Granulosa Cells-Related MicroRNAs in Ovarian Diseases: Mechanism, Facts and Perspectives.

Granulosa cells MicroRNAs Polycystic ovary syndrome Premature ovarian failure Signaling pathway

Journal

Reproductive sciences (Thousand Oaks, Calif.)
ISSN: 1933-7205
Titre abrégé: Reprod Sci
Pays: United States
ID NLM: 101291249

Informations de publication

Date de publication:
09 Apr 2024
Historique:
received: 29 10 2023
accepted: 19 03 2024
medline: 10 4 2024
pubmed: 10 4 2024
entrez: 9 4 2024
Statut: aheadofprint

Résumé

MicroRNAs (miRNAs) are a class of short single-stranded, noncoding RNAs that affect the translation of mRNAs by imperfectly binding to homologous 3'UTRs. Research on miRNAs in ovarian diseases is constantly expanding because miRNAs are powerful regulators of gene expression and cellular processes and are promising biomarkers. miRNA mimics, miRNA inhibitors and molecules targeting miRNAs (antimiRs) have shown promise as novel therapeutic agents in preclinical development. Granulosa cells (GCs) are supporting cells for developing oocytes in the ovary. GCs regulate female reproductive health by producing sex hormones and LH receptors. Increasing research has reported the relevance of miRNAs in GC pathophysiology. With in-depth studies of disease mechanisms, there are an increasing number of studies on the biomolecular pathways of miRNAs in gynecology and endocrinology. In the present review, we summarize the different functions of GC-related microRNAs in various ovarian disorders, such as polycystic ovary syndrome, premature ovarian insufficiency, premature ovarian failure and ovarian granulosa cell tumors.

Identifiants

pubmed: 38594585
doi: 10.1007/s43032-024-01523-w
pii: 10.1007/s43032-024-01523-w
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Society for Reproductive Investigation.

Références

Lai EC. Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 2002;30(4):363–4.
pubmed: 11896390 doi: 10.1038/ng865
Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.
pubmed: 17506695 doi: 10.1146/annurev.cellbio.23.090506.123406
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.
pubmed: 8252621 doi: 10.1016/0092-8674(93)90529-Y
Reinhart BJ, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6.
pubmed: 10706289 doi: 10.1038/35002607
Reinhart BJ, et al. MicroRNAs in plants. Genes Dev. 2002;16(13):1616–26.
pubmed: 12101121 pmcid: 186362 doi: 10.1101/gad.1004402
Jones L. Revealing micro-RNAs in plants. Trends Plant Sci. 2002;7(11):473–5.
pubmed: 12417140 doi: 10.1016/S1360-1385(02)02361-0
Libri V, et al. Regulation of microRNA biogenesis and turnover by animals and their viruses. Cell Mol Life Sci. 2013;70(19):3525–44.
pubmed: 23354060 pmcid: 3771402 doi: 10.1007/s00018-012-1257-1
Rajewsky N. microRNA target predictions in animals. Nat Genet. 2006;38(Suppl):S8-13.
pubmed: 16736023 doi: 10.1038/ng1798
Saliminejad K, et al. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451–65.
pubmed: 30471116 doi: 10.1002/jcp.27486
Suzuki HI. Roles of MicroRNAs in Disease Biology. JMA J. 2023;6(2):104–13.
pubmed: 37179717 pmcid: 10169270 doi: 10.31662/jmaj.2023-0009
Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15(6):321–33.
pubmed: 25998712 pmcid: 4859809 doi: 10.1038/nrc3932
Liang TS, et al. MicroRNA-506 inhibits tumor growth and metastasis in nasopharyngeal carcinoma through the inactivation of the Wnt/β-catenin signaling pathway by down-regulating LHX2. J Exp Clin Cancer Res. 2019;38(1):97.
pubmed: 30791932 pmcid: 6385449 doi: 10.1186/s13046-019-1023-4
Razavi ZS, et al. Gynecologic cancers and non-coding RNAs: Epigenetic regulators with emerging roles. Crit Rev Oncol Hematol. 2021;157:103192.
pubmed: 33290823 doi: 10.1016/j.critrevonc.2020.103192
Javdani H, et al. Review article epithelial to mesenchymal transition-associated microRNAs in breast cancer. Mol Biol Rep. 2022;49(10):9963–73.
pubmed: 35716288 doi: 10.1007/s11033-022-07553-4
Salinas-Vera YM et al. Three-dimensional organotypic cultures reshape the microRNAs transcriptional program in breast cancer cells. Cancers (Basel). 2022;14(10):2490
Moghbeli M. MicroRNAs as the critical regulators of Cisplatin resistance in ovarian cancer cells. J Ovarian Res. 2021;14(1):127.
pubmed: 34593006 pmcid: 8485521 doi: 10.1186/s13048-021-00882-1
Hossain MS, et al. MicroRNAs expression analysis shows key affirmation of Synaptopodin-2 as a novel prognostic and therapeutic biomarker for colorectal and cervical cancers. Heliyon. 2021;7(6):e07347.
pubmed: 34195444 pmcid: 8239731 doi: 10.1016/j.heliyon.2021.e07347
Ajabnoor G, et al. Computational approaches for discovering significant microRNAs, microRNA-mRNA regulatory pathways, and therapeutic protein targets in endometrial cancer. Front Genet. 2022;13:1105173.
pubmed: 36704357 doi: 10.3389/fgene.2022.1105173
Lu J, et al. Expression of miR-26b in ovarian carcinoma tissues and its correlation with clinicopathology. Oncol Lett. 2019;17(5):4417–22.
pubmed: 30944634 pmcid: 6444457
Luo J, et al. Role of microRNA-133a in epithelial ovarian cancer pathogenesis and progression. Oncol Lett. 2014;7(4):1043–8.
pubmed: 24944666 pmcid: 3961467 doi: 10.3892/ol.2014.1841
Wang W, et al. Five serum microRNAs for detection and predicting of ovarian cancer. Eur J Obstet Gynecol Reprod Biol X. 2019;3:100017.
pubmed: 31404211 pmcid: 6687444 doi: 10.1016/j.eurox.2019.100017
Su L, Liu M. Correlation analysis on the expression levels of microRNA-23a and microRNA-23b and the incidence and prognosis of ovarian cancer. Oncol Lett. 2018;16(1):262–6.
pubmed: 29928410 pmcid: 6006491
Lv Y, et al. Roles of microRNAs in preeclampsia. J Cell Physiol. 2019;234(2):1052–61.
pubmed: 30256424 doi: 10.1002/jcp.27291
Hume L, et al. MicroRNAs emerging coordinate with placental mammals alter pathways in endometrial epithelia important for endometrial function. iScience. 2023;26(4):106339.
pubmed: 36968081 pmcid: 10034127 doi: 10.1016/j.isci.2023.106339
Bjorkman S, Taylor HS. MicroRNAs in endometriosis: biological function and emerging biomarker candidates†. Biol Reprod. 2019;100(5):1135–46.
pubmed: 30721951 pmcid: 6497525
Fernández-Pérez D, et al. MicroRNA dynamics at the onset of primordial germ and somatic cell sex differentiation during mouse embryonic gonad development. RNA. 2018;24(3):287–303.
pubmed: 29187591 pmcid: 5824349 doi: 10.1261/rna.062869.117
Klinge CM. miRNAs and estrogen action. Trends Endocrinol Metab. 2012;23(5):223–33.
pubmed: 22503553 pmcid: 3348384 doi: 10.1016/j.tem.2012.03.002
Piperigkou Z, et al. Estrogen receptor beta as epigenetic mediator of miR-10b and miR-145 in mammary cancer. Matrix Biol. 2017;64:94–111.
pubmed: 28797712 doi: 10.1016/j.matbio.2017.08.002
Zierau O, et al. Role of miR-203 in estrogen receptor-mediated signaling in the rat uterus and endometrial carcinoma. J Cell Biochem. 2018;119(7):5359–72.
pubmed: 29331043 doi: 10.1002/jcb.26675
Havelock JC, Rainey WE, Carr BR. Ovarian granulosa cell lines. Mol Cell Endocrinol. 2004;228(1–2):67–78.
pubmed: 15541573 doi: 10.1016/j.mce.2004.04.018
Deng Y, et al. TLR1/TLR2 signaling blocks the suppression of monocytic myeloid-derived suppressor cell by promoting its differentiation into M1-type macrophage. Mol Immunol. 2019;112:266–73.
pubmed: 31212097 doi: 10.1016/j.molimm.2019.06.006
Findlay JK, et al. Production and actions of inhibin and activin during folliculogenesis in the rat. Mol Cell Endocrinol. 2001;180(1–2):139–44.
pubmed: 11451583 doi: 10.1016/S0303-7207(01)00521-4
Hsueh AJ, et al. Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr Rev. 1984;5(1):76–127.
pubmed: 6142819 doi: 10.1210/edrv-5-1-76
Taghizabet N, et al. In vitro growth of the ovarian follicle: taking stock of advances in research. JBRA Assist Reprod. 2022;26(3):508–21.
pubmed: 34995044 pmcid: 9355428
Tu J, et al. The role of microRNAs in ovarian granulosa cells in health and disease. Front Endocrinol (Lausanne). 2019;10:174.
pubmed: 30949134 doi: 10.3389/fendo.2019.00174
Li Y, et al. MicroRNAs in ovarian function and disorders. J Ovarian Res. 2015;8:51.
pubmed: 26232057 pmcid: 4522283 doi: 10.1186/s13048-015-0162-2
McGinnis LK, Luense LJ, Christenson LK. MicroRNA in ovarian biology and disease. Cold Spring Harbor Perspect Med. 2015;5(9):a022962
Ilie IR, Georgescu CE. Polycystic ovary syndrome-epigenetic mechanisms and aberrant microRNA. Adv Clin Chem. 2015;71:25–45.
pubmed: 26411410 doi: 10.1016/bs.acc.2015.06.001
Guo Y, Sun J, Lai D. Role of microRNAs in premature ovarian insufficiency. Reprod Biol Endocrinol. 2017;15(1):38.
pubmed: 28499456 pmcid: 5427536 doi: 10.1186/s12958-017-0256-3
Nouri N, et al. Role of miRNAs interference on ovarian functions and premature ovarian failure. Cell Commun Signal. 2022;20(1):198.
pubmed: 36564840 pmcid: 9783981 doi: 10.1186/s12964-022-00992-3
Zhang B, et al. MicroRNA mediating networks in granulosa cells associated with ovarian follicular development. Biomed Res Int. 2017;2017:4585213.
pubmed: 28316977 pmcid: 5337806
Donadeu FX, Schauer SN, Sontakke SD. Involvement of miRNAs in ovarian follicular and luteal development. J Endocrinol. 2012;215(3):323–34.
pubmed: 23038794 doi: 10.1530/JOE-12-0252
Kim YJ, et al. MicroRNA profile of granulosa cells after ovarian stimulation differs according to maturity of retrieved oocytes. Geburtshilfe Frauenheilkd. 2016;76(6):704–8.
pubmed: 27365541 pmcid: 4922891 doi: 10.1055/s-0041-111173
Maruo T, et al. Regulation of granulosa cell proliferation and apoptosis during follicular development. Gynecol Endocrinol. 1999;13(6):410–9.
pubmed: 10685335 doi: 10.3109/09513599909167588
Yao G, et al. MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol. 2010;24(3):540–51.
pubmed: 20118412 pmcid: 5419098 doi: 10.1210/me.2009-0432
Andreas E, et al. MicroRNA 17–92 cluster regulates proliferation and differentiation of bovine granulosa cells by targeting PTEN and BMPR2 genes. Cell Tissue Res. 2016;366(1):219–30.
pubmed: 27221279 doi: 10.1007/s00441-016-2425-7
Gebremedhn S, et al. MicroRNA-183-96-182 cluster regulates bovine granulosa cell proliferation and cell cycle transition by coordinately targeting FOXO1. Biol Reprod. 2016;94(6):127.
pubmed: 27122636 pmcid: 6702798 doi: 10.1095/biolreprod.115.137539
Pande HO, et al. MicroRNA-424/503 cluster members regulate bovine granulosa cell proliferation and cell cycle progression by targeting SMAD7 gene through activin signalling pathway. J Ovarian Res. 2018;11(1):34.
pubmed: 29716627 pmcid: 5930509 doi: 10.1186/s13048-018-0410-3
Yan G, et al. MicroRNA-145 suppresses mouse granulosa cell proliferation by targeting activin receptor IB. FEBS Lett. 2012;586(19):3263–70.
pubmed: 22796494 doi: 10.1016/j.febslet.2012.06.048
Peng JY, et al. MicroRNA-10b suppresses goat granulosa cell proliferation by targeting brain-derived neurotropic factor. Domest Anim Endocrinol. 2016;54:60–7.
pubmed: 26513157 doi: 10.1016/j.domaniend.2015.09.005
Tao H, et al. MicroRNA-27a-3p targeting Vangl1 and Vangl2 inhibits cell proliferation in mouse granulosa cells. Biochim Biophys Acta Gene Regul Mech. 2023;1866(1):194885.
pubmed: 36288764 doi: 10.1016/j.bbagrm.2022.194885
Hilker RE, et al. MicroRNA-21 enhances estradiol production by inhibiting WT1 expression in granulosa cells. J Mol Endocrinol. 2021;68(1):11–22.
pubmed: 34665763 doi: 10.1530/JME-21-0162
Carletti MZ, Fiedler SD, Christenson LK. MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biol Reprod. 2010;83(2):286–95.
pubmed: 20357270 pmcid: 2907287 doi: 10.1095/biolreprod.109.081448
Guo L, et al. microRNA-10b promotes the apoptosis of bovine ovarian granulosa cells by targeting plasminogen activator inhibitor-1. Theriogenology. 2021;176:206–16.
pubmed: 34627051 doi: 10.1016/j.theriogenology.2021.09.035
Bai Y et al. MicroRNA 195–5p targets Foxo3 promoter region to regulate its expression in granulosa cells. Int J Mol Sci. 2021;22(13):6721
Huo S, et al. MicroRNA 26a targets Ezh2 to regulate apoptosis in mouse ovarian granulosa cells. Syst Biol Reprod Med. 2021;67(3):221–9.
pubmed: 34058933 doi: 10.1080/19396368.2021.1895362
Zhou R, et al. MicroRNA-150 promote apoptosis of ovine ovarian granulosa cells by targeting STAR gene. Theriogenology. 2019;127:66–71.
pubmed: 30669067 doi: 10.1016/j.theriogenology.2019.01.003
Zhang P, et al. MicroRNA-205 affects mouse granulosa cell apoptosis and estradiol synthesis by targeting CREB1. J Cell Biochem. 2019;120(5):8466–74.
pubmed: 30556190 doi: 10.1002/jcb.28133
Yao Y, et al. microRNA-125b regulates apoptosis by targeting bone morphogenetic protein receptor 1B in yak granulosa cells. DNA Cell Biol. 2018;37(11):878–87.
pubmed: 30260685 doi: 10.1089/dna.2018.4354
Xu L, et al. MicroRNA-145 protects follicular granulosa cells against oxidative stress-induced apoptosis by targeting Krüppel-like factor 4. Mol Cell Endocrinol. 2017;452:138–47.
pubmed: 28564582 doi: 10.1016/j.mce.2017.05.030
Zhou J, et al. MicroRNA let-7g regulates mouse granulosa cell autophagy by targeting insulin-like growth factor 1 receptor. Int J Biochem Cell Biol. 2016;78:130–40.
pubmed: 27417237 doi: 10.1016/j.biocel.2016.07.008
Zhou J, et al. The let-7g microRNA promotes follicular granulosa cell apoptosis by targeting transforming growth factor-β type 1 receptor. Mol Cell Endocrinol. 2015;409:103–12.
pubmed: 25817543 doi: 10.1016/j.mce.2015.03.012
Wang L, et al. MicroRNA-764-3p regulates 17β-estradiol synthesis of mouse ovarian granulosa cells by targeting steroidogenic factor-1. In Vitro Cell Dev Biol Anim. 2016;52(3):365–73.
pubmed: 26676955 doi: 10.1007/s11626-015-9977-9
Grossman H, et al. A novel regulatory pathway in granulosa cells, the LH/human chorionic gonadotropin-microRNA-125a-3p-Fyn pathway, is required for ovulation. Faseb j. 2015;29(8):3206–16.
pubmed: 25921829 doi: 10.1096/fj.14-269449
Iwamune M, et al. MicroRNA-376a regulates 78-kilodalton glucose-regulated protein expression in rat granulosa cells. PLoS ONE. 2014;9(10):e108997.
pubmed: 25279841 pmcid: 4184830 doi: 10.1371/journal.pone.0108997
Toms D, et al. Progesterone receptor expression in granulosa cells is suppressed by microRNA-378-3p. Mol Cell Endocrinol. 2015;399:95–102.
pubmed: 25150622 doi: 10.1016/j.mce.2014.07.022
Troppmann B, et al. MicroRNA miR-513a-3p acts as a co-regulator of luteinizing hormone/chorionic gonadotropin receptor gene expression in human granulosa cells. Mol Cell Endocrinol. 2014;390(1–2):65–72.
pubmed: 24747085 doi: 10.1016/j.mce.2014.04.003
Yao G, et al. MicroRNA-224 is involved in the regulation of mouse cumulus expansion by targeting Ptx3. Mol Cell Endocrinol. 2014;382(1):244–53.
pubmed: 24145127 doi: 10.1016/j.mce.2013.10.014
Liang M, et al. Transcriptional cooperation between p53 and NF-κB p65 regulates microRNA-224 transcription in mouse ovarian granulosa cells. Mol Cell Endocrinol. 2013;370(1–2):119–29.
pubmed: 23474441 doi: 10.1016/j.mce.2013.02.014
Gebremedhn S et al. Dynamics of extracellular vesicle-coupled microRNAs in equine follicular fluid associated with follicle selection and ovulation. Mol Hum Reprod. 2023;29(4):gaad009
Liu J, et al. MicroRNA-26b functions as a proapoptotic factor in porcine follicular Granulosa cells by targeting Sma-and Mad-related protein 4. Biol Reprod. 2014;91(6):146.
pubmed: 25395673 doi: 10.1095/biolreprod.114.122788
Zhou J, Peng X, Mei S. Autophagy in ovarian follicular development and atresia. Int J Biol Sci. 2019;15(4):726–37.
pubmed: 30906205 pmcid: 6429023 doi: 10.7150/ijbs.30369
D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–92.
pubmed: 30958602 doi: 10.1002/cbin.11137
Bhardwaj JK, et al. Role of autophagy in follicular development and maintenance of primordial follicular pool in the ovary. J Cell Physiol. 2022;237(2):1157–70.
pubmed: 34668576 doi: 10.1002/jcp.30613
Zhang Y, et al. Autophagy-related lncRNAs in tumor progression and drug resistance: A double-edged sword. Genes Dis. 2024;11(1):367–81.
pubmed: 37588204 doi: 10.1016/j.gendis.2023.04.015
Hennebold JD. Preventing granulosa cell apoptosis through the action of a single microRNA. Biol Reprod. 2010;83(2):165–7.
pubmed: 20554924 pmcid: 2907282 doi: 10.1095/biolreprod.110.086173
Toms D, Pan B, Li J. endocrine regulation in the ovary by MicroRNA during the estrous cycle. Front Endocrinol (Lausanne). 2017;8:378.
pubmed: 29403434 doi: 10.3389/fendo.2017.00378
Sirotkin AV, et al. Involvement of microRNA Mir15a in control of human ovarian granulosa cell proliferation, apoptosis, steroidogenesis, and response to FSH. Microrna. 2014;3(1):29–36.
pubmed: 25069510 doi: 10.2174/2211536603666140227232824
Fabová Z, et al. Involvement of microRNA miR-125b in the control of porcine ovarian cell functions. Gen Comp Endocrinol. 2023;334:114215.
pubmed: 36669691 doi: 10.1016/j.ygcen.2023.114215
Fabová Z, Loncová B, Sirotkin AV. MicroRNA miR-125b can suppress ovarian granulosa cell functions: Interrelationships with FSH. Cell Biochem Funct. 2023;41(2):177–88.
pubmed: 36575629 doi: 10.1002/cbf.3771
Pan B, Zhan X, Li J. MicroRNA-574 impacts granulosa cell estradiol production via targeting TIMP3 and ERK1/2 signaling pathway. Front Endocrinol (Lausanne). 2022;13:852127.
pubmed: 35813635 doi: 10.3389/fendo.2022.852127
Li L, et al. Taurine promotes estrogen synthesis by regulating microRNA-7a2 in mice ovarian granulosa cells. Biochem Biophys Res Commun. 2022;626:129–34.
pubmed: 35988296 doi: 10.1016/j.bbrc.2022.07.084
Dai A, et al. MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett. 2013;587(15):2474–82.
pubmed: 23810756 doi: 10.1016/j.febslet.2013.06.023
Fiedler SD, et al. Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells. Biol Reprod. 2008;79(6):1030–7.
pubmed: 18716288 pmcid: 2780477 doi: 10.1095/biolreprod.108.069690
Yao N, et al. Follicle-stimulating hormone regulation of microRNA expression on progesterone production in cultured rat granulosa cells. Endocrine. 2010;38(2):158–66.
pubmed: 20734245 doi: 10.1007/s12020-010-9345-1
Xu Y, et al. TGF-β1 resulting in differential microRNA expression in bovine granulosa cells. Gene. 2018;663:88–100.
pubmed: 29665451 doi: 10.1016/j.gene.2018.04.036
Rotterdam EA-SPCWG. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41–7.
doi: 10.1093/humrep/deh098
Zeng X, et al. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clin Chim Acta. 2020;502:214–21.
pubmed: 31733195 doi: 10.1016/j.cca.2019.11.003
Khan SH, et al. Dehydroepiandrosterone Sulfate (DHEAS) Levels in Polycystic Ovarian Syndrome (PCOS). J Coll Physicians Surg Pak. 2021;31(3):253–7.
pubmed: 33775010 doi: 10.29271/jcpsp.2021.03.253
Garg D, Tal R. The role of AMH in the pathophysiology of polycystic ovarian syndrome. Reprod Biomed Online. 2016;33(1):15–28.
pubmed: 27174394 doi: 10.1016/j.rbmo.2016.04.007
Li Y, et al. Effect of luteinizing hormone vs follicular stimulating hormone ratio on anti-Müllerian hormone secretion and folliculogenesis in patients with polycystic ovarian syndrome. Zhonghua Fu Chan Ke Za Zhi. 2010;45(8):567–70.
pubmed: 21029609
Adone A, Fulmali DG. Polycystic Ovarian Syndrome in Adolescents. Cureus. 2023;15(1):e34183.
pubmed: 36843701 pmcid: 9951123
Chang RJ, Cook-Andersen H. Disordered follicle development. Mol Cell Endocrinol. 2013;373(1–2):51–60.
pubmed: 22874072 doi: 10.1016/j.mce.2012.07.011
Motahari Rad H, et al. Characterization of altered microRNAs related to different phenotypes of polycystic ovarian syndrome (PCOS) in serum, follicular fluid, and cumulus cells. Taiwan J Obstet Gynecol. 2022;61(5):768–79.
pubmed: 36088043 doi: 10.1016/j.tjog.2022.05.013
Xu C, et al. MicroRNA-1298-5p in granulosa cells facilitates cell autophagy in polycystic ovary syndrome by suppressing glutathione-disulfide reductase. Cell Tissue Res. 2023;392(3):763–78.
pubmed: 36781484 doi: 10.1007/s00441-023-03747-9
Shen X, Gong A. The expression of microRNA-197-3p regulates the proliferation of ovarian granulosa cells through CUL3 in polycystic ovarian syndrome. Acta Biochim Pol. 2022;69(3):599–604.
pubmed: 36063543
Guo Y, et al. Long non-coding RNA-X-inactive specific transcript inhibits cell viability, and induces apoptosis through the microRNA-30c-5p/Bcl2-like protein 11 signaling axis in human granulosa-like tumor cells. Bioengineered. 2022;13(6):14107–17.
pubmed: 35730492 pmcid: 9342309 doi: 10.1080/21655979.2022.2080366
Li X, Zhu L, Luo Y. Long non-coding RNA HLA-F antisense RNA 1 inhibits the maturation of microRNA-613 in polycystic ovary syndrome to promote ovarian granulosa cell proliferation and inhibit cell apoptosis. Bioengineered. 2022;13(5):12289–97.
pubmed: 35603775 pmcid: 9275988 doi: 10.1080/21655979.2022.2070965
Xu X, et al. MicroRNA let-7i inhibits granulosa-luteal cell proliferation and oestradiol biosynthesis by directly targeting IMP2. Reprod Biomed Online. 2022;44(5):803–16.
pubmed: 35339367 doi: 10.1016/j.rbmo.2022.01.016
Wan T, et al. Vitamin D deficiency inhibits microRNA-196b-5p which regulates ovarian granulosa cell hormone synthesis, proliferation, and apoptosis by targeting RDX and LRRC17. Ann Transl Med. 2021;9(24):1775.
pubmed: 35071469 pmcid: 8756257 doi: 10.21037/atm-21-6081
Wang W et al. MicroRNA-16 represses granulosa cell proliferation in polycystic ovarian syndrome through inhibition of the PI3K/Akt pathway by downregulation of Apelin13. Hum Fertil (Camb). 2023;26(3):611-21
Fu X, et al. MicroRNA-16 promotes ovarian granulosa cell proliferation and suppresses apoptosis through targeting PDCD4 in polycystic ovarian syndrome. Cell Physiol Biochem. 2018;48(2):670–82.
pubmed: 30025387 doi: 10.1159/000491894
Wu YX, et al. microRNA-194 is increased in polycystic ovary syndrome granulosa cell and induce KGN cells apoptosis by direct targeting heparin-binding EGF-like growth factor. Reprod Biol Endocrinol. 2021;19(1):170.
pubmed: 34814928 pmcid: 8609843 doi: 10.1186/s12958-021-00850-w
Yu Y, et al. MicroRNA-21 regulate the cell apoptosis and cell proliferation of polycystic ovary syndrome (PCOS) granulosa cells through target toll like receptor TLR8. Bioengineered. 2021;12(1):5789–96.
pubmed: 34516355 pmcid: 8806582 doi: 10.1080/21655979.2021.1969193
Aldakheel FM, et al. MicroRNA-21 inhibits ovarian granulosa cell proliferation by targeting SNHG7 in premature ovarian failure with polycystic ovary syndrome. J Reprod Immunol. 2021;146:103328.
pubmed: 34020163 doi: 10.1016/j.jri.2021.103328
Yang T, et al. MicroRNA-451a plays a role in polycystic ovary syndrome by regulating ovarian granulosa cell proliferation and apoptosis. Exp Ther Med. 2021;21(6):583.
pubmed: 33850555 pmcid: 8027723 doi: 10.3892/etm.2021.10015
Wei Y, et al. MicroRNA-874-3p promotes testosterone-induced granulosa cell apoptosis by suppressing HDAC1-mediated p53 deacetylation. Exp Ther Med. 2021;21(4):359.
pubmed: 33732332 pmcid: 7903439 doi: 10.3892/etm.2021.9790
Wei Y, et al. MicroRNA-135a regulates VEGFC expression and promotes luteinized granulosa cell apoptosis in polycystic ovary syndrome. Reprod Sci. 2020;27(7):1436–42.
pubmed: 32016798 doi: 10.1007/s43032-020-00155-0
Jiang B, et al. Down-regulated lncRNA HOTAIR alleviates polycystic ovaries syndrome in rats by reducing expression of insulin-like growth factor 1 via microRNA-130a. J Cell Mol Med. 2020;24(1):451–64.
pubmed: 31733099 doi: 10.1111/jcmm.14753
Han XM, Tian PY, Zhang JL. MicroRNA-486-5p inhibits ovarian granulosa cell proliferation and participates in the development of PCOS via targeting MST4. Eur Rev Med Pharmacol Sci. 2019;23(17):7217–23.
pubmed: 31539108
Deng J, et al. MicroRNA-125b controls growth of ovarian granulosa cells in polycystic ovarian syndrome by modulating cyclin B1 expression. Arch Med Sci. 2022;18(3):746–52.
pubmed: 35591820
Sen A, et al. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proc Natl Acad Sci U S A. 2014;111(8):3008–13.
pubmed: 24516121 pmcid: 3939860 doi: 10.1073/pnas.1318978111
Zhong Z, et al. Inhibition of microRNA-19b promotes ovarian granulosa cell proliferation by targeting IGF-1 in polycystic ovary syndrome. Mol Med Rep. 2018;17(4):4889–98.
pubmed: 29363717 pmcid: 5865948
Li D, et al. MicroRNA-141-3p targets DAPK1 and inhibits apoptosis in rat ovarian granulosa cells. Cell Biochem Funct. 2017;35(4):197–201.
pubmed: 28543175 doi: 10.1002/cbf.3248
Cai G, et al. MicroRNA-145 negatively regulates cell proliferation through targeting irs1 in isolated ovarian granulosa cells from patients with polycystic ovary syndrome. Reprod Sci. 2017;24(6):902–10.
pubmed: 27799458 doi: 10.1177/1933719116673197
Jiang L, et al. MicroRNA-93 promotes ovarian granulosa cells proliferation through targeting CDKN1A in polycystic ovarian syndrome. J Clin Endocrinol Metab. 2015;100(5):E729–38.
pubmed: 25695884 pmcid: 4422895 doi: 10.1210/jc.2014-3827
He T, et al. MicroRNA-200b and microRNA-200c are up-regulated in PCOS granulosa cell and inhibit KGN cell proliferation via targeting PTEN. Reprod Biol Endocrinol. 2019;17(1):68.
pubmed: 31421682 pmcid: 6698342 doi: 10.1186/s12958-019-0505-8
Yin M, et al. Transactivation of micrornA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J Biol Chem. 2014;289(26):18239–57.
pubmed: 24828505 pmcid: 4140302 doi: 10.1074/jbc.M113.546044
Chen H, et al. Defective CFTR-regulated granulosa cell proliferation in polycystic ovarian syndrome. Reproduction. 2015;149(5):393–401.
pubmed: 25646509 doi: 10.1530/REP-14-0368
Yu M, Liu J. MicroRNA-30d-5p promotes ovarian granulosa cell apoptosis by targeting Smad2. Exp Ther Med. 2020;19(1):53–60.
pubmed: 31853272
Das M, et al. Granulosa cell survival and proliferation are altered in polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93(3):881–7.
pubmed: 18073308 doi: 10.1210/jc.2007-1650
Almahbobi G, et al. Functional integrity of granulosa cells from polycystic ovaries. Clin Endocrinol (Oxf). 1996;44(5):571–80.
pubmed: 8762734 doi: 10.1046/j.1365-2265.1996.724545.x
Torrealday S, Kodaman P, Pal L. Premature Ovarian Insufficiency - an update on recent advances in understanding and management. F1000Res. 2017;6:2069.
pubmed: 29225794 pmcid: 5710309 doi: 10.12688/f1000research.11948.1
Huhtaniemi I, et al. Advances in the molecular pathophysiology, genetics, and treatment of primary ovarian insufficiency. Trends Endocrinol Metab. 2018;29(6):400–19.
pubmed: 29706485 doi: 10.1016/j.tem.2018.03.010
Wesevich V, Kellen AN, Pal L. Recent advances in understanding primary ovarian insufficiency. F1000Res. 2020;9:F1000 Faculty Rev-1101
Welt CK. Primary ovarian insufficiency: a more accurate term for premature ovarian failure. Clin Endocrinol (Oxf). 2008;68(4):499–509.
pubmed: 17970776 doi: 10.1111/j.1365-2265.2007.03073.x
McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21(2):200–14.
pubmed: 10782364
Song J, et al. Exposure to multiple pyrethroid insecticides affects ovarian follicular development via modifying microRNA expression. Sci Total Environ. 2022;828:154384.
pubmed: 35276145 doi: 10.1016/j.scitotenv.2022.154384
Zhang L, et al. Translation regulatory long non-coding RNA 1 (TRERNA1) sponges microRNA-23a to suppress granulosa cell apoptosis in premature ovarian failure. Bioengineered. 2022;13(2):2173–80.
pubmed: 35034562 pmcid: 8973726 doi: 10.1080/21655979.2021.2023802
Wang C, et al. MicroRNA-125a-5p induces mouse granulosa cell apoptosis by targeting signal transducer and activator of transcription 3. Menopause. 2016;23(1):100–7.
pubmed: 26154273 doi: 10.1097/GME.0000000000000507
Chen X, et al. Downregulation of microRNA-146a inhibits ovarian granulosa cell apoptosis by simultaneously targeting interleukin-1 receptor-associated kinase and tumor necrosis factor receptor-associated factor 6. Mol Med Rep. 2015;12(4):5155–62.
pubmed: 26151128 doi: 10.3892/mmr.2015.4036
Zhang C, et al. MicroRNA-181a promotes follicular granulosa cell apoptosis via sphingosine-1-phosphate receptor 1 expression downregulationdagger. Biol Reprod. 2019;101(5):975–85.
pubmed: 31359035 doi: 10.1093/biolre/ioz135
Gao T et al. MicroRNA-22–3p in human umbilical cord mesenchymal stem cell-secreted exosomes inhibits granulosa cell apoptosis by targeting KLF6 and ATF4-ATF3-CHOP pathway in POF mice. Apoptosis. 2023;28(7-8):997-1011.
Gao T, et al. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles carrying microRNA-29a improves ovarian function of mice with primary ovarian insufficiency by targeting HMG-Box transcription factor/Wnt/β-catenin signaling. Dis Markers. 2022;2022:5045873.
pubmed: 35845134 pmcid: 9277157 doi: 10.1155/2022/5045873
Zhang Q, et al. MicroRNA-181a suppresses mouse granulosa cell proliferation by targeting activin receptor IIA. PLoS ONE. 2013;8(3):e59667.
pubmed: 23527246 pmcid: 3604175 doi: 10.1371/journal.pone.0059667
Zhang X, et al. MicroRNA-127-5p impairs function of granulosa cells via HMGB2 gene in premature ovarian insufficiency. J Cell Physiol. 2020;235(11):8826–38.
pubmed: 32391592 doi: 10.1002/jcp.29725
Dang Y, et al. MicroRNA-379-5p is associate with biochemical premature ovarian insufficiency through PARP1 and XRCC6. Cell Death Dis. 2018;9(2):106.
pubmed: 29367615 pmcid: 5833760 doi: 10.1038/s41419-017-0163-8
Koukourakis GV, et al. Granulosa cell tumor of the ovary: tumor review. Integr Cancer Ther. 2008;7(3):204–15.
pubmed: 18815151 doi: 10.1177/1534735408322845
Li X, et al. Adult-type granulosa cell tumor of the ovary. Am J Cancer Res. 2022;12(8):3495–511.
pubmed: 36119817 pmcid: 9442026
Baillard P, et al. Rare DICER1 and Absent FOXL2 mutations characterize ovarian juvenile granulosa cell tumors. Am J Surg Pathol. 2021;45(2):223–9.
pubmed: 32910017 doi: 10.1097/PAS.0000000000001582
Guerrieri C, Hudacko R, Anderson P. Composite FOXL2 mutation-positive adult granulosa cell tumor and serous borderline tumor of the ovary. Int J Gynecol Pathol. 2023;42(5):500-507.
Pierini S et al. Ovarian granulosa cell tumor characterization identifies FOXL2 as an immunotherapeutic target. JCI Insight. 2020;5(16):e136773.
Pilsworth JA, et al. Adult-type granulosa cell tumor of the ovary: a FOXL2-centric disease. J Pathol Clin Res. 2021;7(3):243–52.
pubmed: 33428330 pmcid: 8072996 doi: 10.1002/cjp2.198
Li J, et al. Progress in the management of ovarian granulosa cell tumor: A review. Acta Obstet Gynecol Scand. 2021;100(10):1771–8.
pubmed: 34027996 doi: 10.1111/aogs.14189
Rosario R, Blenkiron C, Shelling AN. Comparative study of microRNA regulation on FOXL2 between adult-type and juvenile-type granulosa cell tumours in vitro. Gynecol Oncol. 2013;129(1):209–15.
pubmed: 23280087 doi: 10.1016/j.ygyno.2012.12.034
Cheng WT, et al. MicroRNA profiling of ovarian granulosa cell tumours reveals novel diagnostic and prognostic markers. Clin Epigenetics. 2017;9:72.
pubmed: 28736583 pmcid: 5521084 doi: 10.1186/s13148-017-0372-0
Tu J, et al. MicroRNA-10a promotes granulosa cells tumor development via PTEN-AKT/Wnt regulatory axis. Cell Death Dis. 2018;9(11):1076.
pubmed: 30348959 pmcid: 6197200 doi: 10.1038/s41419-018-1117-5
Brandmaier A, Hou SQ, Shen WH. Cell cycle control by PTEN. J Mol Biol. 2017;429(15):2265–77.
pubmed: 28602818 pmcid: 5659283 doi: 10.1016/j.jmb.2017.06.004
Laguë MN, et al. Synergistic effects of Pten loss and WNT/CTNNB1 signaling pathway activation in ovarian granulosa cell tumor development and progression. Carcinogenesis. 2008;29(11):2062–72.
pubmed: 18687666 pmcid: 2577137 doi: 10.1093/carcin/bgn186
Tu J, et al. microRNA-126 is a tumor suppressor of granulosa cell tumor mediated by its host gene EGFL7. Front Oncol. 2019;9:486.
pubmed: 31245291 pmcid: 6579899 doi: 10.3389/fonc.2019.00486
Diez-Fraile A, et al. Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization. Hum Fertil (Camb). 2014;17(2):90–8.
pubmed: 24684237 doi: 10.3109/14647273.2014.897006
Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol. 2010;42(10):1634–50.
pubmed: 20601089 doi: 10.1016/j.biocel.2010.06.001
Billig H, Furuta I, Hsueh AJ. Estrogens inhibit and androgens enhance ovarian granulosa cell apoptosis. Endocrinology. 1993;133(5):2204–12.
pubmed: 8404672 doi: 10.1210/endo.133.5.8404672
Kaneko T, et al. Effects of controlled ovarian hyperstimulation on oocyte quality in terms of the incidence of apoptotic granulosa cells. J Assist Reprod Genet. 2000;17(10):580–5.
pubmed: 11209539 pmcid: 3455450 doi: 10.1023/A:1026439409584

Auteurs

Shengmin Xiao (S)

School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.

Juan Du (J)

School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.

Guanghui Yuan (G)

Department of Oncology, Hejiang Hospital of Traditional Chinese Medicine, Luzhou, 611137, People's Republic of China.

Xiaohong Luo (X)

School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China. 635219197@qq.com.

Linjiang Song (L)

School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China. linjsong_scu@163.com.

Classifications MeSH