Histological interpretation of spitzoid tumours: an extensive machine learning-based concordance analysis for improving decision making.

computer‐aided diagnosis histopathology machine learning melanocytic tumours spitzoid tumours

Journal

Histopathology
ISSN: 1365-2559
Titre abrégé: Histopathology
Pays: England
ID NLM: 7704136

Informations de publication

Date de publication:
12 Apr 2024
Historique:
revised: 04 03 2024
received: 10 11 2023
accepted: 16 03 2024
medline: 12 4 2024
pubmed: 12 4 2024
entrez: 12 4 2024
Statut: aheadofprint

Résumé

The histopathological classification of melanocytic tumours with spitzoid features remains a challenging task. We confront the complexities involved in the histological classification of these tumours by proposing machine learning (ML) algorithms that objectively categorise the most relevant features in order of importance. The data set comprises 122 tumours (39 benign, 44 atypical and 39 malignant) from four different countries. BRAF and NRAS mutation status was evaluated in 51. Analysis of variance score was performed to rank 22 clinicopathological variables. The Gaussian naive Bayes algorithm achieved in distinguishing Spitz naevus from malignant spitzoid tumours with an accuracy of 0.95 and kappa score of 0.87, utilising the 12 most important variables. For benign versus non-benign Spitz tumours, the test reached a kappa score of 0.88 using the 13 highest-scored features. Furthermore, for the atypical Spitz tumours (AST) versus Spitz melanoma comparison, the logistic regression algorithm achieved a kappa value of 0.66 and an accuracy rate of 0.85. When the three categories were compared most AST were classified as melanoma, because of the similarities on histological features between the two groups. Our results show promise in supporting the histological classification of these tumours in clinical practice, and provide valuable insight into the use of ML to improve the accuracy and objectivity of this process while minimising interobserver variability. These proposed algorithms represent a potential solution to the lack of a clear threshold for the Spitz/spitzoid tumour classification, and its high accuracy supports its usefulness as a helpful tool to improve diagnostic decision-making.

Identifiants

pubmed: 38606989
doi: 10.1111/his.15187
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Fondo Europeo de Desarrollo Regional
Organisme : Western Norway Health Authority
Organisme : Universitat Politècnica de València
Organisme : Generalitat Valenciana
Organisme : Horizon 2020, the European Commission's Framework Programme for Research and Innovation
ID : 860627
Organisme : Instituto de Salud Carlos III
ID : PI20/00094
Organisme : ValgrAI-Valencian Graduate School and Research Network for Artificial Intelligence

Informations de copyright

© 2024 The Authors. Histopathology published by John Wiley & Sons Ltd.

Références

Spitz S. Melanomas of childhood. Am. J. Pathol. 1948; 24; 591–609.
Gerami P, Bahrami A, Busam KJ, de la Fouchardière A, Kazakov DV, Massi D, et al. In: Elder D, Barnhill R, editors. Spitz Melanoma, Vol. 12 Of WHO classification of tumours, 5 ed. Lyon, France: International Agency for Research on Cancer; 2023. https://tumourclassification.iarc.who.int/chapters/64, [Internet; beta version ahead of print].
Zhao J, Benton S, Zhang B et al. Benign and intermediate‐grade melanocytic tumors with BRAF mutations and spitzoid morphology: a subset of melanocytic neoplasms distinct From melanoma. Am. J. Surg. Pathol. 2022; 46; 476–485.
Raghavan S, Peternel S, Mully T et al. Spitz melanoma is a distinct subset of spitzoid melanoma. Mod. Pathol. 2020; 33; 1122–1134.
Yeh I, Busam KJ. Spitz melanocytic tumours ‐ a review. Histopathology 2022; 80; 122–134.
Barnhill RL, Argenyi ZB, From L et al. Atypical Spitz nevi/tumors: lack of consensus for diagnosis, discrimination from melanoma, and prediction of outcome. Hum. Pathol. 1999; 30; 513–520.
Ruijter CGH, Ouwerkerk W, Jaspars EH et al. Incidence and outcome of Spitzoid tumour of unknown malignant potential (STUMP): an analysis of cases in The Netherlands from 1999 to 2014. Br. J. Dermatol. 2020; 183; 1121–1123.
Lallas A, Kyrgidis A, Ferrara G et al. Atypical spitz tumours and sentinel lymph node biopsy: a systematic review. Lancet Oncol. 2014; 15; e178–e183.
Cazzato G, Massaro A, Colagrande A et al. Dermatopathology of malignant melanoma in the era of artificial intelligence: a single institutional experience. Diagnostics (Basel) 2022; 12; 1972.
Bhoyrul B, Brent G, Elliott F et al. Pathological review of primary cutaneous malignant melanoma by a specialist skin cancer multidisciplinary team improves patient care in the UK. J. Clin. Pathol. 2019; 72; 482–486.
Massi D, De Giorgi V, Mandalà M. The complex management of atypical Spitz tumours. Pathology 2016; 48; 132–141.
Berbís MA, McClintock DS, Bychkov A et al. Computational pathology in 2030: a Delphi study forecasting the role of AI in pathology within the next decade. EBioMedicine 2023; 88; 104427.
Mosquera‐Zamudio A, Launet L, Tabatabaei Z et al. Deep learning for skin melanocytic tumors in whole‐slide images: a systematic review. Cancers (Basel) 2022; 15; 42.
Spatz A, Calonje E, Handfield‐Jones S, Barnhill RL. Spitz tumors in children: a grading system for risk stratification. Arch. Dermatol. 1999; 135; 282–285.
Martinez Ciarpaglini C, Gonzalez J, Sanchez B et al. The amount of melanin influences p16 loss in Spitzoid melanocytic lesions: correlation with CDKN2A status by FISH and MLPA. Appl. Immunohistochem. Mol. Morphol. 2019; 27; 423–429.
St»hle L. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst. 1989; 6; 259–272. https://www.sciencedirect.com/science/article/pii/0169743989800954.
Li S, Chu Y, Wang Y et al. Distinguish the value of the benign nevus and melanomas using machine learning: a meta‐analysis and systematic review. Mediat. Inflamm. 2022; 2022; 1734327.
Burti S, Zotti A, Bonsembiante F, Contiero B, Banzato T. A machine learning‐based approach for classification of focal splenic lesions based on their CT features. Front. Vet. Sci. 2022; 9; 872618.
do Nascimento MZ, Martins AS, Azevedo Tosta TA, Neves LA. Lymphoma images analysis using morphological and non‐morphological descriptors for classification. Comput. Methods Prog. Biomed. 2018; 163; 65–77.
Shao S, Mao N, Liu W et al. Epithelial salivary gland tumors: utility of radiomics analysis based on diffusion‐weighted imaging for differentiation of benign from malignant tumors. J. Xray Sci. Technol. 2020; 28; 799–808.
Vijithananda SM, Jayatilake ML, Hewavithana B et al. Feature extraction from MRI ADC images for brain tumor classification using machine learning techniques. Biomed. Eng. Online 2022; 21; 52.
Colloby PS, West KP, Fletcher A. Observer variation in the measurement of Breslow depth and Clark's level in thin cutaneous malignant melanoma. J. Pathol. 1991; 163; 245–250.
Elmore JG, Barnhill RL, Elder DE et al. Pathologists' diagnosis of invasive melanoma and melanocytic proliferations: observer accuracy and reproducibility study. BMJ 2017; 357; j2813.
Lodha S, Saggar S, Celebi JT, Silvers DN. Discordance in the histopathologic diagnosis of difficult melanocytic neoplasms in the clinical setting. J. Cutan. Pathol. 2008; 35; 349–352.

Auteurs

Andrés Mosquera-Zamudio (A)

Universitat de València, Valencia, Spain.
INCLIVA, Instituto de Investigación Sanitaria, Valencia, Spain.

Laëtitia Launet (L)

Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, HUMAN-tech, Universitat Politècnica de València, Valencia, Spain.

Adrián Colomer (A)

Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, HUMAN-tech, Universitat Politècnica de València, Valencia, Spain.
valgrAI: Valencian Graduate School and Research Network of Artificial Intelligence, Valencia, Spain.

Katharina Wiedemeyer (K)

Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.

Juan C López-Takegami (JC)

Grupo de investigación IMPAC, Fundación Universitaria Sanitas, Bogotá, Colombia.

Luis F Palma (LF)

Grupo de investigación IMPAC, Fundación Universitaria Sanitas, Bogotá, Colombia.

Erling Undersrud (E)

Department of Pathology, Stavanger University Hospital, Stavanger, Norway.

Emilius Janssen (E)

Department of Pathology, Stavanger University Hospital, Stavanger, Norway.
Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.

Thomas Brenn (T)

Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.

Valery Naranjo (V)

Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, HUMAN-tech, Universitat Politècnica de València, Valencia, Spain.

Carlos Monteagudo (C)

Universitat de València, Valencia, Spain.
INCLIVA, Instituto de Investigación Sanitaria, Valencia, Spain.

Classifications MeSH