Biallelic human SHARPIN loss of function induces autoinflammation and immunodeficiency.


Journal

Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354

Informations de publication

Date de publication:
12 Apr 2024
Historique:
received: 29 11 2022
accepted: 14 03 2024
medline: 13 4 2024
pubmed: 13 4 2024
entrez: 12 4 2024
Statut: aheadofprint

Résumé

The linear ubiquitin assembly complex (LUBAC) consists of HOIP, HOIL-1 and SHARPIN and is essential for proper immune responses. Individuals with HOIP and HOIL-1 deficiencies present with severe immunodeficiency, autoinflammation and glycogen storage disease. In mice, the loss of Sharpin leads to severe dermatitis due to excessive keratinocyte cell death. Here, we report two individuals with SHARPIN deficiency who manifest autoinflammatory symptoms but unexpectedly no dermatological problems. Fibroblasts and B cells from these individuals showed attenuated canonical NF-κB responses and a propensity for cell death mediated by TNF superfamily members. Both SHARPIN-deficient and HOIP-deficient individuals showed a substantial reduction of secondary lymphoid germinal center B cell development. Treatment of one SHARPIN-deficient individual with anti-TNF therapies led to complete clinical and transcriptomic resolution of autoinflammation. These findings underscore the critical function of the LUBAC as a gatekeeper for cell death-mediated immune dysregulation in humans.

Identifiants

pubmed: 38609546
doi: 10.1038/s41590-024-01817-w
pii: 10.1038/s41590-024-01817-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 414786233
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 390661388
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 413326622
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 455784452
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 414786233
Organisme : Fritz Thyssen Stiftung (Fritz Thyssen Foundation)
ID : 10.23.1.013MN
Organisme : Department of Health | National Health and Medical Research Council (NHMRC)
ID : 1194144
Organisme : Department of Health | National Health and Medical Research Council (NHMRC)
ID : 1195038
Organisme : Department of Health | National Health and Medical Research Council (NHMRC)
ID : 2017929
Organisme : Department of Health | National Health and Medical Research Council (NHMRC)
ID : GNT9000719
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-11-LABX-0070_TRANSPLANTEX
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-10-IDEX-0002
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-20-SFRI-0012
Organisme : Cancer Research UK (CRUK)
ID : A27323
Organisme : Wellcome Trust (Wellcome)
ID : 214342/Z/18/Z
Organisme : RCUK | Medical Research Council (MRC)
ID : MR/S00811X/1

Informations de copyright

© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Iwai, K., Fujita, H. & Sasaki, Y. Linear ubiquitin chains: NF-κB signalling, cell death and beyond. Nat. Rev. Mol. Cell Biol. 15, 503–508 (2014).
pubmed: 25027653 doi: 10.1038/nrm3836
Fuseya, Y. et al. The HOIL-1L ligase modulates immune signalling and cell death via monoubiquitination of LUBAC. Nat. Cell Biol. 22, 663–673 (2020).
pubmed: 32393887 doi: 10.1038/s41556-020-0517-9
Kelsall, I. R., Zhang, J., Knebel, A., Arthur, J. S. C. & Cohen, P. The E3 ligase HOIL-1 catalyses ester bond formation between ubiquitin and components of the Myddosome in mammalian cells. Proc. Natl Acad. Sci. USA 116, 13293–13298 (2019).
pubmed: 31209050 pmcid: 6613137 doi: 10.1073/pnas.1905873116
Boisson, B. et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J. Exp. Med. 212, 939–951 (2015).
pubmed: 26008899 pmcid: 4451137 doi: 10.1084/jem.20141130
Boisson, B. et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat. Immunol. 13, 1178–1186 (2012).
pubmed: 23104095 pmcid: 3514453 doi: 10.1038/ni.2457
Oda, H. et al. Second case of HOIP deficiency expands clinical features and defines inflammatory transcriptome regulated by LUBAC. Front. Immunol. 10, 479 (2019).
pubmed: 30936877 pmcid: 6431612 doi: 10.3389/fimmu.2019.00479
Peltzer, N. et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature 557, 112–117 (2018).
pubmed: 29695863 pmcid: 5947819 doi: 10.1038/s41586-018-0064-8
Peltzer, N. et al. HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. Cell Rep. 9, 153–165 (2014).
pubmed: 25284787 doi: 10.1016/j.celrep.2014.08.066
HogenEsch, H. et al. A spontaneous mutation characterized by chronic proliferative dermatitis in C57BL mice. Am. J. Pathol. 143, 972–982 (1993).
pubmed: 8362989 pmcid: 1887192
Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).
pubmed: 21455173 doi: 10.1038/nature09816
Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 (2011).
pubmed: 21455181 pmcid: 3085511 doi: 10.1038/nature09814
Kumari, S. et al. SHARPIN prevents skin inflammation by inhibiting TNFR1-induced keratinocyte apoptosis. eLife 3, e03422 (2014).
Rickard, J. A. et al. TNFR1-dependent cell death drives inflammation in SHARPIN-deficient mice. eLife 3, e03464 (2014).
Tokunaga, F. et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011).
pubmed: 21455180 doi: 10.1038/nature09815
Lafont, E. et al. TBK1 and IKKε prevent TNF-induced cell death by RIPK1 phosphorylation. Nat. Cell Biol. 20, 1389–1399 (2018).
pubmed: 30420664 pmcid: 6268100 doi: 10.1038/s41556-018-0229-6
Sasaki, Y. et al. Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells. EMBO J. 32, 2463–2476 (2013).
pubmed: 23942237 pmcid: 3770953 doi: 10.1038/emboj.2013.184
Draber, P. et al. LUBAC-recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes. Cell Rep. 13, 2258–2272 (2015).
pubmed: 26670046 pmcid: 4688036 doi: 10.1016/j.celrep.2015.11.009
Vince, J. E. et al. IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. Cell 131, 682–693 (2007).
pubmed: 18022363 doi: 10.1016/j.cell.2007.10.037
de Almagro, M. C., Goncharov, T., Newton, K. & Vucic, D. Cellular IAP proteins and LUBAC differentially regulate necrosome-associated RIP1 ubiquitination. Cell Death Dis. 6, e1800 (2015).
pubmed: 26111062 pmcid: 4669837 doi: 10.1038/cddis.2015.158
Laurien, L. et al. Autophosphorylation at serine 166 regulates RIP kinase 1-mediated cell death and inflammation. Nat. Commun. 11, 1747 (2020).
pubmed: 32269263 pmcid: 7142081 doi: 10.1038/s41467-020-15466-8
Kay, J. & Calabrese, L. The role of interleukin-1 in the pathogenesis of rheumatoid arthritis. Rheumatology 43, iii2–iii9 (2004).
pubmed: 15150426 doi: 10.1093/rheumatology/keh201
Wijbrandts, C. A. et al. The clinical response to infliximab in rheumatoid arthritis is in part dependent on pretreatment tumour necrosis factor alpha expression in the synovium. Ann. Rheum. Dis. 67, 1139–1144 (2008).
pubmed: 18055470 doi: 10.1136/ard.2007.080440
Sundberg, J. P. et al. Keratinocyte-specific deletion of SHARPIN induces atopic dermatitis-like inflammation in mice. PLoS ONE 15, e0235295 (2020).
pubmed: 32687504 pmcid: 7371178 doi: 10.1371/journal.pone.0235295
Wang, J. et al. LUBAC suppresses IL-21-induced apoptosis in CD40-activated murine B cells and promotes germinal center B cell survival and the T-dependent antibody response. Front. Immunol. 12, 658048 (2021).
pubmed: 33953720 pmcid: 8089397 doi: 10.3389/fimmu.2021.658048
Roco, J. A. et al. Class-switch recombination occurs infrequently in germinal centers. Immunity 51, 337–350 (2019).
pubmed: 31375460 pmcid: 6914312 doi: 10.1016/j.immuni.2019.07.001
Elsner, R. A. & Shlomchik, M. J. Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. Immunity 53, 1136–1150 (2020).
pubmed: 33326765 pmcid: 7748291 doi: 10.1016/j.immuni.2020.11.006
Teh, C. E. et al. Linear ubiquitin chain assembly complex coordinates late thymic T-cell differentiation and regulatory T-cell homeostasis. Nat. Commun. 7, 13353 (2016).
pubmed: 27857075 pmcid: 5120208 doi: 10.1038/ncomms13353
Park, Y. et al. SHARPIN controls regulatory T cells by negatively modulating the T cell antigen receptor complex. Nat. Immunol. 17, 286–296 (2016).
pubmed: 26829767 pmcid: 4919114 doi: 10.1038/ni.3352
HogenEsch, H. et al. Increased expression of type 2 cytokines in chronic proliferative dermatitis (cpdm) mutant mice and resolution of inflammation following treatment with IL-12. Eur. J. Immunol. 31, 734–742 (2001).
pubmed: 11241277 doi: 10.1002/1521-4141(200103)31:3<734::AID-IMMU734>3.0.CO;2-9
van Zelm, M. C. et al. Human CD19 and CD40L deficiencies impair antibody selection and differentially affect somatic hypermutation. J. Allergy Clin. Immunol. 134, 135–144 (2014).
pubmed: 24418477 doi: 10.1016/j.jaci.2013.11.015
Meyers, G. et al. Activation-induced cytidine deaminase (AID) is required for B-cell tolerance in humans. Proc. Natl Acad. Sci. USA 108, 11554–11559 (2011).
pubmed: 21700883 pmcid: 3136251 doi: 10.1073/pnas.1102600108
McGowan, H. W. et al. Sharpin is a key regulator of skeletal homeostasis in a TNF-dependent manner. J. Musculoskelet. Neuronal Interact. 14, 454–463 (2014).
pubmed: 25524971
Kim, H. et al. Development of a validated interferon score using NanoString technology. J. Interferon Cytokine Res. 38, 171–185 (2018).
pubmed: 29638206 pmcid: 5963606 doi: 10.1089/jir.2017.0127
Panayotova-Dimitrova, D. et al. cFLIP regulates skin homeostasis and protects against TNF-induced keratinocyte apoptosis. Cell Rep. 5, 397–408 (2013).
pubmed: 24209745 doi: 10.1016/j.celrep.2013.09.035
Weinlich, R. et al. Protective roles for caspase-8 and cFLIP in adult homeostasis. Cell Rep. 5, 340–348 (2013).
pubmed: 24095739 doi: 10.1016/j.celrep.2013.08.045
Orning, P. et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362, 1064–1069 (2018).
pubmed: 30361383 pmcid: 6522129 doi: 10.1126/science.aau2818
Sarhan, J. et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc. Natl Acad. Sci. USA 115, E10888–E10897 (2018).
pubmed: 30381458 pmcid: 6243247 doi: 10.1073/pnas.1809548115
Gurung, P., Lamkanfi, M. & Kanneganti, T. D. Cutting edge: SHARPIN is required for optimal NLRP3 inflammasome activation. J. Immunol. 194, 2064–2067 (2015).
pubmed: 25637014 doi: 10.4049/jimmunol.1402951
Douglas, T., Champagne, C., Morizot, A., Lapointe, J. M. & Saleh, M. The inflammatory caspases-1 and -11 mediate the pathogenesis of dermatitis in SHARPIN-deficient mice. J. Immunol. 195, 2365–2373 (2015).
pubmed: 26216893 doi: 10.4049/jimmunol.1500542
Gurung, P., Sharma, B. R. & Kanneganti, T. D. Distinct role of IL-1β in instigating disease in Sharpin(cpdm) mice. Sci. Rep. 6, 36634 (2016).
pubmed: 27892465 pmcid: 5125001 doi: 10.1038/srep36634
Anderton, H. et al. Langerhans cells are an essential cellular intermediary in chronic dermatitis. Cell Rep. 39, 110922 (2022).
pubmed: 35675765 doi: 10.1016/j.celrep.2022.110922
Anderton, H., Wicks, I. P. & Silke, J. Cell death in chronic inflammation: breaking the cycle to treat rheumatic disease. Nat. Rev. Rheumatol. 16, 496–513 (2020).
pubmed: 32641743 doi: 10.1038/s41584-020-0455-8
van Loo, G. & Bertrand, M. J. M. Death by TNF: a road to inflammation. Nat. Rev. Immunol. 23, 289–303 (2023).
pubmed: 36380021 doi: 10.1038/s41577-022-00792-3
Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311–320 (2015).
pubmed: 25592536 doi: 10.1038/nature14191
Mifflin, L., Ofengeim, D. & Yuan, J. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat. Rev. Drug Discov. 19, 553–571 (2020).
pubmed: 32669658 pmcid: 7362612 doi: 10.1038/s41573-020-0071-y
Weisel, K. et al. A randomized, placebo-controlled experimental medicine study of RIPK1 inhibitor GSK2982772 in patients with moderate to severe rheumatoid arthritis. Arthritis Res. Ther. 23, 85 (2021).
pubmed: 33726834 pmcid: 7962407 doi: 10.1186/s13075-021-02468-0
Weisel, K. et al. A randomised, placebo-controlled study of RIPK1 inhibitor GSK2982772 in patients with active ulcerative colitis. BMJ Open Gastroenterol. 8, e000680 (2021).
Lalaoui, N. et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577, 103–108 (2020).
pubmed: 31827281 doi: 10.1038/s41586-019-1828-5
Tao, P. et al. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature 577, 109–114 (2020).
pubmed: 31827280 doi: 10.1038/s41586-019-1830-y
Cuchet-Lourenco, D. et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science 361, 810–813 (2018).
pubmed: 30026316 pmcid: 6529353 doi: 10.1126/science.aar2641
Li, Y. et al. Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 116, 970–975 (2019).
pubmed: 30591564 doi: 10.1073/pnas.1813582116
Taft, J. et al. Human TBK1 deficiency leads to autoinflammation driven by TNF-induced cell death. Cell 184, 4447–4463 (2021).
pubmed: 34363755 pmcid: 8380741 doi: 10.1016/j.cell.2021.07.026
Badran, Y. R. et al. Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration. J. Exp. Med. 214, 1937–1947 (2017).
pubmed: 28600438 pmcid: 5502421 doi: 10.1084/jem.20160724
Damgaard, R. B. et al. OTULIN deficiency in ORAS causes cell type-specific LUBAC degradation, dysregulated TNF signalling and cell death. EMBO Mol. Med. 11, e9324 (2019).
Zinngrebe, J. et al. LUBAC deficiency perturbs TLR3 signaling to cause immunodeficiency and autoinflammation. J. Exp. Med. 213, 2671–2689 (2016).
pubmed: 27810922 pmcid: 5110014 doi: 10.1084/jem.20160041
Kelsall, I. R. et al. HOIL-1 ubiquitin ligase activity targets unbranched glucosaccharides and is required to prevent polyglucosan accumulation. EMBO J. 41, e109700 (2022).
pubmed: 35274759 pmcid: 9016349 doi: 10.15252/embj.2021109700
Otten, E. G. et al. Ubiquitylation of lipopolysaccharide by RNF213 during bacterial infection. Nature 594, 111–116 (2021).
pubmed: 34012115 pmcid: 7610904 doi: 10.1038/s41586-021-03566-4
Matsumoto, M. L. et al. Engineering and structural characterization of a linear polyubiquitin-specific antibody. J. Mol. Biol. 418, 134–144 (2012).
pubmed: 22227388 doi: 10.1016/j.jmb.2011.12.053
Zinngrebe, J. et al. Compound heterozygous variants in OTULIN are associated with fulminant atypical late-onset ORAS. EMBO Mol. Med. 14, e14901 (2022).
pubmed: 35170849 pmcid: 8899767 doi: 10.15252/emmm.202114901
Samson, A. L. et al. A toolbox for imaging RIPK1, RIPK3, and MLKL in mouse and human cells. Cell Death Differ. 28, 2126–2144 (2021).
pubmed: 33589776 pmcid: 8257593 doi: 10.1038/s41418-021-00742-x
Wang, K. et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell 180, 941–955 (2020).
pubmed: 32109412 doi: 10.1016/j.cell.2020.02.002

Auteurs

Hirotsugu Oda (H)

National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. hoda@uni-koeln.de.
Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. hoda@uni-koeln.de.
Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany. hoda@uni-koeln.de.

Kalpana Manthiram (K)

National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Pallavi Pimpale Chavan (PP)

National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.

Eva Rieser (E)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany.

Önay Veli (Ö)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.

Öykü Kaya (Ö)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.

Charles Rauch (C)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany.

Shuichiro Nakabo (S)

National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.

Hye Sun Kuehn (HS)

Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA.

Mariël Swart (M)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.

Yanli Wang (Y)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.

Nisa Ilgim Çelik (NI)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.

Anne Molitor (A)

Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, CRBS, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France.
Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France.

Vahid Ziaee (V)

Division of Rheumatology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran.
Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran.
Pediatric Rheumatology Society of Iran, Tehran, Iran.
Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran, Iran.

Nasim Movahedi (N)

Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran.
Pediatric Rheumatology Society of Iran, Tehran, Iran.
School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.

Mohammad Shahrooei (M)

Clinical and Diagnostic Immunology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium.
Dr. Shahrooei Lab, 22 Bahman St., Ashrafi Esfahani Blvd, Tehran, Iran.

Nima Parvaneh (N)

Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran.
Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran.

Nasrin Alipour-Olyei (N)

Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, CRBS, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France.
Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France.

Raphael Carapito (R)

Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, CRBS, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France.
Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France.
Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France.

Qin Xu (Q)

National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Silvia Preite (S)

National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

David B Beck (DB)

National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA.
Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.

Jae Jin Chae (JJ)

National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.

Michele Nehrebecky (M)

National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.

Amanda K Ombrello (AK)

National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.

Patrycja Hoffmann (P)

National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.

Tina Romeo (T)

National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.

Natalie T Deuitch (NT)

National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.

Brynja Matthíasardóttir (B)

National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.

James Mullikin (J)

National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.

Hirsh Komarow (H)

National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Jennifer Stoddard (J)

Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA.

Julie Niemela (J)

Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA.

Kerry Dobbs (K)

National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Colin L Sweeney (CL)

National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Holly Anderton (H)

The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.

Kate E Lawlor (KE)

The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.

Hiroyuki Yoshitomi (H)

Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Dan Yang (D)

National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Manfred Boehm (M)

National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Jeremy Davis (J)

National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Pamela Mudd (P)

Division of Pediatric Otolaryngology, Children's National Hospital, Washington, DC, USA.

Davide Randazzo (D)

National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.

Wanxia Li Tsai (WL)

National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.

Massimo Gadina (M)

National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.

Mariana J Kaplan (MJ)

National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.

Junya Toguchida (J)

Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.

Christian T Mayer (CT)

National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Sergio D Rosenzweig (SD)

Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA.

Luigi D Notarangelo (LD)

National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Kazuhiro Iwai (K)

Graduate School of Medicine, Kyoto University, Kyoto, Japan.

John Silke (J)

The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.

Pamela L Schwartzberg (PL)

National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Bertrand Boisson (B)

St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA.
Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France.
Imagine Institute, Paris Cité University, Paris, France.

Jean-Laurent Casanova (JL)

St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA.
Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France.
Imagine Institute, Paris Cité University, Paris, France.
Department of Pediatrics, Necker Hospital for Sick Children, Paris, France.
Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.

Seiamak Bahram (S)

Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, CRBS, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France.
Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France.
Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France.

Anand Prahalad Rao (AP)

Manipal Hospital, Bengaluru, India.

Nieves Peltzer (N)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
Department of Translational Genomics, University of Cologne, Cologne, Germany.

Henning Walczak (H)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany.
Centre for Cell Death, Cancer, and Inflammation, UCL Cancer Institute, University College, London, UK.

Najoua Lalaoui (N)

The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. najoua.lalaoui@petermac.org.
Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. najoua.lalaoui@petermac.org.
Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia. najoua.lalaoui@petermac.org.

Ivona Aksentijevich (I)

National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. aksentii@mail.nih.gov.

Daniel L Kastner (DL)

National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. dan.kastner@nih.gov.

Classifications MeSH