CHD4 acts as a prognostic factor and drives radioresistance in HPV negative HNSCC.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
09 Apr 2024
Historique:
received: 27 11 2023
accepted: 04 04 2024
medline: 10 4 2024
pubmed: 10 4 2024
entrez: 9 4 2024
Statut: epublish

Résumé

Despite great efforts in improving existing therapies, the outcome of patients with advanced radioresistant HPV-negative head and neck squamous cell carcinoma (HNSCC) remains poor. The chromatin remodeler Chromodomain helicase DNA binding protein 4 (CHD4) is involved in different DNA-repair mechanisms, but the role and potential in HNSCC has not been explored yet. In the present study, we evaluated the prognostic significance of CHD4 expression using in silico analysis of the pan-cancer dataset. Furthermore, we established a monoclonal HNSCC CHD4 knockdown cell clone utilizing the CRISPR/Cas9 system. Effects of lower CHD4 expression on radiosensitivity after increasing doses of ionizing radiation were characterized using clonogenic assays and cell numbers. The in silico analysis revealed that high CHD4 expression is associated with significant poorer overall survival of HPV-negative HNSCC patients. Additionally, the knockdown of CHD4 significantly increased the radiosensitivity of HNSCC cells. Therefore, CHD4 might be involved in promoting radioresistance in hard-to-treat HPV-negative HNSCC entities. We conclude that CHD4 could serve as a prognostic factor in HPV-negative HNSCC tumors and is a potential target protein overcoming radioresistance in HNSCC. Our results and the newly established cell clone laid the foundation to further characterize the underlying mechanisms and ultimately use CHD4 in HNSCC therapies.

Identifiants

pubmed: 38594331
doi: 10.1038/s41598-024-58958-z
pii: 10.1038/s41598-024-58958-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8286

Informations de copyright

© 2024. The Author(s).

Références

Johnson, D. E. et al. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Prim. 6, 92. https://doi.org/10.1038/s41572-020-00224-3 (2020).
doi: 10.1038/s41572-020-00224-3 pubmed: 33243986
Stewart, B. W., Greim, H., Shuker, D. & Kauppinen, T. Defence of IARC monographs. Lancet 361, 1300. https://doi.org/10.1016/s0140-6736(03)13003-6 (2003).
doi: 10.1016/s0140-6736(03)13003-6 pubmed: 12699982
Cramer, J. D., Burtness, B., Le, Q. T. & Ferris, R. L. The changing therapeutic landscape of head and neck cancer. Nat. Rev. Clin. Oncol. 16, 669–683. https://doi.org/10.1038/s41571-019-0227-z (2019).
doi: 10.1038/s41571-019-0227-z pubmed: 31189965
LeHew, C. W. et al. The health system and policy implications of changing epidemiology for oral cavity and oropharyngeal cancers in the United States from 1995 to 2016. Epidemiol. Rev. 39, 132–147. https://doi.org/10.1093/epirev/mxw001 (2017).
doi: 10.1093/epirev/mxw001 pubmed: 28402398
Weatherspoon, D. J., Chattopadhyay, A., Boroumand, S. & Garcia, I. Oral cavity and oropharyngeal cancer incidence trends and disparities in the United States: 2000–2010. Cancer Epidemiol. 39, 497–504. https://doi.org/10.1016/j.canep.2015.04.007 (2015).
doi: 10.1016/j.canep.2015.04.007 pubmed: 25976107 pmcid: 4532587
Cillo, A. R. et al. Immune landscape of viral-and carcinogen-driven head and neck cancer. Immunity 52, 183-199.e189. https://doi.org/10.1016/j.immuni.2019.11.014 (2020).
doi: 10.1016/j.immuni.2019.11.014 pubmed: 31924475 pmcid: 7201194
Göttgens, E. L., Ostheimer, C., Span, P. N., Bussink, J. & Hammond, E. M. HPV, hypoxia and radiation response in head and neck cancer. Br. J. Radiol. 92, 20180047. https://doi.org/10.1259/bjr.20180047 (2019).
doi: 10.1259/bjr.20180047 pubmed: 29493265
Pulte, D. & Brenner, H. Changes in survival in head and neck cancers in the late 20th and early 21st century: A period analysis. Oncologist 15, 994–1001. https://doi.org/10.1634/theoncologist.2009-0289 (2010).
doi: 10.1634/theoncologist.2009-0289 pubmed: 20798198 pmcid: 3228039
Choong, N. & Vokes, E. Expanding role of the medical oncologist in the management of head and neck cancer. CA Cancer J. Clin. 58, 32–53. https://doi.org/10.3322/ca.2007.0004 (2008).
doi: 10.3322/ca.2007.0004 pubmed: 18096865
Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: Signaling, repair and the cancer connection. Nat. Genet. 27, 247–254. https://doi.org/10.1038/85798 (2001).
doi: 10.1038/85798 pubmed: 11242102
Misteli, T. & Soutoglou, E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat. Rev. Mol. Cell Biol. 10, 243–254. https://doi.org/10.1038/nrm2651 (2009).
doi: 10.1038/nrm2651 pubmed: 19277046 pmcid: 3478884
Watson, A. A. et al. The PHD and chromo domains regulate the ATPase activity of the human chromatin remodeler CHD4. J. Mol. Biol. 422, 3–17. https://doi.org/10.1016/j.jmb.2012.04.031 (2012).
doi: 10.1016/j.jmb.2012.04.031 pubmed: 22575888 pmcid: 3437443
Denslow, S. A. & Wade, P. A. The human Mi-2/NuRD complex and gene regulation. Oncogene 26, 5433–5438. https://doi.org/10.1038/sj.onc.1210611 (2007).
doi: 10.1038/sj.onc.1210611 pubmed: 17694084
Zhang, J., Shih, D. J. H. & Lin, S. Y. The tale of CHD4 in DNA damage response and chemotherapeutic response. J. Cancer Res. Cell Ther. 3, 052 (2019).
pubmed: 32577620 pmcid: 7310990
Smith, R., Sellou, H., Chapuis, C., Huet, S. & Timinszky, G. CHD3 and CHD4 recruitment and chromatin remodeling activity at DNA breaks is promoted by early poly(ADP-ribose)-dependent chromatin relaxation. Nucleic Acids Res. 46, 6087–6098. https://doi.org/10.1093/nar/gky334 (2018).
doi: 10.1093/nar/gky334 pubmed: 29733391 pmcid: 6158744
Luo, C. W. et al. CHD4-mediated loss of E-cadherin determines metastatic ability in triple-negative breast cancer cells. Exp. Cell Res. 363, 65–72. https://doi.org/10.1016/j.yexcr.2017.12.032 (2018).
doi: 10.1016/j.yexcr.2017.12.032 pubmed: 29305962
Heshmati, Y. et al. The chromatin-remodeling factor CHD4 is required for maintenance of childhood acute myeloid leukemia. Haematologica 103, 1169–1181. https://doi.org/10.3324/haematol.2017.183970 (2018).
doi: 10.3324/haematol.2017.183970 pubmed: 29599201 pmcid: 6029541
Mayes, K., Qiu, Z., Alhazmi, A. & Landry, J. W. ATP-dependent chromatin remodeling complexes as novel targets for cancer therapy. Adv. Cancer Res. 121, 183–233. https://doi.org/10.1016/b978-0-12-800249-0.00005-6 (2014).
doi: 10.1016/b978-0-12-800249-0.00005-6 pubmed: 24889532 pmcid: 4839282
Larsen, D. H. et al. The chromatin-remodeling factor CHD4 coordinates signaling and repair after DNA damage. J. Cell Biol. 190, 731–740. https://doi.org/10.1083/jcb.200912135 (2010).
doi: 10.1083/jcb.200912135 pubmed: 20805324 pmcid: 2935572
Xia, L. et al. CHD4 has oncogenic functions in initiating and maintaining epigenetic suppression of multiple tumor suppressor genes. Cancer Cell 31, 653-668.e657. https://doi.org/10.1016/j.ccell.2017.04.005 (2017).
doi: 10.1016/j.ccell.2017.04.005 pubmed: 28486105 pmcid: 5587180
D’Alesio, C. et al. RNAi screens identify CHD4 as an essential gene in breast cancer growth. Oncotarget 7, 80901–80915. https://doi.org/10.18632/oncotarget.12646 (2016).
doi: 10.18632/oncotarget.12646 pubmed: 27779108 pmcid: 5348363
Sperlazza, J. et al. Depletion of the chromatin remodeler CHD4 sensitizes AML blasts to genotoxic agents and reduces tumor formation. Blood 126, 1462–1472. https://doi.org/10.1182/blood-2015-03-631606 (2015).
doi: 10.1182/blood-2015-03-631606 pubmed: 26265695 pmcid: 4573869
D’Alesio, C. et al. The chromodomain helicase CHD4 regulates ERBB2 signaling pathway and autophagy in ERBB2(+) breast cancer cells. Biol. Open https://doi.org/10.1242/bio.038323 (2019).
doi: 10.1242/bio.038323 pubmed: 30967373 pmcid: 6504000
Wang, H. C. et al. Over-expression of CHD4 is an independent biomarker of poor prognosis in patients with rectal cancers receiving concurrent chemoradiotherapy. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20174087 (2019).
doi: 10.3390/ijms20174087 pubmed: 31906187 pmcid: 6982173
Lai, A. Y. & Wade, P. A. Cancer biology and NuRD: A multifaceted chromatin remodelling complex. Nat. Rev. Cancer 11, 588–596. https://doi.org/10.1038/nrc3091 (2011).
doi: 10.1038/nrc3091 pubmed: 21734722 pmcid: 4157524
Smeenk, G. et al. The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage. J. Cell Biol. 190, 741–749. https://doi.org/10.1083/jcb.201001048 (2010).
doi: 10.1083/jcb.201001048 pubmed: 20805320 pmcid: 2935570
Chou, D. M. et al. A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc. Natl. Acad. Sci. U. S. A. 107, 18475–18480. https://doi.org/10.1073/pnas.1012946107 (2010).
doi: 10.1073/pnas.1012946107 pubmed: 20937877 pmcid: 2972950
Urquhart, A. J., Gatei, M., Richard, D. J. & Khanna, K. K. ATM mediated phosphorylation of CHD4 contributes to genome maintenance. Genome Integr. 2, 1. https://doi.org/10.1186/2041-9414-2-1 (2011).
doi: 10.1186/2041-9414-2-1 pubmed: 21219611 pmcid: 3035021
Schmidt, D. R. & Schreiber, S. L. Molecular association between ATR and two components of the nucleosome remodeling and deacetylating complex, HDAC2 and CHD4. Biochemistry 38, 14711–14717. https://doi.org/10.1021/bi991614n (1999).
doi: 10.1021/bi991614n pubmed: 10545197
Qi, W. et al. Acetyltransferase p300 collaborates with chromodomain helicase DNA-binding protein 4 (CHD4) to facilitate DNA double-strand break repair. Mutagenesis 31, 193–203. https://doi.org/10.1093/mutage/gev075 (2016).
doi: 10.1093/mutage/gev075 pubmed: 26546801
Guillemette, S. et al. Resistance to therapy in BRCA2 mutant cells due to loss of the nucleosome remodeling factor CHD4. Genes Dev. 29, 489–494. https://doi.org/10.1101/gad.256214.114 (2015).
doi: 10.1101/gad.256214.114 pubmed: 25737278 pmcid: 4358401
Geyer, F., Geyer, M., Klapproth, S., Wolff, K. D. & Nieberler, M. Protocol for generating monoclonal CRISPR-Cas9-mediated knockout cell lines using RNPs and lipofection in HNSCC cells. STAR Protoc. 4, 102366. https://doi.org/10.1016/j.xpro.2023.102366 (2023).
doi: 10.1016/j.xpro.2023.102366 pubmed: 37421616 pmcid: 10339245
Wicker, C. A., Petery, T., Dubey, P., Wise-Draper, T. M. & Takiar, V. Improving radiotherapy response in the treatment of head and neck cancer. Crit. Rev. Oncog. 27, 73–84. https://doi.org/10.1615/CritRevOncog.2022044635 (2022).
doi: 10.1615/CritRevOncog.2022044635 pubmed: 36734873 pmcid: 10228519
Haubner, F., Ohmann, E., Pohl, F., Strutz, J. & Gassner, H. G. Wound healing after radiation therapy: Review of the literature. Radiat. Oncol. 7, 162. https://doi.org/10.1186/1748-717x-7-162 (2012).
doi: 10.1186/1748-717x-7-162 pubmed: 23006548 pmcid: 3504517
Ramos, P. & Bentires-Alj, M. Mechanism-based cancer therapy: Resistance to therapy, therapy for resistance. Oncogene 34, 3617–3626. https://doi.org/10.1038/onc.2014.314 (2015).
doi: 10.1038/onc.2014.314 pubmed: 25263438
Gillison, M. L., Chaturvedi, A. K., Anderson, W. F. & Fakhry, C. Epidemiology of human papillomavirus-positive head and neck squamous cell carcinoma. J. Clin. Oncol. 33, 3235–3242. https://doi.org/10.1200/jco.2015.61.6995 (2015).
doi: 10.1200/jco.2015.61.6995 pubmed: 26351338 pmcid: 4979086
Ang, K. K. et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 363, 24–35. https://doi.org/10.1056/NEJMoa0912217 (2010).
doi: 10.1056/NEJMoa0912217 pubmed: 20530316 pmcid: 2943767
Wuerdemann, N. et al. Risk factors for overall survival outcome in surgically treated human papillomavirus-negative and positive patients with oropharyngeal cancer. Oncol. Res. Treat. 40, 320–327. https://doi.org/10.1159/000477097 (2017).
doi: 10.1159/000477097 pubmed: 28558385
Sun, Y., Wang, Z., Qiu, S. & Wang, R. Therapeutic strategies of different HPV status in head and neck squamous cell carcinoma. Int. J. Biol. Sci. 17, 1104–1118. https://doi.org/10.7150/ijbs.58077 (2021).
doi: 10.7150/ijbs.58077 pubmed: 33867833 pmcid: 8040311
Oskouie, A. A., Ahmadi, M. S. & Taherkhani, A. Identification of prognostic biomarkers in papillary thyroid cancer and developing non-invasive diagnostic models through integrated bioinformatics analysis. Microrna 11, 73–87. https://doi.org/10.2174/2211536611666220124115445 (2022).
doi: 10.2174/2211536611666220124115445 pubmed: 35068400
Wong, S. C. C. et al. Prognostic significance of Cytokeratin 20-positive lymph node vascular endothelial growth factor A mRNA and chromodomain helicase DNA binding protein 4 in pN0 colorectal cancer patients. Oncotarget 9, 6737–6751. https://doi.org/10.18632/oncotarget.23424 (2018).
doi: 10.18632/oncotarget.23424 pubmed: 29467924
Fagagna, F. A. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198. https://doi.org/10.1038/nature02118 (2003).
doi: 10.1038/nature02118
Zhou, L. & Yao, S. Recent advances in therapeutic CRISPR-Cas9 genome editing: Mechanisms and applications. Mol. Biomed. 4, 10. https://doi.org/10.1186/s43556-023-00115-5 (2023).
doi: 10.1186/s43556-023-00115-5 pubmed: 37027099 pmcid: 10080534
Polo, S. E., Kaidi, A., Baskcomb, L., Galanty, Y. & Jackson, S. P. Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. EMBO J. 29, 3130–3139. https://doi.org/10.1038/emboj.2010.188 (2010).
doi: 10.1038/emboj.2010.188 pubmed: 20693977 pmcid: 2944064
Luo, J., Su, F., Chen, D., Shiloh, A. & Gu, W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408, 377–381. https://doi.org/10.1038/35042612 (2000).
doi: 10.1038/35042612 pubmed: 11099047
Chudnovsky, Y. et al. ZFHX4 interacts with the NuRD core member CHD4 and regulates the glioblastoma tumor-initiating cell state. Cell Rep. 6, 313–324. https://doi.org/10.1016/j.celrep.2013.12.032 (2014).
doi: 10.1016/j.celrep.2013.12.032 pubmed: 24440720 pmcid: 4041390
Verheij, M. Clinical biomarkers and imaging for radiotherapy-induced cell death. Cancer Metastasis Rev. 27, 471–480. https://doi.org/10.1007/s10555-008-9131-1 (2008).
doi: 10.1007/s10555-008-9131-1 pubmed: 18470482
Hutchinson, M. N. D., Mierzwa, M. & D’Silva, N. J. Radiation resistance in head and neck squamous cell carcinoma: Dire need for an appropriate sensitizer. Oncogene 39, 3638–3649. https://doi.org/10.1038/s41388-020-1250-3 (2020).
doi: 10.1038/s41388-020-1250-3 pubmed: 32157215 pmcid: 7190570
Huang, S. M., Bock, J. M. & Harari, P. M. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res. 59, 1935–1940 (1999).
pubmed: 10213503
Aloy, M. T. et al. Protective role of Hsp27 protein against gamma radiation-induced apoptosis and radiosensitization effects of Hsp27 gene silencing in different human tumor cells. Int. J. Radiat. Oncol. Biol. Phys. 70, 543–553. https://doi.org/10.1016/j.ijrobp.2007.08.061 (2008).
doi: 10.1016/j.ijrobp.2007.08.061 pubmed: 17980509
Lomax, M. E., Folkes, L. K. & O’Neill, P. Biological consequences of radiation-induced DNA damage: Relevance to radiotherapy. Clin. Oncol. (R. Coll. Radiol.) 25, 578–585. https://doi.org/10.1016/j.clon.2013.06.007 (2013).
doi: 10.1016/j.clon.2013.06.007 pubmed: 23849504
Oetting, A. et al. Impaired DNA double-strand break repair and effective radiosensitization of HPV-negative HNSCC cell lines through combined inhibition of PARP and Wee1. Clin. Transl. Radiat. Oncol. 41, 100630. https://doi.org/10.1016/j.ctro.2023.100630 (2023).
doi: 10.1016/j.ctro.2023.100630 pubmed: 37180052 pmcid: 10172863
Zhou, C., Fabbrizi, M. R., Hughes, J. R., Grundy, G. J. & Parsons, J. L. Effectiveness of PARP inhibition in enhancing the radiosensitivity of 3D spheroids of head and neck squamous cell carcinoma. Front. Oncol. 12, 940377. https://doi.org/10.3389/fonc.2022.940377 (2022).
doi: 10.3389/fonc.2022.940377 pubmed: 36052247 pmcid: 9424551
Pan, M. R. et al. Chromodomain helicase DNA-binding protein 4 (CHD4) regulates homologous recombination DNA repair, and its deficiency sensitizes cells to poly(ADP-ribose) polymerase (PARP) inhibitor treatment. J. Biol. Chem. 287, 6764–6772. https://doi.org/10.1074/jbc.M111.287037 (2012).
doi: 10.1074/jbc.M111.287037 pubmed: 22219182 pmcid: 3307306
Oyama, Y. et al. CHD4 regulates platinum sensitivity through MDR1 expression in ovarian cancer: A potential role of CHD4 inhibition as a combination therapy with platinum agents. PLoS One 16, e0251079. https://doi.org/10.1371/journal.pone.0251079 (2021).
doi: 10.1371/journal.pone.0251079 pubmed: 34161330 pmcid: 8221472
Labun, K. et al. CHOPCHOP v3: Expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 47, W171-w174. https://doi.org/10.1093/nar/gkz365 (2019).
doi: 10.1093/nar/gkz365 pubmed: 31106371 pmcid: 6602426
Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168. https://doi.org/10.1093/nar/gku936 (2014).
doi: 10.1093/nar/gku936 pubmed: 25300484 pmcid: 4267669
Franken, N. A., Rodermond, H. M., Stap, J., Haveman, J. & van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315–2319. https://doi.org/10.1038/nprot.2006.339 (2006).
doi: 10.1038/nprot.2006.339 pubmed: 17406473

Auteurs

Fabian Geyer (F)

Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar der Technischen Universität München, 81675, Munich, Germany. ge52men@mytum.de.

Maximilian Geyer (M)

Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar der Technischen Universität München, 81675, Munich, Germany.

Ute Reuning (U)

Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675, Munich, Germany.

Sarah Klapproth (S)

Institute of Experimental Hematology, School of Medicine, Technische Universität München, 81675, Munich, Germany.

Klaus-Dietrich Wolff (KD)

Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar der Technischen Universität München, 81675, Munich, Germany.

Markus Nieberler (M)

Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar der Technischen Universität München, 81675, Munich, Germany.

Classifications MeSH