A systematic review of salivary biomarkers in Parkinson's disease.


Journal

Neural regeneration research
ISSN: 1673-5374
Titre abrégé: Neural Regen Res
Pays: India
ID NLM: 101316351

Informations de publication

Date de publication:
01 Dec 2024
Historique:
received: 08 10 2023
accepted: 25 01 2024
medline: 10 4 2024
pubmed: 10 4 2024
entrez: 10 4 2024
Statut: ppublish

Résumé

The search for reliable and easily accessible biomarkers in Parkinson's disease is receiving a growing emphasis, to detect neurodegeneration from the prodromal phase and to enforce disease-modifying therapies. Despite the need for non-invasively accessible biomarkers, the majority of the studies have pointed to cerebrospinal fluid or peripheral biopsies biomarkers, which require invasive collection procedures. Saliva represents an easily accessible biofluid and an incredibly wide source of molecular biomarkers. In the present study, after presenting the morphological and biological bases for looking at saliva in the search of biomarkers for Parkinson's disease, we systematically reviewed the results achieved so far in the saliva of different cohorts of Parkinson's disease patients. A comprehensive literature search on PubMed and SCOPUS led to the discovery of 289 articles. After screening and exclusion, 34 relevant articles were derived for systematic review. Alpha-synuclein, the histopathological hallmark of Parkinson's disease, has been the most investigated Parkinson's disease biomarker in saliva, with oligomeric alpha-synuclein consistently found increased in Parkinson's disease patients in comparison to healthy controls, while conflicting results have been reported regarding the levels of total alpha-synuclein and phosphorylated alpha-synuclein, and few studies described an increased oligomeric alpha-synuclein/total alpha-synuclein ratio in Parkinson's disease. Beyond alpha-synuclein, other biomarkers targeting different molecular pathways have been explored in the saliva of Parkinson's disease patients: total tau, phosphorylated tau, amyloid-β1-42 (pathological protein aggregation biomarkers); DJ-1, heme-oxygenase-1, metabolites (altered energy homeostasis biomarkers); MAPLC-3beta (aberrant proteostasis biomarker); cortisol, tumor necrosis factor-alpha (inflammation biomarkers); DNA methylation, miRNA (DNA/RNA defects biomarkers); acetylcholinesterase activity (synaptic and neuronal network dysfunction biomarkers); Raman spectra, proteome, and caffeine. Despite a few studies investigating biomarkers targeting molecular pathways different from alpha-synuclein in Parkinson's disease, these results should be replicated and observed in studies on larger cohorts, considering the potential role of these biomarkers in determining the molecular variance among Parkinson's disease subtypes. Although the need for standardization in sample collection and processing, salivary-based biomarkers studies have reported encouraging results, calling for large-scale longitudinal studies and multicentric assessments, given the great molecular potentials and the non-invasive accessibility of saliva.

Identifiants

pubmed: 38595280
doi: 10.4103/NRR.NRR-D-23-01677
pii: 01300535-202412000-00018
doi:

Types de publication

Journal Article

Langues

eng

Pagination

2613-2625

Informations de copyright

Copyright © 2024 Copyright: © 2024 Neural Regeneration Research.

Références

Abraham JE, Maranian MJ, Spiteri I, Russel R, Ingle S, Luccarini C, Earl HM, Pharoah PPD, Dunning AM, Caldas C (2012) Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping. BMC Med Genomics 5:19.
Agliardi C, Meloni M, Guerini FR, Zanzottera M, Bolognesi E, Baglio F, Clerici M (2021) Oligomeric α-Syn and SNARE complex proteins in peripheral extracellular vesicles of neural origin are biomarkers for Parkinson’s disease. Neurobiol Dis 148:105185.
Agliardi C, Guerini FR, Meloni M, Clerici M (2022) Alpha-synuclein as a biomarker in Parkinson’s disease: focus on neural derived extracelluar vesicles. Neural Regen Res 17:1503–1504.
Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2:734–744.
Al-Nimer Marwan SM, Mshatat S, Abdulla H (2014) Saliva α-synuclein and a high extinction coefficient protein: a novel approach in assessment biomarkers of Parkinson′s disease. North Am J Med Sci 6:633.
Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J, Kling K, Lee M, Diep L, Keim PS, Shen X, Chataway T, Schlossmacher MG, Seubert P, Shenk D, Sinha S, Gai WP, Chilcote TJ (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281:29739–29752.
Angius F, Mocci I, Ercoli T, Loy F, Fadda L, Palmas MF, Cannas G, Manzin A, Defazio G, Carta AR (2023) Combined measure of salivary alpha-synuclein species as diagnostic biomarker for Parkinson’s disease. J Neurol doi: 10.1007/s00415-023-11893-x.
Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol 15:1257–1272.
Avery JK, Steels PF (2001) Oral development and histology. Stuttgart-New York: Thieme.
Becerra L, Soares RV, Bruno LS, Siqueira CC, Oppenheim FG, Offner GD, Troxler RF (2003) Patterns of secretion of mucins and non-mucin glycoproteins in human submandibular/sublingual secretion. Arch Oral Biol 48:147–154.
Bellomo G, De Luca CMG, Paoletti FP, Gaetani L, Moda F, Parnetti L (2022) α-Synuclein seed amplification assays for diagnosing synucleinopathies: the way forward. Neurology 99:195–205.
Belvisi D, Pellicciari R, Fabbrini A, Costanzo M, Pietracupa S, De Lucia M, Modugno N, Magrinelli F, Dallocchio C, Ercoli T, Terravecchia C, Nicoletti A, Solla P, Fabbrini G, Tinazzi M, Berardelli A, Defazio G (2020) Risk factors of Parkinson disease: Simultaneous assessment, interactions, and etiologic subtypes. Neurology 95:e2500-2508.
Bengoa-Vergniory N, Roberts RF, Wade-Martins R, Alegre-Abarrategui J (2017) Alpha-synuclein oligomers: a new hope. Acta Neuropathol 134:819–838.
Bermejo-Pareja F, Antequera D, Vargas T, Molina JA, Carro E (2010) Saliva levels of Abeta1-42 as potential biomarker of Alzheimer’s disease: a pilot study. BMC Neurol 10:108.
Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. Lancet 397:2284–2303.
Bongianni M, Catalan M, Perra D, Fontana E, Janes F, Bertolotti C, Sacchetto L, Capaldi S, Tagliapietra M, Polverino P, Tommasini V, Bellavita G, Kachoie EA, Baruca R, Bernardini A, Valente M, Fiorini M, Bronzato E, Tamburin S, Bertolasi L (2022) Olfactory swab sampling optimization for α-synuclein aggregate detection in patients with Parkinson’s disease. Transl Neurodegener 11:37.
Braak H, Tredici KD, Rüb U, de Vos RA.I, Steur ENHJ, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211.
Braak H, de Vos RAI, Bohl J, Del Tredici K (2006) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396:67–72.
Brás JP, Bravo J, Freitas J, Barbosa MA, Santos SG, Summavielle T, Almeida MI (2020) TNF-alpha-induced microglia activation requires miR-342: impact on NF-kB signaling and neurotoxicity. Cell Death Dis 11:415.
Campo F, Carletti R, Fusconi M, Pellicano C, Pontieri FE, Di Gioia CR, de Vincentiis M (2019) Alpha-synuclein in salivary gland as biomarker for Parkinson’s disease. Rev Neurosci 30:455–462.
Cao Z, Wu Y, Liu G, Jiang Y, Wang X, Wang Z, Feng T (2019) α-Synuclein in salivary extracellular vesicles as a potential biomarker of Parkinson’s disease. Neurosci Lett 696:114–120.
Cao Z, Wu Y, Liu G, Jiang Y, Wang X, Wang Z, Feng T (2020) Differential diagnosis of multiple system atrophy-Parkinsonism and Parkinson’s disease using α-synuclein and external anal sphincter electromyography. Front Neurol 11:1043.
Carlomagno C, Bertazioli D, Gualerzi A, Picciolini S, Andrico M, Rodà F, Meloni M, Banfi PI, Verde F, Ticozzi N, Silani V, Messina E, Bedoni M (2021) Identification of the Raman salivary fingerprint of Parkinson’s disease through the spectroscopic– computational combinatory approach. Front Neurosci 15:704963.
Cersósimo MG, Tumilasci OR, Raina GB, Bennaroch EE, Cardoso EM, Micheli F, Pazo JH (2009) Hyposialorrhea as an early manifestation of Parkinson disease. Auton Neurosci 150:150–151.
Cersósimo MG, Perandones C, Micheli FE, Raina GB, Beron AM, Nesswetter G, Raddrizzani M, Benarroch EE (2011) Alpha-synuclein immunoreactivity in minor salivary gland biopsies of Parkinson’s disease patients. Mov Disord 26:188–190.
Chahine LM, Beach TG, Brumm MC, Adler CH, Coffey CS, Mosovsky S, Caspell-Garcia C, Serrano GE, Munoz DG, White CL, Crary JF, Jennings D, Taylor P, Foroud T, Arnedo V, Kopil CM, Riley L, Dave KD, Mollenhauer B (2020) In vivo distribution of α-synuclein in multiple tissues and biofluids in Parkinson disease. Neurology 95:e1267-1284.
Chen Y, Zheng J, Su L, Chen F, Zhu R, Chen X, Ye Q (2020) Increased salivary microRNAs that regulate DJ-1 gene expression as potential markers for Parkinson’s disease. Front Aging Neurosci 12:210.
Cheng F, Vivacqua G, Yu S (2011) The role of α-synuclein in neurotransmission and synaptic plasticity. J Chem Neuroanat 42:242–248.
Chuang YH, Paul KC, Bronstein JM, Paul KC, Bronstein JM, Bordelon Y, Horvath S, Ritz B (2017) Parkinson’s disease is associated with DNA methylation levels in human blood and saliva. Genome Med 9:76.
Costa CM, Oliveira GL de, Fonseca ACS, de Carvalho Lana R, Polese JC, Pernambuco AP (2019) Levels of cortisol and neurotrophic factor brain-derived in Parkinson’s disease. Neurosci Lett 708:134359.
Cressatti M, Juwara L, Galindez JM, Velly AM, Nkurunziza ES, Marier S, Canie O, Mervyn G, Schipper HM (2020) Salivary microR‐153 and microR‐223 levels as potential diagnostic biomarkers of idiopathic Parkinson’s disease. Mov Disord 35:468–477.
Culp DJ, Graham LA, Latchney LR, Hand AR (1991) Rat sublingual gland as a model to study glandular mucous cell secretion. Am J Physiol 260:C1233–1244.
Davenport KA, Hoover CE, Denkers ND, Mathiason CK, Hoover EA (2018) Modified protein misfolding cyclic amplification overcomes real-time quaking-induced conversion assay inhibitors in deer saliva to detect chronic wasting disease prions. J Clin Microbiol 56:e00947-18.
Dawes C (1974) Rhythms in salivary flow rate and composition. Int J Chronobiol 2:253–279.
De Bartolo MI, Vivacqua G, Belvisi D, Mancinelli R, Fabbrini A, Manzo N, Costanzo M, Leodori G, Conte A, Fabbrini G, Morini S, Berardelli A (2022) A combined panel of salivary biomarkers in de novo Parkinson’s disease. Ann Neurol 93:446–459.
De Luca CMG, Elia AE, Portaleone SM, Cazzaniga FA, Rossi M, Bistaffa E, De Cecco E, Narkiewicz J, Salzano G, Carletta O, Romito L, Devigili G, Solivieri P, Tiraboschi P, Legname G, Tagliavini F, Eleopra R, Giaccone G, Moda F (2019) Efficient RT-QuIC seeding activity for α-synuclein in olfactory mucosa samples of patients with Parkinson’s disease and multiple system atrophy. Transl Neurodegener 8:24.
Devic I, Hwang H, Edgar JS, Izutsu K, Presland R, Pan C, Goodlett DR, Wang Y, Armaly J, Tumas V, Zabetian CP, Leverenz JB, Shi M, Zhang J (2011) Salivary α-synuclein and DJ-1: potential biomarkers for Parkinson’s disease. Brain 134:e178.
Djamshidian A, O’Sullivan SS, Papadopoulos A, Bassett P, Shaw K, Averbeck BB, Lees A (2011) Salivary cortisol levels in Parkinson’s disease and its correlation to risk behaviour. J Neurol Neurosurg Psychiatry 82:1107–1111.
Donadio V, Wang Z, Incensi A, Rizzo G, Fileccia E, Vecchiano V, Capellari S, Magnani M, Scaglione C, Maserati MS, Avoni P, Liguori R, Zou W (2021) In vivo diagnosis of synucleinopathies: a comparative study of skin biopsy and RT-QuIC. Neurology 96:e2513-2524.
Dowd FJ (1999) Saliva and dental caries. Dent Clin North Am 43:579–597.
Edgar WM (1990) Saliva and dental health. Clinical implications of saliva: report of a consensus meeting. Br Dent J 169:96–98.
Elishoov H, Wolff A, Kravel LS, Shiperman A, Gorsky M (2008) Association between season and temperature and unstimulated parotid and submandibular/sublingual secretion rates. Arch Oral Biol 53:75–78.
Fedorova T, Knudsen CS, Mouridsen K, Nexo E, Borghammer P (2015) Salivary acetylcholinesterase activity is increased in Parkinson’s disease: a potential marker of parasympathetic dysfunction. Parkinsons Dis 2015:156479.
Fernández-Espejo E, Rodríguez de Fonseca F, Suárez J, Tolosa E, Vilas D, Aldecosa I, Berenguer J, Damas-Hermoso F (2021) Native α-synuclein, 3-nitrotyrosine proteins, and patterns of nitro-α-synuclein-immunoreactive inclusions in saliva and submandibulary gland in Parkinson’s disease. Antioxidants 10:715.
Figura M, Sitkiewicz E, Świderska B, Milanowski L, Szlufik S, Koziorowski, Friedman A (2021) Proteomic profile of saliva in Parkinson’s disease patients: a proof of concept study. Brain Sci 11:661.
Folgoas E, Lebouvier T, Leclair-Visonneau L, Cersosimo MG, Barthelaix A, Derkinderen P, Letournel F (2013) Diagnostic value of minor salivary glands biopsy for the detection of Lewy pathology. Neurosci Lett 551:62–64.
Fujita-Yoshigaki J (1998) Divergence and convergence in regulated exocytosis: the characteristics of cAMP-dependent enzyme secretion of parotid salivary acinar cells. Cell Signal 10:371–375.
Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Golderg MS, Takio K, Iwatsubo T (2002) Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164.
Galindez JM, Juwara L, Cressatti M, Gornitsky M Velly AM, Schipper HM (2021) Salivary heme oxygenase-1: a potential biomarker for central neurodegeneration. J Cent Nerv Syst Dis 13:11795735211029114.
Garcia-Reitböck P, Anichtchik O, Bellucci A, Iovino M, Ballini C, Fineberg E, Ghetti B, Della Corte L, Spano P, Tofaris GK, Goedert M, Spillantini MG (2010) SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson’s disease. Brain 133:2032–2044.
Garrett JR, Kidd A (1993) The innervation of salivary glands as revealed by morphological methods. Microsc Res Tech 26:75–91.
GBD 2016 Neurology Collaborators (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18:459–480.
Giannoccaro MP, Avoni P, Rizzo G, Incensi A, Infante R, Donadio V, Rocco L (2021) Presence of Skin α-synuclein deposits discriminates Parkinson’s disease from progressive supranuclear palsy and corticobasal syndrome. J Parkinsons Dis 12:585–591.
Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzabauer PT, Trojanowski JQ, Lee VMY (2003) Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300:636–640.
Gibbons C, Wang N, Rajan S, Kern D, Palma JA, Kaufmann H, Freeman R (2023) Cutaneous α-synuclein signatures in patients with multiple system atrophy and Parkinson disease. Neurology 100:e1529-1539.
Goh SY, Chao YX, Dheen ST, Tan EK, Tay SSW (2019) Role of microRNAs in Parkinson’s disease. Int J Mol Sci 20:5649.
Goldman JG, Andrews H, Amara A, Naito A, Alcalay RN, Shaw LM, Taylor P, Xie T, Tuite P, Henchcliffe C, Hogarth P, Frank S, Saint-Hilaire MH, Frasier M, Arnedo V, Reimer AN, Sutherland M, Swanson-Fischer C, Gwinn K (2018) Cerebrospinal fluid, plasma, and saliva in the BioFIND study: Relationships among biomarkers and Parkinson’s disease Features. Mov Disord 33:282–288.
Grazia Spillantini M, Anthony Crowther R, Jakes R, Cairns NJ, Lantos PL, Goedert M (1998) Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251:205–208.
Grossauer A, Hemicker G, Krismer F, Peball M, Djamshidian A, Poewe W, Seppi K, Heim B (2023) α‐Synuclein seed amplification assays in the diagnosis of synucleinopathies using cerebrospinal fluid—a systematic review and meta‐analysis. Mov Disord Clin Pract 10:737–747.
Humphrey SP, Williamson RT (2001) A review of saliva: normal composition, flow, and function. J Prosthet Dent 85:162–169.
Ibrahimagic OC, Jakubovic AC, Smajlovic D, Dostovic Z, Kunic S, Iljazovic A (2016) Psychological stress and changes of hypothalamic-pituitary-adrenal axis in patients with “De Novo” Parkinson’s disease. Med Arch 70:445–448.
Iranzo A, Borrego S, Vilaseca I, Martì C, Serradell M, Sànchez-Valle R, Kovac GG, Valldeoriola F, Gaig C, Santamaria J, Tolosa E, Gelpi E (2018) α-Synuclein aggregates in labial salivary glands of idiopathic rapid eye movement sleep behavior disorder. Sleep doi:10.1093/sleep/zsy101.
Irwin DJ, Lee VM-Y, Trojanowski JQ (2013) Parkinson’s disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat Rev Neurosci 14:626–636.
Jan A, Gonçalves NP, Vaegter CB, Jensen PH, Ferreira N (2021) The prion-like spreading of alpha-synuclein in Parkinson’s disease: update on models and hypotheses. Int J Mol Sci 22:8338.
Jensen Kjeilen JC, Brodin P, Aars H, Berg T (1987) Parotid salivary flow in response to mechanical and gustatory stimulation in man. Acta Physiol Scand 131:169–175.
Jiang Y, Chen J, Sun Y, Li F, Wei L, Sun W, Deng J, Yuan Y, Wang Z (2021) Profiling of differentially expressed microRNAs in saliva of Parkinson’s disease patients. Front Neurol 12:738530.
Kang UJ, Goldman JG, Alcalay RN, Xie T, Tuite P, Henchcliffe C, Hogarth P, Amara AW, Frank S, Rudolph A, Casaceli C, Andrews H, GWINN K, Sutherland M, Kopil C, Vincent L, Frasier M (2016a) The BioFIND study: characteristics of a clinically typical Parkinson’s disease biomarker cohort: BioFIND Parkinson’s disease biomarker cohort. Mov Disord 31:924–932.
Kang W, Chen W, Yang Q, Zhang L, Zhang L, Wang X, Dong F, Zhao Y, Chen S, Quinn TJ, Zhang J, Chen S, Liu J (2016b) Salivary total α-synuclein, oligomeric α-synuclein and SNCA variants in Parkinson’s disease patients. Sci Rep 6:28143.
Kang WY, Yang Q, Jiang XF, Chen W, Zhang LY, Wang XY, Zhang LN, Quinn TJ, Liu J, Chen SD (2014) Salivary DJ-1 could be an indicator of Parkinson’s disease progression. Front Aging Neurosci 6:102.
Kesimer M, Makhov AM, Griffith JD, Verdugo P, Sheehan JK (2010) Unpacking a gel-forming mucin: a view of MUC5B organization after granular release. Am J Physiol Lung Cell Mol Physiol 298:L15–22.
Kim JH, Lee HS, Ahn JH, Oh JK, Chang IB, Song JH, Wee JH, Min CY, Yoo DM, Chai HG (2021) Association between thyroid diseases and Parkinson’s disease: a nested case-control study using a national health screening cohort. J Parkinsons Dis 11:211–220.
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Abudu YP, Acevedo-Aozena A, Adamopoulos IE, Adeli K, Adolph TE, Adornetto A, Aflaki E, Agam G, Agarwal A, Aggarwal BB, Agnello M, Agostinis P, et al. (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1. Autophagy 17:1–382.
Kumari S, Goyal V, Kumaran SS, Dwivedi SN, Srivastava A, Jagannathan NR (2020) Quantitative metabolomics of saliva using proton NMR spectroscopy in patients with Parkinson’s disease and healthy controls. Neurol Sci 41:1201–1210.
Lee VMY, Giasson BI, Trojanowski JQ (2004) More than just two peas in a pod: common amyloidogenic properties of tau and alpha-synuclein in neurodegenerative diseases. Trends Neurosci 27:129–134.
Leodori G, De Bartolo MI, Belvisi D, Ciogli A, Fabbrini A, Costanzo M, Manetto S, Conte A, Villani C, Fabbrini G, Berardelli A (2021) Salivary caffeine in Parkinson’s disease. Sci Rep 11:9823.
Levine MJ (1993a) Development of artificial salivas. Crit Rev Oral Biol Med 4:279–286.
Levine MJ (1993b) Salivary macromolecules. A structure/function synopsis. Ann N Y Acad Sci 694:11–16.
Luan M, Sun Y, Chen J, Jiang Y, Li F, Wei L, Sun W, Ma J, Song L, Liu J, Liu B, Pei Y, Wang Z, Zhu L, Deng J (2022) Diagnostic value of salivary real-time quaking-induced conversion in Parkinson’s disease and multiple system atrophy. Mov Disord 37:1059–1063.
Luthra NS, Clow A, Corcos DM (2022) The interrelated multifactorial actions of cortisol and klotho: potential implications in the pathogenesis of Parkinson’s disease. Brain Sci 12:1695.
Ma LY, Gao LY, Li X, Ma HZ, Feng T (2019) Nitrated alpha-synuclein in minor salivary gland biopsies in Parkinson’s disease. Neurosci Lett 704:45–49.
Mammana A, Baiardi S, Quadalti C, Rossi M, Donadio V, Capellari S, Liguori R, Parchi P (2021) RT-QuIC detection of pathological α-synuclein in skin punches of patients with Lewy body disease. Mov Disord 36:2173–2177.
Mangone G, Houot M, Gaurav R, Boluda S, Pyatigorskaya N, Chalancon A, Seilhean D, Prigent A, Lehericy S, Arnulf I, Corvol JC, Vidailhet M, Duyckaerts C, Degos B (2022) Relationship between substantia nigra neuromelanin imaging and dual alpha-synuclein labeling of labial minor in salivary glands in isolated rapid eye movement sleep behavior disorder and Parkinson’s disease. Genes (Basel) 13:1715.
Manne S, Kondru N, Jin H, Anantharam V, Huang X, Kanthasamy A, Kanthasamy AG (2020) α-Synuclein real-time quaking-induced conversion in the submandibular glands of Parkinson’s disease patients. Mov Disord 35:268–278.
Masters JM, Noyce AJ, Warner TT, Giovannoni G, Proctor GB (2015) Elevated salivary protein in Parkinson’s disease and salivary DJ-1 as a potential marker of disease severity. Parkinsonism Relat Disord 21:1251–1255.
Mencke P, Boussaad I, Romano CD, Kitami T, Linster CL, Krüger R (2021) The role of DJ-1 in cellular metabolism and pathophysiological implications for Parkinson’s disease. Cells 10:347.
Messenger SW, Falkowski MA, Groblewski GE (2014) Ca2+-regulated secretory granule exocytosis in pancreatic and parotid acinar cells. Cell Calcium 55:369–375.
Miki Y, Shimoyama S, Kon T, Ueno T, Hayakari R, Tanji K, Matsumiya T, Tsushima E, Mori F, Wakabayashi K, Tomiyama M (2018) Alteration of autophagy-related proteins in peripheral blood mononuclear cells of patients with Parkinson’s disease. Neurobiol Aging 63:33–43.
Moors T, Paciotti S, Chiasserini D, Calabresi P, Parnetti L, Beccari T, van de Berg WDJ (2016) Lysosomal dysfunction and α-synuclein aggregation in Parkinson’s disease: diagnostic links. Mov Disord 31:791–801.
Noble W, Hanger DP, Miller CCJ, Lovestone S (2013) The importance of tau phosphorylation for neurodegenerative diseases. Front Neurol 4:83.
Nolano M, Caporaso G, Manganelli F, Stancanelli A, Borreca I, Mozzillo S, Tozza S, Dubbioso R, Iodice R, Vitale F, Koay S, Vichayanrat E, da Silva FV, Santoro L, Iodice V, Provitera V (2022) Phosphorylated α-synuclein deposits in cutaneous nerves of early Parkinsonism. J Parkinsons Dis 12:2453–2468.
Oh SE, Mouradian MM (2017) Regulation of signal transduction by DJ-1. Adv Exp Med Biol 1037:97–131.
Oizumi H, Yamasaki K, Suzuki H, Ohshiro S, Saito Y, Murayama S, Sugimura Y, Hasegawa T, Fukunaga K, Takeda A (2022) Phosphorylated alpha‐synuclein in Iba1‐positive macrophages in the skin of patients with Parkinson’s disease. Ann Clin Transl Neurol 9:1136–1146.
Olanow CW, Brundin P (2013) Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder? Mov Disord 28:31–40.
Paciotti S, Stoops E, François C, Bellomo G, Eusebi P, Vanderstichele H, Chiasserini D, Parnetti L (2021) Cerebrospinal fluid hemoglobin levels as markers of blood contamination: relevance for α-synuclein measurement. Clin Chem Lab Med 59:1653–1661.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffman TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hròbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness, et al. (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev 372:n71.
Paleologou KE, Schmid AW, Rospigliosi CC, Kim HY, Lamberto GR, Fredenburg RA, Lansbury PT Jr, Fernandez CO, Eliezer D, Zweckstetter M (2008) Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of alpha-synuclein. J Biol Chem 283:16895–16905.
Papagiannakis N, Xilouri M, Koros C, Stamelou M, Antonelou R, Maniati M, Papadimitriou D, Moraitou M, Michelakakis H, Stefanis L (2015) Lysosomal alterations in peripheral blood mononuclear cells of Parkinson’s disease patients. Mov Disord 30:1830–1834.
Parnetti L, Gaetani L, Eusebi P, Paciotti S, Hansson O, El-Agnaf O, Mollenhauer B, Blennow K, Calabaresi P (2019) CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol 18:573–586.
Paxinou E, Chen Q, Weisse M, Giasson BI, Norris EH, Rueter SM, Trojanowski JQ, Lee VMY, Ischiropoulos H (2001) Induction of alpha-synuclein aggregation by intracellular nitrative insult. J Neurosci 21:8053–8061.
Poewe W, Seppi K, Tanner CM, Halliday GM, Brundlin P, Volkmann J, Schrag AE, Lang AE, (2017) Parkinson disease. Nat Rev Dis Primers 3:17013.
Postuma RB, Lang AE, Munhoz RP, Charland K, Pelletier A, Moscovich M, Filla L, Zanatta D, Romenets SR, Altman R, Chuang R, Shah B (2012) Caffeine for treatment of Parkinson disease. Neurology 79:651–658.
Postuma RB, Berg D, Stern M, Poewe W, Olanow WC, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan Piu, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601.
Rani K, Mukherjee R, Singh E, Kumar S, Sharma V, Vishwakarma P, Bharti PS, Nikolajeff F, Dinda AK, Goyal V, Kumar S (2019) Neuronal exosomes in saliva of Parkinson’s disease patients: a pilot study. Parkinsonism Relat Disord 67:21–23.
Rastogi S, Rani K, Rai S, Singh R, Bhart PS, Sharma V, Sahu J, Kapoor V, Vishwakarma P, Garg S, Gholap SL, Inampudi KK, Modi GP, Rani N, Tripathi M, Srivastava A, Rajan R, Nikolajeff F, Kumar S (2023) Fluorescence-tagged salivary small extracellular vesicles as a nanotool in early diagnosis of Parkinson’s disease. BMC Med 21:335.
Recasens A, Perier C, Sue CM (2016) Role of microRNAs in the regulation of α-synuclein expression: a systematic review. Front Mol Neurosci 9:128.
Rudney JD (1995) Does variability in salivary protein concentrations influence oral microbial ecology and oral health? Crit Rev Oral Biol Med 6:343–367.
Sabaei M, Rahimian S, Haj Mohamad Ebrahim Ketabforoush A, Rasoolijazi H, Zamani B, Hajiakhoundi, Soleimani M, Shahidi G, Faramarzi M (2023) Salivary levels of disease-related biomarkers in the early stages of Parkinson’s and Alzheimer’s disease: a cross-sectional study. IBRO Neurosci Rep 14:285–292.
Sayer R, Law E, Connelly PJ, Breen KC (2004) Association of a salivary acetylcholinesterase with Alzheimer’s disease and response to cholinesterase inhibitors. Clin Biochem 37:98–104.
Schipper HM, Liberman A, Stopa EG (1998) Neural heme oxygenase-1 expression in idiopathic Parkinson’s disease. Exp Neurol 150:60–68.
Sehar U, Rawat P, Reddy AP, Kopel J, Reddy H (2022) Amyloid beta in aging and Alzheimer’s disease. Int J Mol Sci 23:12924.
Shaheen H, Sobhy S, El Mously S, Abuomira M, Mansour M (2020) Salivary alpha-synuclein (total and oligomeric form): potential biomarkers in Parkinson’s disease. Egypt J Neurol Psychiatr Neurosurg 56:22.
Shahmoradian SH, Lewis AJ, Genoud C, Hench J, Moors TE, Navarro PP, Castaño-Dìez D, Schweighauser G, Graff-Meyer A, Goldie KN, Sutterlin R, Huisman E, Ingrassia A, de Gier Y, Rozemuller AJM, Wang J, De Paepe A, Erny J, Staempfli A, Hoernschemeyer J, Großerüschkamp F, et al. (2019) Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat Neurosci 22:1099–1109.
Shi M, Zabetian CP, Hancock AM, Ginghina C, Hong Z, Yearout D, Chung KA, Quinn JF, Peskind ER, Galasko D, Jankovic J, Leverenz JB, Zhang J (2010) Significance and confounders of peripheral DJ-1 and alpha-synuclein in Parkinson’s disease. Neurosci Lett 480:78–82.
Smith JA, Das A, Ray SK, Banik NL (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87:10–20.
Soares NM, Pereira GM, Altmann V, de Almeida RMM, Rieder CRM (2019) Cortisol levels, motor, cognitive and behavioral symptoms in Parkinson’s disease: a systematic review. J Neural Transm (Vienna) 126:219–232.
Song M, Bai H, Zhang P, Zhou X, Ying B (2023) Promising applications of human-derived saliva biomarker testing in clinical diagnostics. Int J Oral Sci 15:2.
Song W, Cressatti M, Zukor H, Liberman A, Galindez C, Schipper HM (2017) Parkinsonian features in aging GFAP.HMOX1 transgenic mice overexpressing human HO-1 in the astroglial compartment. Neurobiol Aging 58:163–179.
Song W, Kothari V, Velly AM, Velly AM, Cressatti M, Liberman A, Gornitsky M, Schipper HM (2018) Evaluation of salivary heme oxygenase-1 as a potential biomarker of early Parkinson’s disease: salivary HO-1 and Parkinson’s disease. Mov Disord 33:583–591.
Souza JM, Giasson BI, Chen Q, Lee VMY, Ischiropolous H (2000) Dityrosine cross-linking promotes formation of stable alpha-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem 275:18344–18349.
Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M (1997) α-Synuclein in Lewy bodies. Nature 388:839–840.
Stefani A, Iranzo A, Holzknecht E, Perra D, Bongianni M, Gaig C, Heim B, Serradel M, Sacchetto L, Garrido A, Capaldi S, Sànchez-Gòmez A, Cecchini MP, Mariotto S, Ferrari S, Fiorini M, Schmutzuhard J, Cocchiara P, Vilaseca I, Brozzetti L, et al. (2021) Alpha-synuclein seeds in olfactory mucosa of patients with isolated REM sleep behaviour disorder. Brain 144:1118–1126.
Tabak LA, Levine MJ, Mandel ID, Ellison SA (1982) Role of salivary mucins in the protection of the oral cavity. J Oral Pathol 11:1–17.
Tandler B, Pinkstaff CA, Phillips CJ (2006) Interlobular excretory ducts of mammalian salivary glands: structural and histochemical review. Anat Rec A Discov Mol Cell Evol Biol 288:498–526.
Tavitian A, Cressatti M, Song W, Turk AZ, Galindez C, Smart A, Liberman A, Schipper HM (2020) Strategic timing of glial HMOX1 expression results in either schizophrenia-like or Parkinsonian behavior in mice. Antioxid Redox Signal 32:1259–1272.
Tumilasci OR, Cersósimo MG, Belforte JE, Micheli FE, Benarroch EE, Pazo JH (2006) Quantitative study of salivary secretion in Parkinson’s disease. Mov Disord 21:660–667.
Van Wamelen DJ, Wan YM, Ray Chaudhuri K, Jenner P (2020) Stress and cortisol in Parkinson’s disease. Int Rev Neurobiol 152:131–156.
Veerman EC, van den Keybus PA, Vissink A, Nieuw Amerongen AV (1996) Human glandular salivas: their separate collection and analysis. Eur J Oral Sci 104:346–352.
Vivacqua G, Latorre A, Suppa A, Nardi M, Pietracupa S, Mancinelli R, Fabbrini G, Colosimo C, Gaudio E, Berardelli A (2016) Abnormal salivary total and oligomeric alpha-synuclein in Parkinson’s disease. PLoS One 11:e0151156.
Vivacqua G, Mancinelli R, Belvisi D, Suppa A, Berardelli A (2018) Detection of α-synuclein in saliva: the importance of preanalytical assessment: α-synuclein in saliva. Mov Disord 33:1029–1030.
Vivacqua G, Suppa A, Mancinelli R, Belvisi D, Fabbrini A, Costanzo M, Formica Alessandra, Onori P, Fabbrini G, Berardelli A (2019) Salivary alpha-synuclein in the diagnosis of Parkinson’s disease and progressive supranuclear palsy. Parkinsonism Relat Disord 63:143–148.
Vivacqua G, Mason M, De Bartolo MI, Wegrzynowicz M, Calò L, Belvisi D, Suppa A, Fabbrini G, Berardelli A, Spillantini MG (2023) Salivary α-synuclein RT-QuIC correlates with disease severity in de novo Parkinson’s disease. Mov Disord 38:153–155.
Waak J, Weber SS, Waldenmaier A, Gorner K, Alunni-Fabbroni M, Schell H, Vogt-Weisenhorn D, Pharm TT, Reumers V, Baekelandt V, Wurst W, Kahle PJ (2009) Regulation of astrocyte inflammatory responses by the Parkinson’s disease-associated gene DJ-1. FASEB J 23:2478–2489.
Wang CC, Shi H, Guo K, Ng CP, Li J, Gan BQ, Liew HC, Leinonen J, Rajaniemi H, Zhou ZH, Zeng Q, Hong W (2007) VAMP8/endobrevin as a general vesicular SNARE for regulated exocytosis of the exocrine system. Mol Biol Cell 18:1056–1063.
Wang L, Cheng W, Rolls ET, Dai F, Gong W, Du J, Zhang W, Wang S, Liu F, Wang J, Brown P, Feng J (2020a) Association of specific biotypes in patients with Parkinson disease and disease progression. Neurology 95:e1445-1460.
Wang Z, Becker K, Donadio V, Siedlak S, Yuan J, Rezaee M, Incensi A, Kuzkina A, Orrù CD, Tatsuoka C, Liguori R, Gunzler SA, Caughey B, Jimenez-Capdeville ME, Zhu X, Doppler K, Cui L, Chen SG, Ma J, Zou WQ (2020b) Skin α-synuclein aggregation seeding activity as a novel biomarker for Parkinson disease. JAMA Neurol 78:1–11.
Wegrzynowicz M, Bar-On D, Calo’ L, Oleg Anichtchik O, Iovino M, Xia J, Ryazanov S, Leonov A, Giese A, Dalley JW, Griesinger C, Ashery U, Spillantini MG (2019) Depopulation of dense α-synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new Parkinson’s disease model. Acta Neuropathol 138:575–595.
Wilson DM, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I (2023) Hallmarks of neurodegenerative diseases. Cell 186:693–714.
Xu K, Xu YH, Chen JF, Schwarzschild MA (2010) Neuroprotection by caffeine: time course and role of its metabolites in the MPTP model of Parkinson disease. Neuroscience 167:475–481.
Yoshimura K, Fujita-Yoshigaki J, Murakami M, Segawa A (2002) Cyclic AMP has distinct effects from Ca(2+) in evoking priming and fusion/exocytosis in parotid amylase secretion. Pflugers Arch 444:586–596.
Youn J, Lee SB, Lee HS, Park J, Kim JS, Oh E, Park S, Jang W (2018) Cerebrospinal fluid levels of autophagy-related proteins represent potentially novel biomarkers of early-stage Parkinson’s disease. Sci Rep 8:16866.
Zheng Y, Li S, Yang C, Yu Z, Jiang Y, Feng T (2023) Comparison of biospecimens for α-synuclein seed amplification assays in Parkinson’s disease: a systematic review and network meta-analysis. Eur J Neurol 30:3949–3967.
Zürcher C, Humpel C (2023) Saliva: a challenging human fluid to diagnose brain disorders with a focus on Alzheimer’s disease. Neural Regen Res 18:2606–2610.

Auteurs

Daniele Belvisi (D)

IRCCS Neuromed, Pozzilli, Italy.
Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.

Romina Mancinelli (R)

Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy.

Matteo Costanzo (M)

IRCCS Neuromed, Pozzilli, Italy.

Claudia Caturano (C)

Department of Experimental Morphology and Microscopy -Integrated Research Center (PRAAB) -Campus Biomedico University of Rome, Rome, Italy.

Giorgio Leodori (G)

IRCCS Neuromed, Pozzilli, Italy.
Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.

Alfredo Berardelli (A)

IRCCS Neuromed, Pozzilli, Italy.
Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.

Giovanni Fabbrini (G)

IRCCS Neuromed, Pozzilli, Italy.
Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.

Giorgio Vivacqua (G)

Department of Experimental Morphology and Microscopy -Integrated Research Center (PRAAB) -Campus Biomedico University of Rome, Rome, Italy.

Classifications MeSH