GNB1 and obesity: Evidence for a correlation between haploinsufficiency and syndromic obesity.
Prader–Willi like
genetic obesity
leptin‐melanocortin pathway
obesity syndrome
syndromal obesity
Journal
Clinical obesity
ISSN: 1758-8111
Titre abrégé: Clin Obes
Pays: England
ID NLM: 101560587
Informations de publication
Date de publication:
10 Apr 2024
10 Apr 2024
Historique:
received:
09
08
2023
accepted:
26
03
2024
medline:
10
4
2024
pubmed:
10
4
2024
entrez:
10
4
2024
Statut:
aheadofprint
Résumé
Most patients with GNB1 encephalopathy have developmental delay and/or intellectual disability, brain anomalies and seizures. Recently, two cases with GNB1 encephalopathy caused by haploinsufficiency have been reported that also show a Prader-Willi-like phenotype of childhood hypotonia and severe obesity. Here we present three new cases from our expert centre for genetic obesity in which GNB1 truncating and splice variants, probably leading to haploinsufficiency, were identified. They all have obesity, hyperphagia and intellectual deficit. The clinical cases and their weight courses are presented, together with a review of all 68 published cases with GNB1 encephalopathy. Information on weight was not mentioned in most of these articles, so we contacted authors for additional clinical information on weight status and hyperphagia. Of the 42 patients whose weight status we could determine, obesity was present in 8 patients (19%). Obesity is significantly over-represented in the group with truncating and splicing variants. In this group, we see an obesity prevalence of 75%. Since GNB1 has been linked to several key genes in the hypothalamic leptin-melanocortin pathway, which regulates satiety and energy expenditure, our data support the potential association between GNB1 haploinsufficiency and genetic obesity. We also suggest GNB1 is a candidate gene for the known obesity phenotype of the 1p36 microdeletion syndrome given this chromosomal region includes the GNB1 gene. Knowledge of an additional obesity phenotype is important for prognosis, early interventions against obesity and awareness when prescribing weight-inducing medication.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e12661Subventions
Organisme : Elisabeth Foundation
Informations de copyright
© 2024 The Authors. Clinical Obesity published by John Wiley & Sons Ltd on behalf of World Obesity Federation.
Références
Schultz‐Rogers L, Masuho I, Pinto EVF, et al. Haploinsufficiency as a disease mechanism in GNB1‐associated neurodevelopmental disorder. Mol Genet Genomic Med. 2020;8(11):e1477. doi:10.1002/mgg3.1477
Revah‐Politi A, Sands TT, Colombo S, Goldstein DB, Anyane‐Yeboa K. GNB1 encephalopathy. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews((R)). University of Washington, Seattle; 1993.
Styne DM, Arslanian SA, Connor EL, et al. Pediatric obesity‐assessment, treatment, and prevention: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2017;102(3):709‐757.
Frankenfield D, Roth‐Yousey L, Compher C. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review. J Am Diet Assoc. 2005;105(5):775‐789.
Kleinendorst L, Abawi O, van der Voorn B, et al. Identifying underlying medical causes of pediatric obesity: results of a systematic diagnostic approach in a pediatric obesity center. PLoS One. 2020;15(5):e0232990. doi:10.1371/journal.pone.0232990
Lohmann K, Masuho I, Patil DN, et al. Novel GNB1 mutations disrupt assembly and function of G protein heterotrimers and cause global developmental delay in humans. Hum Mol Genet. 2017;26(6):1078‐1086. doi:10.1093/hmg/ddx018
Hildebrand MS, Jackson VE, Scerri TS, et al. Severe childhood speech disorder: gene discovery highlights transcriptional dysregulation. Neurology. 2020;94(20):e2148‐e2167.
Basel‐Salmon L, Orenstein N, Markus‐Bustani K, et al. Improved diagnostics by exome sequencing following raw data reevaluation by clinical geneticists involved in the medical care of the individuals tested. Genet Med. 2019;21(6):1443‐1451.
Hemati P, Revah‐Politi A, Bassan H, et al. Refining the phenotype associated with GNB1 mutations: clinical data on 18 newly identified patients and review of the literature. Am J Med Genet A. 2018;176(11):2259‐2275. doi:10.1002/ajmg.a.40472
Da Silva JD, Costa MD, Almeida B, Lopes F, Maciel P, Teixeira‐Castro A. Case report: a novel GNB1 mutation causes global developmental delay with intellectual disability and behavioral disorders. Front Neurol. 2021;12:735549. doi:10.3389/fneur.2021.735549
Endo W, Ikemoto S, Togashi N, et al. Phenotype‐genotype correlations in patients with GNB1 gene variants, including the first three reported Japanese patients to exhibit spastic diplegia, dyskinetic quadriplegia, and infantile spasms. Brain Dev. 2020;42(2):199‐204. doi:10.1016/j.braindev.2019.10.006
Petrovski S, Kury S, Myers CT, et al. Germline de novo mutations in GNB1 cause severe neurodevelopmental disability, hypotonia, and seizures. Am J Hum Genet. 2016;98(5):1001‐1010. doi:10.1016/j.ajhg.2016.03.011
Guo H, Duyzend MH, Coe BP, et al. Genome sequencing identifies multiple deleterious variants in autism patients with more severe phenotypes. Genet Med. 2019;21(7):1611‐1620. doi:10.1038/s41436‐018‐0380‐2
Brett M, Lai AH, Ting TW, et al. Acute lymphoblastic leukemia in a child with a de novo germline gnb1 mutation. Am J Med Genet A. 2017;173(2):550‐552. doi:10.1002/ajmg.a.38026
Szczaluba K, Biernacka A, Szymanska K, et al. Novel GNB1 de novo mutation in a patient with neurodevelopmental disorder and cutaneous mastocytosis: clinical report and literature review. Eur J Med Genet. 2018;61(3):157‐160. doi:10.1016/j.ejmg.2017.11.010
Lattanzio K, Larijani M, Treat JR. Cutaneous mastocytosis in a child with a de novo GNB1 mutation. Pediatr Dermatol. 2022;39(2):328‐329. doi:10.1111/pde.14913
Lecoquierre F, Duffourd Y, Vitobello A, et al. Variant recurrence in neurodevelopmental disorders: the use of publicly available genomic data identifies clinically relevant pathogenic missense variants. Genet Med. 2019;21(11):2504‐2511.
Lansdon LA, Saunders CJ. Genotype‐phenotype correlation in GNB1‐related neurodevelopmental disorder: potential association of p.Leu95Pro with cleft palate. Am J Med Genet A. 2021;185(4):1341‐1343. doi:10.1002/ajmg.a.62080
Lee J, Park JE, Lee C, et al. Genomic analysis of Korean patient with microcephaly. Front Genet. 2020;11:543528. doi:10.3389/fgene.2020.543528
Rojnueangnit K, Anthanont P, Khetkham T, Puttamanee S, Ittiwut C. Genetic diagnosis for adult patients at a genetic clinic. Cold Spring Harb Mol Case Stud. 2022;8:a006235. doi:10.1101/mcs.a006235
Jones HF, Morales‐Briceno H, Barwick K, et al. Myoclonus‐dystonia caused by GNB1 mutation responsive to deep brain stimulation. Mov Disord. 2019;34(7):1079‐1080. doi:10.1002/mds.27708
Steinrucke S, Lohmann K, Domingo A, et al. Novel GNB1 missense mutation in a patient with generalized dystonia, hypotonia, and intellectual disability. Neurol Genet. 2016;2(5):e106. doi:10.1212/NXG.0000000000000106
Rozmaric G, Hero M, Racki V, Vuletic V, Chudy D, Peterlin B. A case report of a novel GNB1 pathogenic variant and the response to deep brain stimulation. Acta Neurol Belg. 2023;123(2):603‐605. doi:10.1007/s13760‐022‐01883‐7
Galosi S, Pollini L, Nardecchia F, Cellini E, Guerrini R, Leuzzi V. Fever‐induced and early morning paroxysmal dyskinesia in a man with GNB1 encephalopathy. Mov Disord Clin Pract. 2022;9(Suppl 2):S41‐S43. doi:10.1002/mdc3.13525
Peng J, Wang Y, He F, et al. Novel West syndrome candidate genes in a Chinese cohort. CNS Neurosci Ther. 2018;24(12):1196‐1206. doi:10.1111/cns.12860
Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut‐offs for thinness, overweight and obesity. Pediatr Obes. 2012;7(4):284‐294.
Maiano C, Hue O, Morin AJ, Moullec G. Prevalence of overweight and obesity among children and adolescents with intellectual disabilities: a systematic review and meta‐analysis. Obes Rev. 2016;17(7):599‐611. doi:10.1111/obr.12408
Weis WI, Kobilka BK. The molecular basis of G protein‐coupled receptor activation. Annu Rev Biochem. 2018;87:897‐919. doi:10.1146/annurev‐biochem‐060614‐033910
Hasan S, White NF, Tagliatela AC, et al. Overexpressed Gα13 activates serum response factor through stoichiometric imbalance with Gβγ and mislocalization to the cytoplasm. Cell Signal. 2023;102:110534. doi:10.1016/j.cellsig.2022.110534
Ruiz‐Velasco V, Ikeda SR. Multiple G‐protein beta gamma combinations produce voltage‐dependent inhibition of N‐type calcium channels in rat superior cervical ganglion neurons. J Neurosci. 2000;20(6):2183‐2191.
Quallo T, Alkhatib O, Gentry C, Andersson DA, Bevan S. G protein beta gamma subunits inhibt TRPM3 ion channels in sensory neurons. Elife. 2017;6:e26138. doi:10.7554/eLife.26186
Yudin Y, Badheka D, Borbiro I, Yazici A, Mirshahi T, Rohacs T. Inhibition of TRPM3 ion channels by G‐protein beta‐gamma subunits. Biophys J. 2017;112(3):467a. doi:10.1016/j.bpj.2016.11.2503
Luscher C, Slesinger PA. Emerging roles for G protein‐gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci. 2010;11(5):301‐315. doi:10.1038/nrn2834
West KS, Roseberry AG. Neuropeptide‐Y alters VTA dopamine neuron activity through both pre‐ and postsynaptic mechanisms. J Neurophysiol. 2017;118(1):625‐633. doi:10.1152/jn.00879.2016
Brock C, Schaefer M, Reusch HP, et al. Roles of G beta gamma in membrane recruitment and activation of p110 gamma/p101 phosphoinositide 3‐kinase gamma. J Cell Biol. 2003;160(1):89‐99. doi:10.1083/jcb.200210115
Khater M, Wei Z, Xu X, et al. G protein beta gamma translocation to the Golgi apparatus activates MAPK via p110 gamma‐p101 heterodimers. J Biol Chem. 2021;296:100325. doi:10.1016/j.jbc.2021.100325
Beretta M, Bauer M, Hirsch E. PI3K signaling in the pathogenesis of obesity: the cause and the cure. Adv Biol Regul. 2015;58:1‐15. doi:10.1016/j.jbior.2014.11.004
Geronikolou S, Pavlopoulou A, Lambrou GI, et al. Kisspeptin and the genetic obesity Interactome. Adv Exp Med Biol. 2021;1339:111‐117.
D'Angelo CS, Kohl I, Varela MC, et al. Extending the phenotype of monosomy 1p36 syndrome and mapping of a critical region for obesity and hyperphagia. Am J Med Genet A. 2010;152A(1):102‐110. doi:10.1002/ajmg.a.33160
Firth HV, Richards SM, Bevan AP, et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using Ensembl resources. Am J Hum Genet. 2009;84(4):524‐533. doi:10.1016/j.ajhg.2009.03.010
Reddy HP, Yakubovich D, Keren‐Raifman T, et al. Encephalopathy‐causing mutations in Gβ(1) (GNB1) alter regulation of neuronal GIRK channels. iScience. 2021;24(9):103018. doi:10.1016/j.isci.2021.103018
Driscoll DJ, Miller JL, Schwartz S, Cassidy SB. Prader‐Willi syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews((R)). University of Washington, Seattle; 1993.
Hamed SA. Antiepileptic drugs influences on body weight in people with epilepsy. Expert Rev Clin Pharmacol. 2015;8(1):103‐114. doi:10.1586/17512433.2015.991716