejloo, S. et al. Neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in poststroke depression: A systematic review and meta-analysis. Dis. Markers. 2022, 1–10. https://doi.org/10.1155/2022/5911408 (2022).
doi: 10.1155/2022/5911408
Sarejloo, S. et al. Neutrophil-to-lymphocyte ratio and early neurological deterioration in stroke patients: A systematic review and meta-analysis. Biomed. Res. Int. 1–8, 2022. https://doi.org/10.1155/2022/8656864 (2022).
doi: 10.1155/2022/8656864
Zawiah, M., Hayat Khan, A., Abu Farha, R., Usman, A. & Bitar, A. N. Neutrophil-lymphocyte ratio, monocyte-lymphocyte ratio, and platelet-lymphocyte ratio in stroke-associated pneumonia: A systematic review and meta-analysis. Curr. Med. Res. Opin. 39(3), 475–482. https://doi.org/10.1080/03007995.2023.2174327 (2023).
doi: 10.1080/03007995.2023.2174327
pubmed: 36710633
Wu, B., Liu, F., Sun, G. & Wang, S. Prognostic role of dynamic neutrophil-to-lymphocyte ratio in acute ischemic stroke after reperfusion therapy: A meta-analysis. Front. Neurol. 14(1), 1118563. https://doi.org/10.3389/fneur.2023.1118563 (2023).
doi: 10.3389/fneur.2023.1118563
pubmed: 36873451
pmcid: 9978711
Brooks, S. D. et al. Admission neutrophil-lymphocyte ratio predicts 90 day outcome after endovascular stroke therapy. J. Neurointerv. Surg. 6(8), 578–658. https://doi.org/10.1136/neurintsurg-2013-010780 (2014).
doi: 10.1136/neurintsurg-2013-010780
pubmed: 24122003
Tokgoz, S., Keskin, S., Kayrak, M., Seyithanoglu, A. & Ogmegul, A. Is neutrophil/lymphocyte ratio predict to short-term mortality in acute cerebral infarct independently from infarct volume?. J. Stroke Cerebrovasc. Dis. 23(8), 2163–2168. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.04.007 (2014).
doi: 10.1016/j.jstrokecerebrovasdis.2014.04.007
pubmed: 25106834
He, L. et al. Increased neutrophil-to-lymphocyte ratio predicts the development of post-stroke infections in patients with acute ischemic stroke. BMC Neurol. 20(1), 1–7. https://doi.org/10.1186/s12883-020-01914-x (2020).
doi: 10.1186/s12883-020-01914-x
Morotti, A. et al. Lymphopenia, infectious complications, and outcome in spontaneous intracerebral hemorrhage. Neurocrit. Care. 26(2), 160–166. https://doi.org/10.1007/s12028-016-0367-2 (2017).
doi: 10.1007/s12028-016-0367-2
pubmed: 28004330
pmcid: 5336513
Westendorp, W. F., Nederkoorn, P. J., Vermeij, J. D., Dijkgraaf, M. G. & van de Beek, D. Post-stroke infection: A systematic review and meta-analysis. BMC Neurol. 11, 1–7. https://doi.org/10.1186/1471-2377-11-110 (2011).
doi: 10.1186/1471-2377-11-110
Hug, A. et al. Infarct volume is a major determiner of post-stroke immune cell function and susceptibility to infection. Stroke 40(10), 3226–3232. https://doi.org/10.1161/STROKEAHA.109.557967 (2009).
doi: 10.1161/STROKEAHA.109.557967
pubmed: 19661470
Park, M. G. et al. Lymphocyte-to-monocyte ratio on day 7 is associated with outcomes in acute ischemic stroke. Neurol. Sci. 39(2), 243–249. https://doi.org/10.1007/s10072-017-3163-7 (2018).
doi: 10.1007/s10072-017-3163-7
pubmed: 29086124
Hoffmann, S. et al. Stroke-induced immunodepression and dysphagia independently predict stroke-associated pneumonia – The PREDICT study. J. Cereb. Blood Flow Metab. 37(12), 3671–3682. https://doi.org/10.1177/0271678X16671964 (2017).
doi: 10.1177/0271678X16671964
pubmed: 27733675
Carneiro, T. et al. Admission lymphocytopenia is associated with urinary tract infection and nosocomial infections in hemorrhagic stroke. J. Stroke Cerebrovasc. Dis. 30(11), 106079. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106079 (2021).
doi: 10.1016/j.jstrokecerebrovasdis.2021.106079
pubmed: 34488005
Urra, X. et al. Monocytes are major players in the prognosis and risk of infection after acute stroke. Stroke 40(4), 1262–1268. https://doi.org/10.1161/STROKEAHA.108.532085 (2009).
doi: 10.1161/STROKEAHA.108.532085
pubmed: 19164783
Zhang, D. P. et al. A decrease of human leucocyte antigen-DR expression on monocytes in peripheral blood predicts stroke-associated infection in critically-ill patients with acute stroke. Eur. J. Neurol. 16(4), 498–505. https://doi.org/10.1111/j.1468-1331.2008.02512.x (2009).
doi: 10.1111/j.1468-1331.2008.02512.x
pubmed: 19187263
Gökhan, S. et al. Neutrophil lymphocyte ratios in stroke subtypes and transient ischemic attack. Eur. Rev. Med. Pharmacol. Sci. 17(5), 653–657 (2013).
pubmed: 23543449
Guo, Z. et al. Dynamic change of neutrophil to lymphocyte ratio and hemorrhagic transformation after thrombolysis in stroke. J. Neuroinflamm. 13(1), 1–8. https://doi.org/10.1186/s12974-016-0680-x (2016).
doi: 10.1186/s12974-016-0680-x
Pektezel, M. Y., Yilmaz, E., Arsava, E. M. & Topcuoglu, M. A. Neutrophil-to-lymphocyte ratio and response to intravenous thrombolysis in patients with acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 28(7), 1853–1859. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.04.014 (2019).
doi: 10.1016/j.jstrokecerebrovasdis.2019.04.014
pubmed: 31072698
Adiguzel, A., Arsava, E. M. & Topcuoglu, M. A. Temporal course of peripheral inflammation markers and indexes following acute ischemic stroke: Prediction of mortality, functional outcome, and stroke-associated pneumonia. Neurol. Res. 44(3), 224–231. https://doi.org/10.1080/01616412.2021.1975222 (2022).
doi: 10.1080/01616412.2021.1975222
pubmed: 34514954
Mackintosh, S. Functional independence measure. Aust. J. Physiother. 55(1), 65. https://doi.org/10.1016/s0004-9514(09)70066-2 (2009).
doi: 10.1016/s0004-9514(09)70066-2
pubmed: 19226247
Pedraza, S. et al. Reliability of the ABC/2 method in determining acute infarct volume. J. Neuroimag. 22(2), 155–159. https://doi.org/10.1111/j.1552-6569.2011.00588.x (2012).
doi: 10.1111/j.1552-6569.2011.00588.x
Webb, A. J. S. et al. Accuracy of the ABC/2 score for intracerebral hemorrhage: Systematic review and analysis of MISTIE, CLEAR-IVH, and CLEAR III. Stroke 46(9), 2470–2476. https://doi.org/10.1161/STROKEAHA.114.007343 (2015).
doi: 10.1161/STROKEAHA.114.007343
pubmed: 26243227
pmcid: 4550520
Smith, C. J. et al. Diagnosis of stroke-associated pneumonia: Recommendations from the pneumonia in stroke consensus group. Stroke 46(8), 2335–2340. https://doi.org/10.1161/STROKEAHA.115.009617 (2015).
doi: 10.1161/STROKEAHA.115.009617
pubmed: 26111886
Poisson, S. N., Johnston, S. C. & Josephson, S. A. Urinary tract infections complicating stroke: Mechanisms, consequences, and possible solutions. Stroke 41(4), e180–e184. https://doi.org/10.1161/STROKEAHA.109.576413 (2010).
doi: 10.1161/STROKEAHA.109.576413
pubmed: 20167905
Panfili, Z., Metcalf, M. & Griebling, T. L. Contemporary evaluation and treatment of poststroke lower urinary tract dysfunction. Urol. Clin. N. Am. 44(3), 403–414. https://doi.org/10.1016/j.ucl.2017.04.007 (2017).
doi: 10.1016/j.ucl.2017.04.007
Stösser, S., Isakeit, J., Bode, F. J., Bode, C. & Petzold, G. C. Sepsis in patients with large vessel occlusion stroke-clinical characteristics and outcome. Front. Neurol. 13, 902809. https://doi.org/10.3389/fneur.2022.902809 (2022).
doi: 10.3389/fneur.2022.902809
pubmed: 35903123
pmcid: 9315268
Beninato, M. et al. Determination of the minimal clinically important difference in the FIM instrument in patients with stroke. Arch. Phys. Med. Rehabil. 87(1), 32–39. https://doi.org/10.1016/j.apmr.2005.08.130 (2006).
doi: 10.1016/j.apmr.2005.08.130
pubmed: 16401435
Noguchi, K., Gel, Y. R., Brunner, E. & Konietschke, F. nparLD: An R software package for the nonparametric analysis of longitudinal data in factorial experiments. J. Stat. Softw. https://doi.org/10.18637/jss.v050.i12 (2012).
doi: 10.18637/jss.v050.i12