Mathematical Modelling of Parasite Dynamics: A Stochastic Simulation-Based Approach and Parameter Estimation via Modified Sequential-Type Approximate Bayesian Computation.

Gyrodactylus Approximate Bayesian computation Host-parasite modelling Individual-based model Tau-leaping simulation

Journal

Bulletin of mathematical biology
ISSN: 1522-9602
Titre abrégé: Bull Math Biol
Pays: United States
ID NLM: 0401404

Informations de publication

Date de publication:
10 Apr 2024
Historique:
received: 11 10 2023
accepted: 12 03 2024
medline: 10 4 2024
pubmed: 10 4 2024
entrez: 10 4 2024
Statut: epublish

Résumé

The development of mathematical models for studying newly emerging and re-emerging infectious diseases has gained momentum due to global events. The gyrodactylid-fish system, like many host-parasite systems, serves as a valuable resource for ecological, evolutionary, and epidemiological investigations owing to its ease of experimental manipulation and long-term monitoring. Although this system has an existing individual-based model, it falls short in capturing information about species-specific microhabitat preferences and other biological details for different Gyrodactylus strains across diverse fish populations. This current study introduces a new individual-based stochastic simulation model that uses a hybrid

Identifiants

pubmed: 38598133
doi: 10.1007/s11538-024-01281-5
pii: 10.1007/s11538-024-01281-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

54

Informations de copyright

© 2024. The Author(s).

Références

Arkin RG, Montgomery DC (1980) Augmented robust estimators. Technometrics 22(3):333–341
doi: 10.1080/00401706.1980.10486164
Aryal NR, Jones OD (2020) Fitting the Bartlett-Lewis rainfall model using Approximate Bayesian Computation. Math Comput Simul 175:153–163
doi: 10.1016/j.matcom.2019.10.018
Bakke TA, Cable J, Harris P (2007) The biology of gyrodactylid monogeneans: the “Russian-doll killers’’. Adv Parasitol 64:161–460
doi: 10.1016/S0065-308X(06)64003-7
Banks HT, Broido A, Canter B, Gayvert K, Hu S, Joyner M, Link K (2012) Simulation algorithms for continuous time Markov chain models. Stud Appl Electromag Mech 37:3–18. https://doi.org/10.3233/978-1-61499-092-5-3
doi: 10.3233/978-1-61499-092-5-3
Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162(4):2025–2035
doi: 10.1093/genetics/162.4.2025
Beaumont MA, Cornuet J-M, Marin J-M, Robert CP (2009) Adaptive approximate Bayesian computation. Biometrika 96(4):983–990
doi: 10.1093/biomet/asp052
Berec L (2002) Techniques of spatially explicit individual-based models: construction, simulation, and mean-field analysis. Ecol Model 150(1–2):55–81
doi: 10.1016/S0304-3800(01)00463-X
Blum MG, Nunes MA, Prangle D, Sisson SA (2013) A comparative review of dimension reduction methods in approximate Bayesian computation. Stat Sci 28:189–208
doi: 10.1214/12-STS406
Cable J, Oosterhout C (2007) The impact of parasites on the life history evolution of guppies (Poecilia reticulata): The effects of host size on parasite virulence. Int J Parasitol 37(13):1449–1458. https://doi.org/10.1016/j.ijpara.2007.04.013
doi: 10.1016/j.ijpara.2007.04.013
Christopher JD, Doronina OA, Petrykowski D, Hayden TR, Lapointe C, Wimer NT, Grooms I, Rieker GB, Hamlington PE (2021) Flow parameter estimation using laser absorption spectroscopy and approximate Bayesian computation. Exp Fluids 62:1–20
doi: 10.1007/s00348-020-03122-2
Cisewski-Kehe J, Weller G, Schafer C (2019) A preferential attachment model for the stellar initial mass function. Electron J Stat 13(1):1580–1607
doi: 10.1214/19-EJS1556
Corander J, Fraser C, Gutmann MU, Arnold B, Hanage WP, Bentley SD, Lipsitch M, Croucher NJ (2017) Frequency-dependent selection in vaccine-associated pneumococcal population dynamics. Nat Ecol Evol 1(12):1950–1960
doi: 10.1038/s41559-017-0337-x
Cox DR (2006) Principles of Statistical Inference. Cambridge University Press, Cambridge
doi: 10.1017/CBO9780511813559
Csilléry K, François O, Blum MG (2012) abc: an R package for approximate Bayesian computation (ABC). Methods Ecol Evol 3(3):475–479
doi: 10.1111/j.2041-210X.2011.00179.x
Denholm SJ, Norman RA, Hoyle AS, Shinn AP, Taylor NG (2013) Reproductive trade-offs may moderate the impact of Gyrodactylus salaris in warmer climates. PLoS ONE 8(10):78909
doi: 10.1371/journal.pone.0078909
Filippi S, Barnes CP, Cornebise J, Stumpf MP (2013) On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo. Stat Appl Genet Mol Biol 12(1):87–107
doi: 10.1515/sagmb-2012-0069
Gaba S, Cabaret J, Ginot V, Silvestre A (2006) The early drug selection of nematodes to anthelmintics: stochastic transmission and population in refuge. Parasitology 133(3):345–356
doi: 10.1017/S0031182006000503
Gillespie DT (2001) Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys 115(4):1716–1733
doi: 10.1063/1.1378322
Gillespie DT, Petzold LR (2003) Improved leap-size selection for accelerated stochastic simulation. J Chem Phys 119(16):8229–8234
doi: 10.1063/1.1613254
Grimm V, Railsback SF (2005) Individual-based modeling and ecology. Princeton University Press, Princeton. https://doi.org/10.1515/9781400850624
doi: 10.1515/9781400850624
Guidoum AC (2020) Kernel estimator and bandwidth selection for density and its derivatives: the kedd package, pp 1–22. arXiv preprint arXiv:2012.06102
Hastie T, Qian J (2014) Glmnet vignette. Retrieved June 9(2016):1–30
Jung H, Marjoram P (2011) Choice of summary statistic weights in approximate Bayesian computation. Stat Appl Genet Mol Biol 10(1):1
doi: 10.2202/1544-6115.1586
Kaazempur-Mofrad M, Bathe M, Karcher H, Younis H, Seong H, Shim E, Chan R, Hinton D, Isasi A, Upadhyaya A et al (2003) Role of simulation in understanding biological systems. Comput Struct 81(8–11):715–726
doi: 10.1016/S0045-7949(02)00481-9
Khazeiynasab SR, Qi J (2021) Generator parameter calibration by adaptive approximate Bayesian computation with sequential monte Carlo sampler. IEEE Trans Smart Grid 12(5):4327–4338
doi: 10.1109/TSG.2021.3077734
Kruschke J (2014) Doing bayesian data analysis: a tutorial with r, jags, and stan. Academic Press, pp 335–355
Kruschke JK (2011) Bayesian assessment of null values via parameter estimation and model comparison. Perspect Psychol Sci 6(3):299–312
doi: 10.1177/1745691611406925
Kruschke JK, Liddell TM (2018) The Bayesian New Statistics: hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon Bull Rev 25(1):178–206
doi: 10.3758/s13423-016-1221-4
Lee DK (2016) Alternatives to P value: confidence interval and effect size. Kor J Anesthesiol 69(6):555
doi: 10.4097/kjae.2016.69.6.555
Li W, Fearnhead P (2018) Convergence of regression-adjusted approximate Bayesian computation. Biometrika 105(2):301–318
doi: 10.1093/biomet/asx081
Louie K, Vlassoff A, Mackay A (2007) Gastrointestinal nematode parasites of sheep: a dynamic model for their effect on liveweight gain. Int J Parasitol 37(2):233–241
doi: 10.1016/j.ijpara.2006.09.013
Makowski D, Ben-Shachar MS, Lüdecke D (2019) bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J Open Source Softw 4(40):1541
doi: 10.21105/joss.01541
McElreath R (2020) Statistical rethinking: A Bayesian course with examples in R and Stan. Chapman and Hall/CRC, Broken Sound Parkway, NW
doi: 10.1201/9780429029608
McKinley T, Cook AR, Deardon R (2009) Inference in epidemic models without likelihoods. Int J Biostat 5(1):1
doi: 10.2202/1557-4679.1171
Midi H, Zahari M (2008) A simulation study on ridge regression estimators in the presence of outliers and multicollinearity. Jurnal Teknologi 59–74
Norman GR, Sloan JA, Wyrwich KW (2003) Interpretation of changes in health-related quality of life: the remarkable universality of half a standard deviation. Med Care 582–592
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’hara R, Simpson GL, Solymos P, et al (2019) Package ‘vegan’. Commun Ecol 2(9):1
Oosterhout C, Potter R, Wright H, Cable J (2008) Gyro-scope: An individual-based computer model to forecast gyrodactylid infections on fish hosts. Int J Parasitol 38(5):541–548. https://doi.org/10.1016/j.ijpara.2007.09.016
doi: 10.1016/j.ijpara.2007.09.016
Prangle D (2015) Summary statistics in approximate Bayesian computation. pp 1–25. arXiv preprint arXiv:1512.05633
Prangle D (2017) Adapting the ABC distance function. Bayesian Anal 12(1):289–309
doi: 10.1214/16-BA1002
Pritchard JK, Seielstad MT, Perez-Lezaun A, Feldman MW (1999) Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol Biol Evol 16(12):1791–1798
doi: 10.1093/oxfordjournals.molbev.a026091
Rogers JL, Howard KI, Vessey JT (1993) Using significance tests to evaluate equivalence between two experimental groups. Psychol Bull 113(3):553
doi: 10.1037/0033-2909.113.3.553
Rubio-Godoy M, Muñoz-Córdova G, Garduño-Lugo M, Salazar-Ulloa M, Mercado-Vidal G (2012) Microhabitat use, not temperature, regulates intensity of Gyrodactylus cichlidarum long-term infection on farmed tilapia–Are parasites evading competition or immunity? Vet Parasitol 183(3–4):305–316
doi: 10.1016/j.vetpar.2011.07.040
Schwaferts P, Augustin T (2020) Bayesian decisions using regions of practical equivalence (ROPE): foundations. Methodol Found Stat Appl 1–18. https://epub.ub.uni-muenchen.de/74222/
Sisson SA, Fan Y, Beaumont M (2018) Handbook of Approximate Bayesian Computation. CRC Press, Broken Sound Parkway, NW
doi: 10.1201/9781315117195
Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MP (2009) Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface 6(31):187–202
doi: 10.1098/rsif.2008.0172
Twumasi C (2022) In silico modelling of parasite dynamics. PhD thesis, Cardiff University
Twumasi C, Jones O, Cable J (2022) Spatial and temporal parasite dynamics: microhabitat preferences and infection progression of two co-infecting gyrodactylids. Parasit Vect 15(1):1–18
doi: 10.1186/s13071-022-05471-9
Twumasi C, Asiedu L, Nortey EN (2019) Markov chain modeling of HIV, tuberculosis, and Hepatitis B Transmission in Ghana. Interdisciplinary Perspectives on Infectious Diseases 2019
Westlake W (1981) Bioequivalence testing-a need to rethink. Biometrics 37(3):589–594
doi: 10.2307/2530573
Wilcox RR, Serang S (2017) Hypothesis testing, p values, confidence intervals, measures of effect size, and Bayesian methods in light of modern robust techniques. Educ Psychol Measur 77(4):673–689
doi: 10.1177/0013164416667983
Wilkinson RD, Tavaré S (2009) Estimating primate divergence times by using conditioned birth-and-death processes. Theor Popul Biol 75(4):278–285
doi: 10.1016/j.tpb.2009.02.003

Auteurs

Clement Twumasi (C)

Nuffield Department of Medicine, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3SY, UK. clement.twumasi@ndm.ox.ac.uk.
School of Public Health, Imperial College London, 68 Wood Lane, London, Greater London, W12 7RH, UK. clement.twumasi@ndm.ox.ac.uk.
School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, South Glamorgan, CF24 4AG, UK. clement.twumasi@ndm.ox.ac.uk.
School of Biosciences, Cardiff University, Sir Martin Evans Building, Cardiff, South Glamorgan, CF10 3AX, UK. clement.twumasi@ndm.ox.ac.uk.

Joanne Cable (J)

School of Biosciences, Cardiff University, Sir Martin Evans Building, Cardiff, South Glamorgan, CF10 3AX, UK.

Andrey Pepelyshev (A)

School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, South Glamorgan, CF24 4AG, UK. pepelyshevan@cardiff.ac.uk.

Classifications MeSH