Coconut shell-derived activated carbon-enhanced water phase change material for cold thermal energy storage.

Activated carbon Biomass waste Coconut shell Solidification behavior Thermal energy storage Water phase change material

Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
12 Apr 2024
Historique:
received: 11 01 2024
accepted: 04 04 2024
medline: 12 4 2024
pubmed: 12 4 2024
entrez: 12 4 2024
Statut: aheadofprint

Résumé

In building cooling, the demand for cooling surges during specific times, stressing air-conditioner operation, and additional cooling is often wasted during low-demand periods. Water-phase change material (W-PCM)-based thermal energy storage (TES) allows for load shifting and effective management of peak demand by storing cooling energy when the demand is low. This stored energy can be deployed during peak hours, decreasing energy usage and associated CO

Identifiants

pubmed: 38607487
doi: 10.1007/s11356-024-33251-8
pii: 10.1007/s11356-024-33251-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Adref KT, Eames IW (2002) Experiments on charging and discharging of spherical thermal (ice) storage elements. Int J Energy Res 26(11):949–964
doi: 10.1002/er.816
Al Mughairi M, Beach T, Rezgui Y (2023) Post-occupancy evaluation for enhancing building performance and automation deployment. J Build Eng 77:107388
doi: 10.1016/j.jobe.2023.107388
Altohamy AA, AbdRabbo MF, Sakr RY, Attia AA (2015) Effect of water based Al
doi: 10.1016/j.applthermaleng.2015.03.066
ASHRAE (2018) ASHARE Handbook of Refrigeration. American Society of Heating, Refrigeration and Air Conditioning Engineers, Washington, DC, USA
Chakroborty S, Pal K, Nath N, Singh V, Barik A, Soren S, Panda P, Asthana N, Kyzas GZ (2023) Sustainable synthesis of multifunctional nanomaterials from rice wastes: a comprehensive review. Environ Sci Pollut Res 30(42):95039–95053
doi: 10.1007/s11356-023-29235-9
Chandrasekaran P, Cheralathan M, Kumaresan V, Velraj R (2014a) Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system. Energy 72:636–642
doi: 10.1016/j.energy.2014.05.089
Chandrasekaran P, Cheralathan M, Kumaresan V, Velraj R (2014b) Solidification behavior of water based nanofluid phase change material with a nucleating agent for cool thermal storage system. Int J Refrig 41:157–163
doi: 10.1016/j.ijrefrig.2013.12.017
Chen Z, Shan F, Cao L, Fang G (2012) Synthesis and thermal properties of shape-stabilized lauric acid/activated carbon composites as phase change materials for thermal energy storage. Sol Energy Mater Sol Cells 102:131–136
doi: 10.1016/j.solmat.2012.03.013
Chen C, Wang X, Ma F, Wang Y, Jiu S, Chen Y (2023) Preparation and characterization of modified activated carbon-based shape stabilized eutectic phase change materials for gypsum composites application. Constr Build Mater 369:130551
doi: 10.1016/j.conbuildmat.2023.130551
Daneshfar R, Soulgani BS, Ashoori S (2024) Identifying the mechanisms behind the stability of silica nano-and micro-particles: effects of particle size, electrolyte concentration and type of ionic species. J Mol Liq 397:124059
doi: 10.1016/j.molliq.2024.124059
Dhaidan NS, Kokz SA, Rashid FL, Hussein AK, Younis O, Al-Mousawi FN (2022) Review of solidification of phase change materials dispersed with nanoparticles in different containers. J Energy Storage 51:104271
doi: 10.1016/j.est.2022.104271
Eames IW, Adref KT (2002) Freezing and melting of water in spherical enclosures of the type used in thermal (ice) storage systems. Appl Therm Eng 22(7):733–745
doi: 10.1016/S1359-4311(02)00026-1
Hassan AA, Mansour MK, El Ahl RM, El Hamaky AM, Oraby NH (2020) Toxic and beneficial effects of carbon nanomaterials on human and animal health. InCarbon nanomaterials for agri-food and environmental applications, 535–555.
Hekimoglu G, Sarı A, Kar T, Keleş S, Kaygusuz K, Tyagi VV, Sharma RK, Al-Ahmed A, Al-Sulaiman FA, Saleh TA (2021) Walnut shell derived bio-carbon/methyl palmitate as novel composite phase change material with enhanced thermal energy storage properties. J Energy Storage 35:102288
doi: 10.1016/j.est.2021.102288
Hou Y, Ma F, Fu Z, Li C, An Q, Zhu C, Dai J (2023) Encapsulation of stearic-palmitic acid in alkali-activated coconut shell and corn cob biochar to optimize energy storage. J Energy Storage 66:107418
doi: 10.1016/j.est.2023.107418
International Energy Agency (IEA) (2023) The energy efficiency policy package: key catalyst for building decarbonisation and climate action. IEA, Paris https://www.iea.org/commentaries/the-energy-efficiency-policy-package-key-catalyst-for-building-decarbonisation-and-climate-action
Jiang T, Zhang Y, Olayiwola S, Lau C, Fan M, Ng K, Tan G (2022) Biomass-derived porous carbons support in phase change materials for building energy efficiency: a review. Mater Today Energy 23:100905
doi: 10.1016/j.mtener.2021.100905
Kalidasan B, Pandey AK, Saidur R, Kothari R, Sharma K, Tyagi VV (2023) Eco-friendly coconut shell biochar based nano-inclusion for sustainable energy storage of binary eutectic salt hydrate phase change materials. Sol Energy Mater Sol Cells 262:112534
doi: 10.1016/j.solmat.2023.112534
Kenisarin MM, Mahkamov K, Costa SC, Makhkamova I (2020) Melting and solidification of PCMs inside a spherical capsule: a critical review. J Energy Storage 27:101082
doi: 10.1016/j.est.2019.101082
Keppetipola NM, Dissanayake M, Dissanayake P, Karunarathne B, Dourges MA, Talaga D, Servant L, Olivier C, Toupance T, Uchida S, Tennakone K (2021) Graphite-type activated carbon from coconut shell: a natural source for eco-friendly non-volatile storage devices. RSC Adv 11(5):2854–2865
doi: 10.1039/D0RA09182K
Kim MH, Jeong IT, Park SB, Kim JW (2019) Analysis of environmental impact of activated carbon production from wood waste. Environ Eng Res 24(1):117–126
doi: 10.4491/eer.2018.104
Kumaresan V, Velraj R, Das SK (2012) The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification. Heat Mass Transf 48:1345–1355
doi: 10.1007/s00231-012-0980-3
Kumaresan V, Raghavan KS, PonrajanVikram M, Iyyappan J (2021a) Role of graphitized mesoporous carbon on solidification and melting characteristics of water for cool thermal storage. Fuller Nanotub Carbon Nanostruct 29(11):890–898
doi: 10.1080/1536383X.2021.1910811
Kumaresan V, Raghavan KS, Vikram MP, Iyyappan J (2021b) Expedited energy charging of water using natural graphite flake for cool thermal storage. Fuller Nanotub Carbon Nanostruct 29(9):670–677
doi: 10.1080/1536383X.2021.1879056
Lago TG, Ismail KA, Lino FA, Arabkoohsar A (2020) Experimental correlations for the solidification and fusion times of PCM encapsulated in spherical shells. Exp Heat Transf 33(5):440–454
doi: 10.1080/08916152.2019.1656301
Li Y, Rong Y, Ahmad UM, Wang X, Zuo J, Mao G (2021) A comprehensive review on green buildings research: bibliometric analysis during 1998–2018. Environ Sci Pollut Res 28:46196–46214
doi: 10.1007/s11356-021-12739-7
Luo Y, Zhang F, Li C, Cai J (2022) Biomass-based shape-stable phase change materials supported by garlic peel-derived porous carbon for thermal energy storage. J Energy Storage 46:103929
doi: 10.1016/j.est.2021.103929
Ma Y, Wei R, Zuo H, Zuo Q, Luo X, Chen Y, Wu S, Chen W (2024) N-doped EG@ MOFs derived porous carbon composite phase change materials for thermal optimization of Li-ion batteries at low temperature. Energy 286:129637
doi: 10.1016/j.energy.2023.129637
Mert MS, Mert HH, Arıcı M (2023) Development and properties of n-octadecane/kaolinite composites as form-stabilized phase change materials for energy storage. J Clean Prod 410:137304
doi: 10.1016/j.jclepro.2023.137304
Mishra DK, Bhowmik C, Bhowmik S, Pandey KM (2022) Property-enhanced paraffin-based composite phase change material for thermal energy storage: a review. Environ Sci Pollut Res 29:43556–43587
doi: 10.1007/s11356-022-19929-x
Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1(1):3–17
doi: 10.1016/0894-1777(88)90043-X
Muzhanje AT, Hassan H (2023) Heat transfer characteristics of charging and discharging encapsulated PCMs (SP24, SP26 & SP29) for free cooling: impact of geometry and nanomaterials addition. Therm Anal Calorim 148:9919–9936
doi: 10.1007/s10973-023-12384-x
Oparanti SO, Fofana I, Jafari R, Zarrougui R (2024) A state-of-the-art review on green nanofluids for transformer insulation. J Mol Liq 396:124023
doi: 10.1016/j.molliq.2024.124023
Patel CP, Pavankumar T, Narla A, Bhaskar A, Mondal S, Anwer N, Malmquist A (2024) Experimental study of a latent heat thermal energy storage system using erythritol for medium temperature applications. Case Stud Therm Eng 53:103907
doi: 10.1016/j.csite.2023.103907
Poongavanam GK, Ramalingam V (2019) Characteristics investigation on thermophysical properties of synthesized activated carbon nanoparticles dispersed in solar glycol. Int J Therm Sci 136:15–32
doi: 10.1016/j.ijthermalsci.2018.10.007
Prabakaran R, Sidney S, Lal DM, Selvam C, Harish S (2019) Solidification of graphene-assisted phase change nanocomposites inside a sphere for cold storage applications. Energies 12(18):3473
doi: 10.3390/en12183473
Prabakaran R, Prasanna Naveen Kumar J, Mohan Lal D, Selvam C, Harish S (2020) Constrained melting of graphene-based phase change nanocomposites inside a sphere. J Therm Anal Calorim 139:941–952
doi: 10.1007/s10973-019-08458-4
Prabakaran R, Sidney S, Lal DM, Harish S, Kim SC (2022) Experimental performance of a mobile air conditioning unit with small thermal energy storage for idle stop/start vehicles. J Therm Anal Calorim 147:5117–5132
doi: 10.1007/s10973-021-10863-7
Prabakaran R, Dhamodharan P, Sathishkumar A, Gullo P, Vikram MP, Pandiaraj S, Alodhayb A, Khouqeer GA, Kim SC (2023) An overview of the state of the art and challenges in the use of gelling and thickening agents to create stable thermal energy storage materials. Energies 16(8):3306
doi: 10.3390/en16083306
Raj K, Vellaichamy P, Ramalingam V (2023) Development of novel correlations towards the freezing time estimation of phase change material inside a cylindrical capsule involving thickness and its thermal conductivity for thermal storage applications—an experimental and parametric studies. J Energy Storage 72:108629
doi: 10.1016/j.est.2023.108629
Sathishkumar A, Cheralathan M (2022) Effect of active multi-walled carbon nanotubes (MWCNT) on the energy storage density of DI water for cool thermal storage system. Environ Sci Pollut Res 29(25):38493–38504
doi: 10.1007/s11356-022-18779-x
Sathishkumar A, Cheralathan M (2023) Influence of functionalized graphene nanoplatelets on the phase transition performance of DI water-based NEPCMs for cool thermal storage systems. Energy Sources Part A-Recovery Util Environ Eff 45(1):1187–203
doi: 10.1080/15567036.2021.2007312
Sathishkumar A, Cheralathan M (2023a) Charging and discharging processes of low capacity nano-PCM based cool thermal energy storage system: an experimental study. Energy 263:125700
doi: 10.1016/j.energy.2022.125700
Sathishkumar A, Cheralathan M (2023b) Effect of functionalization on thermophysical properties of water-based nano enhanced phase change materials for cool thermal energy storage systems. J Mol Liq 386:122544
doi: 10.1016/j.molliq.2023.122544
Sathishkumar A, Kumaresan V, Velraj R (2016) Solidification characteristics of water based graphene nanofluid PCM in a spherical capsule for cool thermal energy storage applications. Int J Refrig 66:73–83
doi: 10.1016/j.ijrefrig.2016.01.014
Sathishkumar A, Sundaram P, Cheralathan M, Kumar PG (2024) Effect of nano-enhanced phase change materials on performance of cool thermal energy storage system: a review. J Energy Storage 78:110079
doi: 10.1016/j.est.2023.110079
Selvnes H, Allouche Y, Manescu RI, Hafner A (2021) Review on cold thermal energy storage applied to refrigeration systems using phase change materials. Therm Sci Eng Prog 22:100807
doi: 10.1016/j.tsep.2020.100807
Shah HH, Amin M, Pepe F, Mancusi E, Fareed AG (2023) Overview of environmental and economic viability of activated carbons derived from waste biomass for adsorptive water treatment applications. Environ Sci Pollut Res 1–26
Sharaf OZ, Taylor RA, Abu-Nada E (2020) On the colloidal and chemical stability of solar nanofluids: from nanoscale interactions to recent advances. Phys Rep 867:1–84
doi: 10.1016/j.physrep.2020.04.005
Sheikholeslami M (2018) Numerical modeling of nano enhanced PCM solidification in an enclosure with metallic fin. J Mol Liq 259:424–438
doi: 10.1016/j.molliq.2018.03.006
Sidney S, Dhasan ML, Harish S (2019) Experimental investigation of freezing and melting characteristics of graphene-based phase change nanocomposite for cold thermal energy storage applications. Appl Sci 9(6):1099
doi: 10.3390/app9061099
Sun X, Liu L, Mo Y, Li J, Li C (2020) Enhanced thermal energy storage of a paraffin-based phase change material (PCM) using nano carbons. Appl Therm Eng 181:115992
doi: 10.1016/j.applthermaleng.2020.115992
Sundaram P, Kalaisselvane A, Sathishkumar A, Kumar PG, Kim SC, Prabakaran R (2023a) Synthesis, stability, and heat transfer behavior of water and graphene nanoplatelet-based nanofluid for cool thermal storage applications. J Energy Storage 64:107219
doi: 10.1016/j.est.2023.107219
Sundaram P, Sathishkumar A, Prabakaran R, Kumar PG, Kim SC (2023b) Water-graphene nanoplatelets based thermal energy storage material with nucleating and thickening agents: an investigation on thermal behavior during phase change. J Energy Storage 72:108257
doi: 10.1016/j.est.2023.108257
Vikram MP, Kumaresan V, Christopher S, Velraj R (2019) Experimental studies on solidification and subcooling characteristics of water-based phase change material (PCM) in a spherical encapsulation for cool thermal energy storage applications. Int J Refrig 100:454–462
doi: 10.1016/j.ijrefrig.2018.11.025
Xie B, Li C, Zhang B, Yang L, Xiao G, Chen J (2020) Evaluation of stearic acid/coconut shell charcoal composite phase change thermal energy storage materials for tankless solar water heater. Energy Built Environ 1(2):187–198
doi: 10.1016/j.enbenv.2019.08.003
Yang K, Peng J, Srinivasakannan C, Zhang L, Xia H, Duan X (2010) Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresour Technol 101(15):6163–6169
doi: 10.1016/j.biortech.2010.03.001

Auteurs

Palanichamy Sundaram (P)

Department of Mechanical Engineering, SRM Institute of Science and Technology, Tamil Nadu, Kattankulathur, Chennai, 603203, India.

Anbalagan Sathishkumar (A)

Department of Mechanical Engineering, SRM Institute of Science and Technology, Tamil Nadu, Kattankulathur, Chennai, 603203, India.

Jie Liu (J)

School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 712-749, Republic of Korea.

Rajendran Prabakaran (R)

School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 712-749, Republic of Korea. praba.auto@gmail.com.

Poongavanam Ganesh Kumar (P)

Department of Mechanical Engineering, SRM Institute of Science and Technology, Tamil Nadu, Kattankulathur, Chennai, 603203, India.

Pandian Pragathi (P)

Department of Aerospace Engineering, Indian Institute of Technology Madras, Tamil Nadu, Chennai, 600 036, India.

Sung Chul Kim (SC)

School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 712-749, Republic of Korea.

Classifications MeSH