Gamma noise to non-invasively monitor nuclear research reactors.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
10 Apr 2024
10 Apr 2024
Historique:
received:
22
08
2023
accepted:
08
04
2024
medline:
11
4
2024
pubmed:
11
4
2024
entrez:
10
4
2024
Statut:
epublish
Résumé
Autonomous nuclear reactor monitoring is a key aspect of the International Atomic Energy Agency's strategy to ensure nonproliferation treaty compliance. From the rise of small modular reactor technology, decentralized nuclear reactor fleets may strain the capacities of such monitoring and requires new approaches. We demonstrate the superior capabilities of a gamma detection system to monitor the criticality of a zero power nuclear reactor from beyond typical vessel boundaries, offering a powerful alternative to neutron-based systems by providing direct information on fission chain propagation. Using the case example of the research reactor CROCUS, we demonstrate how two bismuth germanate scintillators placed outside the reactor vessel can precisely observe reactor criticality using so called noise methods and provide core status information in seconds. Our results indicate a wide range of applications due to the newly gained geometric flexibility that could find use in fields beyond nuclear safety.
Identifiants
pubmed: 38600149
doi: 10.1038/s41598-024-59127-y
pii: 10.1038/s41598-024-59127-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8409Informations de copyright
© 2024. The Author(s).
Références
Pörtner, H.-O. et al. IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2022).
Ming, A. et al. Key messages from the IPCC AR6 climate science report. Cambridge Open Engage https://doi.org/10.33774/coe-2021-fj53b (2021).
doi: 10.33774/coe-2021-fj53b
Kober, T., Schiffer, H.-W., Densing, M. & Panos, E. Global energy perspectives to 2060 - WEC’s world energy scenarios 2019. Energy Strat. Rev. 31, 100523. https://doi.org/10.1016/j.esr.2020.100523 (2020).
doi: 10.1016/j.esr.2020.100523
Anzelon, G. Antineutrino reactor monitoring in the context of IAEA safeguards. Workshop on Applied Antineutrino Physics (AAP 2018).
IAEA Department of Safeguards. Long-term R &D plan, 2012–2023, STR-375 (Tech. Rep IAEA, 2013).
Whitlock, J. & Sprinkle, J. Proliferation resistance considerations for remote small modular reactors. Nucl. Rev. 1, 9–12 (2014).
doi: 10.12943/ANR.2012.00013
van der Ende, B. M., Li, L., Godin, D. & Sur, B. Stand-off nuclear reactor monitoring with neutron detectors for safeguards and non-proliferation applications. Nat. Commun. https://doi.org/10.1038/s41467-019-09967-4 (2019).
doi: 10.1038/s41467-019-09967-4
pubmed: 31092817
pmcid: 6520353
Stewart, C., Abou-Jaoude, A. & Erickson, A. Employing antineutrino detectors to safeguard future nuclear reactors from diversions. Nat. Commun. https://doi.org/10.1038/s41467-019-11434-z (2019).
doi: 10.1038/s41467-019-11434-z
pubmed: 31685821
pmcid: 6828709
Almazán, H. et al. First antineutrino energy spectrum from 235U fissions with the STEREO detector at ILL. J. Phys. G Nucl. Part. Phys. 48, 075107. https://doi.org/10.1088/1361-6471/abd37a (2021).
doi: 10.1088/1361-6471/abd37a
Ashenfelter, J. et al. Measurement of the antineutrino spectrum from U235 fission at HFIR with PROSPECT. Physical Review Letters 122, 251801. https://doi.org/10.1103/physrevlett.122.251801 (2019).
doi: 10.1103/physrevlett.122.251801
pubmed: 31347897
Feynman, R. P., De Hoffmann, F. & Serber, R. Dispersion of the neutron emission in U-235 fission. J. Nucl. Energy 3, N9-69 (1956).
Pázsit, I. & Demazière, C. Noise Techniques in Nuclear Systems (Chapter in Handbook of Nuclear Engineering-Reactors of Generation II, 2010).
Pakari, O. et al. Investigation of Spatial Effects on Neutron Noise Measurements in the Zero Power Reactor CROCUS (PHYSOR, 2018).
Geslot, B. et al. Pile noise experiment in MINERVE reactor to estimate kinetic parameters using various data processing methods. In Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA), 2015 4th International Conference on, 1–8 (IEEE, 2015).
Gilad, E. et al. Experimental estimation of the delayed neutron fraction [Formula: see text] of the MAESTRO core in the MINERVE zero power reactor. J. Nucl. Sci. Technol. 52, 1026–1033. https://doi.org/10.1080/00223131.2015.1038331 (2015).
doi: 10.1080/00223131.2015.1038331
Pakari, O., Lamirand, V., Perret, G., Frajtag, P. & Pautz, A. Kinetic parameter measurements in the crocus reactor using current mode instrumentation. IEEE Trans. Nucl. Sci. 65, 2456–2460. https://doi.org/10.1109/TNS.2018.2831180 (2018).
doi: 10.1109/TNS.2018.2831180
Pakari, O. V., Lamirand, V., Mager, T., Frajtag, P. & Pautz, A. High accuracy measurement of the prompt neutron decay constant in CROCUS using gamma noise and bootstrapped uncertainties. Ann. Nucl. Energy 170, 109011. https://doi.org/10.1016/j.anucene.2022.109011 (2022).
doi: 10.1016/j.anucene.2022.109011
Darby, F. B. et al. Neutron-gamma noise measurements in a zero-power reactor using organic scintillators. IEEE Trans. Nucl. Sci. https://doi.org/10.1109/TNS.2023.3337657 (2023).
doi: 10.1109/TNS.2023.3337657
Williams, M. M. R. Random Processes in Nuclear Reactors (Elsevier, 2013).
Ott, K. O. & Neuhold, R. J. Introductory Nuclear Reactor Dynamics (Amer Nuclear Society, 1985).
Yamamoto, T., Iwahashi, D. & Sakai, T. Applying the continuous-energy Monte Carlo calculation code, MVP3, to analysis of kinetic parameters measured for light-water moderated UO2 and MOX cores of the TCA and EOLE critical facilities. Nucl. Sci. Technol. 57, 874–887. https://doi.org/10.1080/00223131.2020.1727375 (2020).
doi: 10.1080/00223131.2020.1727375
Uhrig, R. E. Random Noise Techniques in Nuclear Reactor Systems (Ronald Press, 1970).
Diven, B., Martin, H., Taschek, R. & Terrell, J. Multiplicities of fission neutrons. Phys. Rev. 101, 1012 (1956).
doi: 10.1103/PhysRev.101.1012
Pázsit, I. & Pál, L. Neutron Fluctuations: A Treatise on the Physics of Branching Processes (Elsevier, 2007).
Pakari, O. V. Experimental and numerical study of stochastic branching noise in nuclear reactors. Ph.D. thesis, École polytechnique fédérale de Lausanne (EPFL) (2020). https://doi.org/10.5075/EPFL-THESIS-8336 .
Chernikova, D. et al. The neutron-gamma Feynman variance to mean approach: Gamma detection and total neutron-gamma detection (theory and practice). Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 782, 47–55. https://doi.org/10.1016/j.nima.2015.01.104 (2015).
doi: 10.1016/j.nima.2015.01.104
Lamirand, V., Laureau, A., Pakari, O., Frajtag, P. & Pautz, A. Power calibration methodology at the CROCUS reactor. EPJ Web Conf. 225, 04022. https://doi.org/10.1051/epjconf/202022504022 (2020).
doi: 10.1051/epjconf/202022504022
Leppänen, J., Aufiero, M., Fridman, E., Rachamin, R. & van der Marck, S. Calculation of effective point kinetics parameters in the Serpent 2 Monte Carlo code. Ann. Nucl. Energy 65, 272–279. https://doi.org/10.1016/j.anucene.2013.10.032 (2014).
doi: 10.1016/j.anucene.2013.10.032
Brown, D. et al. ENDF/b-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl. Data Sheets 148, 1–142. https://doi.org/10.1016/j.nds.2018.02.001 (2018).
doi: 10.1016/j.nds.2018.02.001
Lehto, W. K. & Carpenter, J. M. Reactor noise measurements using gamma rays. Nucl. Sci. Eng. 32, 142–146. https://doi.org/10.13182/nse68-a18838 (1967).
doi: 10.13182/nse68-a18838
Kenney, E. S. & Schultz, M. A. Local in-core power measurements with out-of-core gamma detectors. Nucl. Appl. 6, 238–240. https://doi.org/10.13182/nt69-a28312 (1969).
doi: 10.13182/nt69-a28312
Bärs, B. & Markkanen, E. Reactor parameters from neutron and gamma-ray noise measurements. Nucl. Sci. Eng. 48, 202–210. https://doi.org/10.13182/nse72-a22471 (1972).
doi: 10.13182/nse72-a22471
Beaumont, J. S., Mellor, M. P., Villa, M. & Joyce, M. J. High-intensity power-resolved radiation imaging of an operational nuclear reactor. Nat. Commun. https://doi.org/10.1038/ncomms9592 (2015).
doi: 10.1038/ncomms9592
pubmed: 26450669
Mueller, T. A. et al. Improved predictions of reactor antineutrino spectra. Phys. Rev. C 83, 054615. https://doi.org/10.1103/physrevc.83.054615 (2011).
doi: 10.1103/physrevc.83.054615
Boireau, G. et al. Online monitoring of the OSIRIS reactor with the NUCIFER neutrino detector. Phys. Rev. D 93, 112006. https://doi.org/10.1103/physrevd.93.112006 (2016).
doi: 10.1103/physrevd.93.112006
Ashenfelter, J. et al. The PROSPECT physics program. J. Phys. G Nuclear Part. Phys. 43, 113001. https://doi.org/10.1088/0954-3899/43/11/113001 (2016).
doi: 10.1088/0954-3899/43/11/113001
Wright, K. Neutrino detectors for national security. APS Phys. 13, 36 (2020).
Cacuci, D. G. Handbook of Nuclear Engineering (Springer-Verlag GmbH, 2010).
doi: 10.1007/978-0-387-98149-9
Spriggs, G. D. The reactor noise threshold. Nucl. Sci. Eng. 116, 67–72 (1994).
doi: 10.13182/NSE94-A21482
Di Fulvio, A. et al. Passive assay of plutonium metal plates using a fast-neutron multiplicity counter. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 855, 92–101 (2017).
doi: 10.1016/j.nima.2017.02.082
Darby, F. B., Hua, M. Y., Pakari, O. V., Clarke, S. D. & Pozzi, S. A. Multiplicity counting using organic scintillators to distinguish neutron sources: An advanced teaching laboratory. Am. J. Phys. 91, 936–945. https://doi.org/10.1119/5.0139531 (2023).
doi: 10.1119/5.0139531
Enqvist, A., Flaska, M., Dolan, J. L., Chichester, D. L. & Pozzi, S. A. A combined neutron and gamma-ray multiplicity counter based on liquid scintillation detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 652, 48–51 (2011).
doi: 10.1016/j.nima.2010.10.071
Subki, H. Advances in Small Modular Reactor Technology Developments (IAEA Advanced Reactors Information System (ARIS), 2020).
Couturier, J., Hassan, Y. & Grolleau, E. Evolution of the French research reactor “fleet.” In Element of Nuclear Safety (eds Couturier, J. et al.) 71–94 (EDP Sciences, 2021).
Kemp, R. S. The Iran nuclear deal as a case study in limiting the proliferation potential of nuclear power. Nat. Energy 4, 99–106. https://doi.org/10.1038/s41560-019-0325-2 (2019).
doi: 10.1038/s41560-019-0325-2
Hecht, G. & McKenzie, F. The radiance of France: Nuclear power & national identity after World War II. Can. J. Hist. 35, 357 (2000).
doi: 10.3138/cjh.35.2.357
Tokyo Electric Power Co, Inc, Tokyo (Japan). The evaluation status of reactor core damage at Fukushima Daiichi NPS units 1 to 3. Handouts at press conference on 2011-11-30 (2011).
Ono, A. Fukushima Daiichi decontamination and decommissioning: current status and challenges. Ann. ICRP https://doi.org/10.1177/01466453211010865 (2021).
doi: 10.1177/01466453211010865
pubmed: 34143705
Fujii, H. et al. Investigation of the unit-1 nuclear reactor of Fukushima Daiichi by cosmic muon radiography. Progress of Theoretical and Experimental Physics 2020, https://doi.org/10.1093/ptep/ptaa027 (2020).
Kasemeyer, U., Früh, R., Paratte, J. M. & Chawla, R. Benchmark on kinetic parameters in the CROCUS reactor. International Reactor Physics Experiments Handbook (IRPhE), (2007).
Pakari, O. et al. First in-core gamma spectroscopy experiments in a zero power reactor. EPJ Web Conf. 253, 04022. https://doi.org/10.1051/epjconf/202125304022 (2021).
doi: 10.1051/epjconf/202125304022
DSA-LX, Digital signal analyzer. https://www.mirion.com/products/dsa-lx-digital-signal-analyzer.
Pakari, O. V. et al. Gamma-ray spectroscopy in low-power nuclear research reactors. J. Nucl. Eng. 5, 26–43. https://doi.org/10.3390/jne5010003 (2024).
doi: 10.3390/jne5010003
Perret, G. Tm-41-14-02 rev. 1: Decay constant and delayed neutron fraction measurements in CROCUS. Tech. Rep., ERP, LRS, Paul Scherrer Institut (2014).
MATLAB. 9.7.0.1190202 (R2019b) (The MathWorks Inc., 2019).
Hazama, T. Practical correction of dead time effect in variance-to-mean ratio measurement. Ann. Nucl. Energy 30, 615–631 (2003).
doi: 10.1016/S0306-4549(02)00091-9
Goda, J. et al. A New Era of Nuclear Criticality Experiments: The First 10 Years of Godiva IV Operations at NCERC. Nucl. Sci. Eng. 195, S55–S79. https://doi.org/10.1080/00295639.2021.1947103 (2021).
doi: 10.1080/00295639.2021.1947103
Hua, M. Y. et al. Rossi-alpha measurements of fast plutonium metal assemblies using organic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 959, 163507. https://doi.org/10.1016/j.nima.2020.163507 (2020).
doi: 10.1016/j.nima.2020.163507