Dentate gyrus is needed for memory retrieval.


Journal

Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835

Informations de publication

Date de publication:
12 Apr 2024
Historique:
received: 07 03 2023
accepted: 26 03 2024
revised: 03 03 2024
medline: 13 4 2024
pubmed: 13 4 2024
entrez: 12 4 2024
Statut: aheadofprint

Résumé

The hippocampus is crucial for acquiring and retrieving episodic and contextual memories. In previous studies, the inactivation of dentate gyrus (DG) neurons by chemogenetic- and optogenetic-mediated hyperpolarization led to opposing conclusions about DG's role in memory retrieval. One study used Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-mediated clozapine N-oxide (CNO)-induced hyperpolarization and reported that the previously formed memory was erased, thus concluding that denate gyrus is needed for memory maintenance. The other study used optogenetic with halorhodopsin induced hyperpolarization and reported and dentate gyrus is needed for memory retrieval. We hypothesized that this apparent discrepancy could be due to the length of hyperpolarization in previous studies; minutes by optogenetics and several hours by DREADD/CNO. Since hyperpolarization interferes with anterograde and retrograde neuronal signaling, it is possible that the memory engram in the dentate gyrus and the entorhinal to hippocampus trisynaptic circuit was erased by long-term, but not with short-term hyperpolarization. We developed and applied an advanced chemogenetic technology to selectively silence synaptic output by blocking neurotransmitter release without hyperpolarizing DG neurons to explore this apparent discrepancy. We performed in vivo electrophysiology during trace eyeblink in a rabbit model of associative learning. Our work shows that the DG output is required for memory retrieval. Based on previous and recent findings, we propose that the actively functional anterograde and retrograde neuronal signaling is necessary to preserve synaptic memory engrams along the entorhinal cortex to the hippocampal trisynaptic circuit.

Identifiants

pubmed: 38609585
doi: 10.1038/s41380-024-02546-0
pii: 10.1038/s41380-024-02546-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Hasan MT, Hernandez-Gonzalez S, Dogbevia G, Trevino M, Bertocchi I, Gruart A, et al. Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice. Nat Commun. 2013;4:2258.
pubmed: 23978820 doi: 10.1038/ncomms3258
Moser MB, Rowland DC, Moser EI. Place cells, grid cells, and memory. Cold Spring Harb Perspect Biol. 2015;7:a021808.
pubmed: 25646382 pmcid: 4315928 doi: 10.1101/cshperspect.a021808
Bannerman DM, Bus T, Taylor A, Sanderson DJ, Schwarz I, Jensen V, et al. Dissecting spatial knowledge from spatial choice by hippocampal NMDA receptor deletion. Nat Neurosci. 2012;15:1153–9.
pubmed: 22797694 pmcid: 3442238 doi: 10.1038/nn.3166
Amaral DG. Emerging principles of intrinsic hippocampal organization. Curr Opin Neurobiol. 1993;3:225–9.
pubmed: 8390320 doi: 10.1016/0959-4388(93)90214-J
Lavenex P, Amaral DG. Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus. 2000;10:420–30.
pubmed: 10985281 doi: 10.1002/1098-1063(2000)10:4<420::AID-HIPO8>3.0.CO;2-5
Carretero-Guillen A, Pacheco-Calderon R, Delgado-Garcia JM, Gruart A. Involvement of hippocampal inputs and intrinsic circuit in the acquisition of context and cues during classical conditioning in behaving rabbits. Cereb Cortex. 2015;25:1278–89.
pubmed: 24243618 doi: 10.1093/cercor/bht321
GoodSmith D, Kim SH, Puliyadi V, Ming GL, Song H, Knierim JJ, et al. Flexible encoding of objects and space in single cells of the dentate gyrus. Curr Biol. 2022;32:1088–1101.e1085.
pubmed: 35108522 pmcid: 8930604 doi: 10.1016/j.cub.2022.01.023
Danielson NB, Kaifosh P, Zaremba JD, Lovett-Barron M, Tsai J, Denny CA, et al. Distinct contribution of adult-born hippocampal granule cells to context encoding. Neuron. 2016;90:101–12.
pubmed: 26971949 pmcid: 4962695 doi: 10.1016/j.neuron.2016.02.019
Senzai Y. Function of local circuits in the hippocampal dentate gyrus-CA3 system. Neurosci Res. 2019;140:43–52.
pubmed: 30408501 doi: 10.1016/j.neures.2018.11.003
Hainmueller T, Bartos M. Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories. Nat Rev Neurosci. 2020;21:153–68.
pubmed: 32042144 pmcid: 7115869 doi: 10.1038/s41583-019-0260-z
Guzman SJ, Schlogl A, Frotscher M, Jonas P. Synaptic mechanisms of pattern completion in the hippocampal CA3 network. Science. 2016;353:1117–23.
pubmed: 27609885 doi: 10.1126/science.aaf1836
Rolls ET. The storage and recall of memories in the hippocampo-cortical system. Cell Tissue Res. 2018;373:577–604.
pubmed: 29218403 doi: 10.1007/s00441-017-2744-3
Grienberger C, Magee JC. Entorhinal cortex directs learning-related changes in CA1 representations. Nature. 2022;611:554–62.
pubmed: 36323779 pmcid: 9668747 doi: 10.1038/s41586-022-05378-6
Krueppel R, Remy S, Beck H. Dendritic integration in hippocampal dentate granule cells. Neuron. 2011;71:512–28.
pubmed: 21835347 doi: 10.1016/j.neuron.2011.05.043
Kim S, Kim Y, Lee SH, Ho WK. Dendritic spikes in hippocampal granule cells are necessary for long-term potentiation at the perforant path synapse. Elife. 2018;7:e35269.
pubmed: 29578411 pmcid: 5896953 doi: 10.7554/eLife.35269
Kwon HB, Castillo PE. Long-term potentiation selectively expressed by NMDA receptors at hippocampal mossy fiber synapses. Neuron. 2008;57:108–20.
pubmed: 18184568 pmcid: 2390917 doi: 10.1016/j.neuron.2007.11.024
Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science. 2002;297:211–8.
pubmed: 12040087 pmcid: 2877140 doi: 10.1126/science.1071795
Hasan MT, Althammer F, Silva da Gouveia M, Goyon S, Eliava M, Lefevre A, et al. A fear memory engram and its plasticity in the hypothalamic oxytocin system. Neuron. 2019;103:133–146.e138.
pubmed: 31104950 doi: 10.1016/j.neuron.2019.04.029
Roy DS, Park YG, Kim ME, Zhang Y, Ogawa SK, DiNapoli N, et al. Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions. Nat Commun. 2022;13:1799.
pubmed: 35379803 pmcid: 8980018 doi: 10.1038/s41467-022-29384-4
Vardy E, Robinson JE, Li C, Olsen RHJ, DiBerto JF, Giguere PM, et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron. 2015;86:936–46.
pubmed: 25937170 pmcid: 4441592 doi: 10.1016/j.neuron.2015.03.065
Madronal N, Delgado-Garcia JM, Fernandez-Guizan A, Chatterjee J, Kohn M, Mattucci C, et al. Rapid erasure of hippocampal memory following inhibition of dentate gyrus granule cells. Nat Commun. 2016;7:10923.
pubmed: 26988806 pmcid: 4802048 doi: 10.1038/ncomms10923
Denny CA, Kheirbek MA, Alba EL, Tanaka KF, Brachman RA, Laughman KB, et al. Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron. 2014;83:189–201.
pubmed: 24991962 pmcid: 4169172 doi: 10.1016/j.neuron.2014.05.018
Rogers S, Rozman PA, Valero M, Doyle WK, Buzsaki G. Mechanisms and plasticity of chemogenically induced interneuronal suppression of principal cells. Proc Natl Acad Sci USA. 2021;118:e2014157118.
pubmed: 33372130 doi: 10.1073/pnas.2014157118
Reus-Garcia MM, Sanchez-Campusano R, Ledderose J, Dogbevia GK, Trevino M, Hasan MT, et al. The claustrum is involved in cognitive processes related to the classical conditioning of eyelid responses in behaving rabbits. Cereb Cortex. 2021;31:281–300.
pubmed: 32885230 doi: 10.1093/cercor/bhaa225
Dogbevia GK, Robetamanith M, Sprengel R, Hasan MT. Flexible, AAV-equipped genetic modules for inducible control of gene expression in mammalian brain. Mol Ther Nucleic Acids. 2016;5:e309.
pubmed: 27070301 pmcid: 5014524 doi: 10.1038/mtna.2016.23
Dogbevia GK, Marticorena-Alvarez R, Bausen M, Sprengel R, Hasan MT. Inducible and combinatorial gene manipulation in mouse brain. Front Cell Neurosci. 2015;9:142.
pubmed: 25954155 pmcid: 4404871 doi: 10.3389/fncel.2015.00142
Gruart A, Delgado-Garcia JM. Activity-dependent changes of the hippocampal CA3-CA1 synapse during the acquisition of associative learning in conscious mice. Genes Brain Behav. 2007;6:24–31.
pubmed: 17543036 doi: 10.1111/j.1601-183X.2007.00319.x
Gruart A, Schreurs BG, del Toro ED, Delgado-Garcia JM. Kinetic and frequency-domain properties of reflex and conditioned eyelid responses in the rabbit. J Neurophysiol. 2000;83:836–52.
pubmed: 10669498 doi: 10.1152/jn.2000.83.2.836
Herzog E, Takamori S, Jahn R, Brose N, Wojcik SM. Synaptic and vesicular co-localization of the glutamate transporters VGLUT1 and VGLUT2 in the mouse hippocampus. J Neurochem. 2006;99:1011–8.
pubmed: 16942593 doi: 10.1111/j.1471-4159.2006.04144.x
Sheng M, Kim E. The postsynaptic organization of synapses. Cold Spring Harb Perspect Biol. 2011;3:a005678.
pubmed: 22046028 pmcid: 3225953 doi: 10.1101/cshperspect.a005678
Harms KJ, Craig AM. Synapse composition and organization following chronic activity blockade in cultured hippocampal neurons. J Comp Neurol. 2005;490:72–84.
pubmed: 16041714 doi: 10.1002/cne.20635
Bertocchi, et al. Pre- and postsynaptic N-methyl-D-aspartate receptors are required for sequential printing of fear memory engrams. iScience. 2023;26:108050.
pubmed: 37876798 pmcid: 10590821 doi: 10.1016/j.isci.2023.108050
Weninger A, Arlotta P. A family portrait of human brain cells. Science. 2023;382:168–9.
pubmed: 37824657 doi: 10.1126/science.adk4857
Lu Z, Zhang M, Lee J, Sziraki A, Anderson S, Zhang Z, et al. Tracking cell-type-specific temporal dynamics in human and mouse brains. Cell. 2023;186:4345–4364.e4324.
pubmed: 37774676 pmcid: 10545416 doi: 10.1016/j.cell.2023.08.042
Chi Y, Qi R, Zhou Y, Tong H, Jin H, Turck CW, et al. scBrainMap: a landscape for cell types and associated genetic markers in the brain. Database. 2023;2023:baad035.
pubmed: 37195696 pmcid: 10191140 doi: 10.1093/database/baad035
Rosenberg RN. The universal brain code a genetic mechanism for memory. J Neurol Sci. 2021;429:118073.
pubmed: 34517228 doi: 10.1016/j.jns.2021.118073
Busch RM, Yehia L, Hu B, Goldman M, Hermann BP, Najm IM, et al. Brain single cell transcriptomic profiles in episodic memory phenotypes associated with temporal lobe epilepsy. NPJ Genom Med. 2022;7:69.
pubmed: 36446800 pmcid: 9709106 doi: 10.1038/s41525-022-00339-4
Basu J, Siegelbaum SA. The corticohippocampal circuit, synaptic plasticity, and memory. Cold Spring Harb Perspect Biol. 2015;7:a021733.
pubmed: 26525152 pmcid: 4632668 doi: 10.1101/cshperspect.a021733
Bassett DS, Gazzaniga MS. Understanding complexity in the human brain. Trends Cogn Sci. 2011;15:200–9.
pubmed: 21497128 pmcid: 3170818 doi: 10.1016/j.tics.2011.03.006
Sweis BM, Mau W, Rabinowitz S, Cai DJ. Dynamic and heterogeneous neural ensembles contribute to a memory engram. Curr Opin Neurobiol. 2021;67:199–206.
pubmed: 33388602 doi: 10.1016/j.conb.2020.11.017
Dent EW. Of microtubules and memory: implications for microtubule dynamics in dendrites and spines. Mol Biol Cell. 2017;28:1–8.
pubmed: 28035040 pmcid: 5221613 doi: 10.1091/mbc.e15-11-0769
Barnes SJ, Opitz T, Merkens M, Kelly T, von der Brelie C, Krueppel R, et al. Stable mossy fiber long-term potentiation requires calcium influx at the granule cell soma, protein synthesis, and microtubule-dependent axonal transport. J Neurosci. 2010;30:12996–3004.
pubmed: 20881117 pmcid: 6633504 doi: 10.1523/JNEUROSCI.1847-10.2010
Yoshii A, Constantine-Paton M. BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat Neurosci. 2007;10:702–11.
pubmed: 17515902 doi: 10.1038/nn1903
Hawkins RD, Zhuo M, Arancio O. Nitric oxide and carbon monoxide as possible retrograde messengers in hippocampal long-term potentiation. J Neurobiol. 1994;25:652–65.
pubmed: 8071665 doi: 10.1002/neu.480250607
Uchigashima M, Yamazaki M, Yamasaki M, Tanimura A, Sakimura K, Kano M, et al. Molecular and morphological configuration for 2-arachidonoylglycerol-mediated retrograde signaling at mossy cell-granule cell synapses in the dentate gyrus. J Neurosci. 2011;31:7700–14.
pubmed: 21613483 pmcid: 6633146 doi: 10.1523/JNEUROSCI.5665-10.2011
Richardson BD, Saha K, Krout D, Cabrera E, Felts B, Henry LK, et al. Membrane potential shapes regulation of dopamine transporter trafficking at the plasma membrane. Nat Commun. 2016;7:10423.
pubmed: 26804245 pmcid: 4737753 doi: 10.1038/ncomms10423
Meadows JP, Guzman-Karlsson MC, Phillips S, Brown JA, Strange SK, Sweatt JD, et al. Dynamic DNA methylation regulates neuronal intrinsic membrane excitability. Sci Signal. 2016;9:ra83.
pubmed: 27555660 pmcid: 5709999 doi: 10.1126/scisignal.aaf5642
Zhu Z, Ortiz TS, Mezan S, Kadener S.Blau J. Transcription of a plasticity gene is activated by neuronal hyperpolarization. Rxiv. 1999;636878:101101/636878.
Pozzi D, Lignani G, Ferrea E, Contestabile A, Paonessa F, D’Alessandro R, et al. REST/NRSF-mediated intrinsic homeostasis protects neuronal networks from hyperexcitability. EMBO J. 2013;32:2994–3007.
pubmed: 24149584 pmcid: 3831314 doi: 10.1038/emboj.2013.231
Lopez-Rojas J, Heine M, Kreutz MR. Plasticity of intrinsic excitability in mature granule cells of the dentate gyrus. Sci Rep. 2016;6:21615.
pubmed: 26857841 pmcid: 4746665 doi: 10.1038/srep21615
Turrigiano G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol. 2012;4:a005736.
pubmed: 22086977 pmcid: 3249629 doi: 10.1101/cshperspect.a005736
Tsukamoto M, Yasui T, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y. Mossy fibre synaptic NMDA receptors trigger non-Hebbian long-term potentiation at entorhino-CA3 synapses in the rat. J Physiol. 2003;546:665–75.
pubmed: 12562995 doi: 10.1113/jphysiol.2002.033803
Rebola N, Carta M, Mulle C. Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat Rev Neurosci. 2017;18:208–20.
pubmed: 28251990 doi: 10.1038/nrn.2017.10
Sheffield ME, Dombeck DA. Calcium transient prevalence across the dendritic arbour predicts place field properties. Nature. 2015;517:200–4.
pubmed: 25363782 doi: 10.1038/nature13871
Aery Jones EA, Rao A, Zilberter M, Djukic B, Bant JS, Gillespie AK, et al. Dentate gyrus and CA3 GABAergic interneurons bidirectionally modulate signatures of internal and external drive to CA1. Cell Rep. 2021;37:110159.
pubmed: 34965435 doi: 10.1016/j.celrep.2021.110159
Fuchsberger T, Paulsen O. Modulation of hippocampal plasticity in learning and memory. Curr Opin Neurobiol. 2022;75:102558.
pubmed: 35660989 doi: 10.1016/j.conb.2022.102558
Cholvin T, Hainmueller T, Bartos M. The hippocampus converts dynamic entorhinal inputs into stable spatial maps. Neuron. 2021;109:3135–3148.e3137.
pubmed: 34619088 pmcid: 8516433 doi: 10.1016/j.neuron.2021.09.019
Woods NI, Stefanini F, Apodaca-Montano DL, Tan IMC, Biane JS, Kheirbek MA. The dentate gyrus classifies cortical representations of learned stimuli. Neuron. 2020;107:173–184.e176.
pubmed: 32359400 pmcid: 7426196 doi: 10.1016/j.neuron.2020.04.002
Engel AK, Singer W. Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci. 2001;5:16–25.
pubmed: 11164732 doi: 10.1016/S1364-6613(00)01568-0
Cooper RA, Ritchey M. Progression from feature-specific brain activity to hippocampal binding during episodic encoding. J Neurosci. 2020;40:1701–9.
pubmed: 31826947 pmcid: 7046330 doi: 10.1523/JNEUROSCI.1971-19.2019
Fernandez-Ruiz A, Oliva A, Soula M, Rocha-Almeida F, Nagy GA, Martin-Vazquez G, et al. Gamma rhythm communication between entorhinal cortex and dentate gyrus neuronal assemblies. Science. 2021;372:eabf3119.
pubmed: 33795429 pmcid: 8285088 doi: 10.1126/science.abf3119
Traub RD, Whittington MA, Buhl EH, LeBeau FE, Bibbig A, Boyd S, et al. A possible role for gap junctions in generation of very fast EEG oscillations preceding the onset of, and perhaps initiating, seizures. Epilepsia. 2001;42:153–70.
pubmed: 11240585
Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature. 2012;484:381–5.
pubmed: 22441246 pmcid: 3331914 doi: 10.1038/nature11028
Frankland PW, Ding HK, Takahashi E, Suzuki A, Kida S, Silva AJ. Stability of recent and remote contextual fear memory. Learn Mem. 2006;13:451–7.
pubmed: 16882861 pmcid: 1538922 doi: 10.1101/lm.183406
Rao-Ruiz P, Visser E, Mitric M, Smit AB, van den Oever MC. A synaptic framework for the persistence of memory engrams. Front Synaptic Neurosci. 2021;13:661476.
pubmed: 33841124 pmcid: 8024575 doi: 10.3389/fnsyn.2021.661476
Keinath AT, Nieto-Posadas A, Robinson JC, Brandon MP. DG-CA3 circuitry mediates hippocampal representations of latent information. Nat Commun. 2020;11:3026.
pubmed: 32541860 pmcid: 7296021 doi: 10.1038/s41467-020-16825-1
Roy DS, Muralidhar S, Smith LM, Tonegawa S. Silent memory engrams as the basis for retrograde amnesia. Proc Natl Acad Sci USA. 2017;114:E9972–E9979.
pubmed: 29078397 pmcid: 5699085 doi: 10.1073/pnas.1714248114
Lopez CM, Pelkey KA, Chittajallu R, Nakashiba T, Toth K, Tonegawa S, et al. Competition from newborn granule cells does not drive axonal retraction of silenced old granule cells in the adult hippocampus. Front Neural Circuits. 2012;6:85.
pubmed: 23162435 pmcid: 3499763 doi: 10.3389/fncir.2012.00085
Schneiderman N, Gormezano I. Conditioning of the nictitating membrane of the rabbit as a function of CS-US interval. J Comp Physiol Psychol. 1964;57:188–95.
pubmed: 14168641 doi: 10.1037/h0043419
Martinez-Galan JR, Garcia-Belando M, Cabanes-Sanchis JJ, Caminos E. Pre- and postsynaptic alterations in the visual cortex of the P23H-1 retinal degeneration rat model. Front Neuroanat. 2022;16:1000085.
pubmed: 36312296 pmcid: 9608761 doi: 10.3389/fnana.2022.1000085
Broadhead MJ, Horrocks MH, Zhu F, Muresan L, Benavides-Piccione R, DeFelipe J, et al. PSD95 nanoclusters are postsynaptic building blocks in hippocampus circuits. Sci Rep. 2016;6:24626.
pubmed: 27109929 pmcid: 4842999 doi: 10.1038/srep24626
Berry KP, Nedivi E. Spine dynamics: are they all the same? Neuron. 2017;96:43–55.
pubmed: 28957675 pmcid: 5661952 doi: 10.1016/j.neuron.2017.08.008
Ehrlich I, Klein M, Rumpel S, Malinow R. PSD-95 is required for activity-driven synapse stabilization. Proc Natl Acad Sci USA. 2007;104:4176–81.
pubmed: 17360496 pmcid: 1820728 doi: 10.1073/pnas.0609307104
Mochida S. Stable and flexible synaptic transmission controlled by the active zone protein interactions. Int J Mol Sci. 2021;22:11775.
pubmed: 34769208 pmcid: 8583982 doi: 10.3390/ijms222111775
Ortega JM, Genc O, Davis GW. Molecular mechanisms that stabilize short-term synaptic plasticity during presynaptic homeostatic plasticity. Elife. 2018;7:e40385.
pubmed: 30422113 pmcid: 6250423 doi: 10.7554/eLife.40385
Hu X, Ballo L, Pietila L, Viesselmann C, Ballweg J, Lumbard D, et al. BDNF-induced increase of PSD-95 in dendritic spines requires dynamic microtubule invasions. J Neurosci. 2011;31:15597–603.
pubmed: 22031905 pmcid: 3224154 doi: 10.1523/JNEUROSCI.2445-11.2011
Gonzalez-Forero D, Pastor AM, Delgado-Garcia JM, de la Cruz RR, Alvarez FJ. Synaptic structural modification following changes in activity induced by tetanus neurotoxin in cat abducens neurons. J Comp Neurol. 2004;471:201–18.
pubmed: 14986313 doi: 10.1002/cne.20039
Uhlig M, Levina A, Geisel T, Herrmann JM. Critical dynamics in associative memory networks. Front Comput Neurosci. 2013;7:87.
pubmed: 23898261 pmcid: 3721048 doi: 10.3389/fncom.2013.00087
Agnes EJ, Luppi AI, Vogels TP. Complementary inhibitory weight profiles emerge from plasticity and allow flexible switching of receptive fields. J Neurosci. 2020;40:9634–49.
pubmed: 33168622 pmcid: 7726533 doi: 10.1523/JNEUROSCI.0276-20.2020
Ocker GK, Buice MA. Flexible neural connectivity under constraints on total connection strength. PLoS Comput Biol. 2020;16:e1008080.
pubmed: 32745134 pmcid: 7425997 doi: 10.1371/journal.pcbi.1008080
Hainmueller T, Bartos M. Parallel emergence of stable and dynamic memory engrams in the hippocampus. Nature. 2018;558:292–6.
pubmed: 29875406 pmcid: 7115829 doi: 10.1038/s41586-018-0191-2
Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods. 1991;37:173–82.
pubmed: 1715499 doi: 10.1016/0165-0270(91)90128-M
Trevino M, Vivar C, Gutierrez R. Excitation-inhibition balance in the CA3 network-neuronal specificity and activity-dependent plasticity. Eur J Neurosci. 2011;33:1771–85.
pubmed: 21501253 doi: 10.1111/j.1460-9568.2011.07670.x
Leal-Campanario R, Fairen A, Delgado-Garcia JM, Gruart A. Electrical stimulation of the rostral medial prefrontal cortex in rabbits inhibits the expression of conditioned eyelid responses but not their acquisition. Proc Natl Acad Sci USA. 2007;104:11459–64.
pubmed: 17592148 pmcid: 1899194 doi: 10.1073/pnas.0704548104
Soiza-Reilly M, Commons KG. Quantitative analysis of glutamatergic innervation of the mouse dorsal raphe nucleus using array tomography. J Comp Neurol. 2011;519:3802–14.
pubmed: 21800318 pmcid: 3268343 doi: 10.1002/cne.22734
Vlachos A, Bas Orth C, Schneider G, Deller T. Time-lapse imaging of granule cells in mouse entorhino-hippocampal slice cultures reveals changes in spine stability after entorhinal denervation. J Comp Neurol. 2012;520:1891–902.
pubmed: 22134835 doi: 10.1002/cne.23017
Willems LM, Zahn N, Ferreiros N, Scholich K, Maggio N, Deller T, et al. Sphingosine-1-phosphate receptor inhibition prevents denervation-induced dendritic atrophy. Acta Neuropathol Commun. 2016;4:28.
pubmed: 27036416 pmcid: 4818430 doi: 10.1186/s40478-016-0303-x

Auteurs

Alejandro Carretero-Guillén (A)

Division of Neuroscience, University Pablo de Olavide, Seville, Spain.
Achucarro Basque Center for Neuroscience, Leioa, Spain.

Mario Treviño (M)

Max Planck Institute for Medical Research, Heidelberg, Germany.
Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, 44130, México.

María Ángeles Gómez-Climent (MÁ)

Division of Neuroscience, University Pablo de Olavide, Seville, Spain.

Godwin K Dogbevia (GK)

Max Planck Institute for Medical Research, Heidelberg, Germany.
Health Canada, Ottawa, ON, Canada.

Ilaria Bertocchi (I)

Max Planck Institute for Medical Research, Heidelberg, Germany.
Neuroscience Institute Cavalieri-Ottolenghi (NICO), University of Turin, Turin, Italy.

Rolf Sprengel (R)

Max Planck Institute for Medical Research, Heidelberg, Germany.

Matthew E Larkum (ME)

NeuroCure, Charité - Universitätsmedizin, Berlin, Germany.

Andreas Vlachos (A)

University of Freiburg, Freiburg, Germany.

Agnès Gruart (A)

Division of Neuroscience, University Pablo de Olavide, Seville, Spain.

José M Delgado-García (JM)

Division of Neuroscience, University Pablo de Olavide, Seville, Spain. jmdelgar@upo.es.

Mazahir T Hasan (MT)

Achucarro Basque Center for Neuroscience, Leioa, Spain. mazahir.t.hasan@gmail.com.
Max Planck Institute for Medical Research, Heidelberg, Germany. mazahir.t.hasan@gmail.com.
NeuroCure, Charité - Universitätsmedizin, Berlin, Germany. mazahir.t.hasan@gmail.com.
Ikerbasque - Basque Foundation for Science, Bilbao, Spain. mazahir.t.hasan@gmail.com.

Classifications MeSH