Dentate gyrus is needed for memory retrieval.
Journal
Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835
Informations de publication
Date de publication:
12 Apr 2024
12 Apr 2024
Historique:
received:
07
03
2023
accepted:
26
03
2024
revised:
03
03
2024
medline:
13
4
2024
pubmed:
13
4
2024
entrez:
12
4
2024
Statut:
aheadofprint
Résumé
The hippocampus is crucial for acquiring and retrieving episodic and contextual memories. In previous studies, the inactivation of dentate gyrus (DG) neurons by chemogenetic- and optogenetic-mediated hyperpolarization led to opposing conclusions about DG's role in memory retrieval. One study used Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-mediated clozapine N-oxide (CNO)-induced hyperpolarization and reported that the previously formed memory was erased, thus concluding that denate gyrus is needed for memory maintenance. The other study used optogenetic with halorhodopsin induced hyperpolarization and reported and dentate gyrus is needed for memory retrieval. We hypothesized that this apparent discrepancy could be due to the length of hyperpolarization in previous studies; minutes by optogenetics and several hours by DREADD/CNO. Since hyperpolarization interferes with anterograde and retrograde neuronal signaling, it is possible that the memory engram in the dentate gyrus and the entorhinal to hippocampus trisynaptic circuit was erased by long-term, but not with short-term hyperpolarization. We developed and applied an advanced chemogenetic technology to selectively silence synaptic output by blocking neurotransmitter release without hyperpolarizing DG neurons to explore this apparent discrepancy. We performed in vivo electrophysiology during trace eyeblink in a rabbit model of associative learning. Our work shows that the DG output is required for memory retrieval. Based on previous and recent findings, we propose that the actively functional anterograde and retrograde neuronal signaling is necessary to preserve synaptic memory engrams along the entorhinal cortex to the hippocampal trisynaptic circuit.
Identifiants
pubmed: 38609585
doi: 10.1038/s41380-024-02546-0
pii: 10.1038/s41380-024-02546-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Hasan MT, Hernandez-Gonzalez S, Dogbevia G, Trevino M, Bertocchi I, Gruart A, et al. Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice. Nat Commun. 2013;4:2258.
pubmed: 23978820
doi: 10.1038/ncomms3258
Moser MB, Rowland DC, Moser EI. Place cells, grid cells, and memory. Cold Spring Harb Perspect Biol. 2015;7:a021808.
pubmed: 25646382
pmcid: 4315928
doi: 10.1101/cshperspect.a021808
Bannerman DM, Bus T, Taylor A, Sanderson DJ, Schwarz I, Jensen V, et al. Dissecting spatial knowledge from spatial choice by hippocampal NMDA receptor deletion. Nat Neurosci. 2012;15:1153–9.
pubmed: 22797694
pmcid: 3442238
doi: 10.1038/nn.3166
Amaral DG. Emerging principles of intrinsic hippocampal organization. Curr Opin Neurobiol. 1993;3:225–9.
pubmed: 8390320
doi: 10.1016/0959-4388(93)90214-J
Lavenex P, Amaral DG. Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus. 2000;10:420–30.
pubmed: 10985281
doi: 10.1002/1098-1063(2000)10:4<420::AID-HIPO8>3.0.CO;2-5
Carretero-Guillen A, Pacheco-Calderon R, Delgado-Garcia JM, Gruart A. Involvement of hippocampal inputs and intrinsic circuit in the acquisition of context and cues during classical conditioning in behaving rabbits. Cereb Cortex. 2015;25:1278–89.
pubmed: 24243618
doi: 10.1093/cercor/bht321
GoodSmith D, Kim SH, Puliyadi V, Ming GL, Song H, Knierim JJ, et al. Flexible encoding of objects and space in single cells of the dentate gyrus. Curr Biol. 2022;32:1088–1101.e1085.
pubmed: 35108522
pmcid: 8930604
doi: 10.1016/j.cub.2022.01.023
Danielson NB, Kaifosh P, Zaremba JD, Lovett-Barron M, Tsai J, Denny CA, et al. Distinct contribution of adult-born hippocampal granule cells to context encoding. Neuron. 2016;90:101–12.
pubmed: 26971949
pmcid: 4962695
doi: 10.1016/j.neuron.2016.02.019
Senzai Y. Function of local circuits in the hippocampal dentate gyrus-CA3 system. Neurosci Res. 2019;140:43–52.
pubmed: 30408501
doi: 10.1016/j.neures.2018.11.003
Hainmueller T, Bartos M. Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories. Nat Rev Neurosci. 2020;21:153–68.
pubmed: 32042144
pmcid: 7115869
doi: 10.1038/s41583-019-0260-z
Guzman SJ, Schlogl A, Frotscher M, Jonas P. Synaptic mechanisms of pattern completion in the hippocampal CA3 network. Science. 2016;353:1117–23.
pubmed: 27609885
doi: 10.1126/science.aaf1836
Rolls ET. The storage and recall of memories in the hippocampo-cortical system. Cell Tissue Res. 2018;373:577–604.
pubmed: 29218403
doi: 10.1007/s00441-017-2744-3
Grienberger C, Magee JC. Entorhinal cortex directs learning-related changes in CA1 representations. Nature. 2022;611:554–62.
pubmed: 36323779
pmcid: 9668747
doi: 10.1038/s41586-022-05378-6
Krueppel R, Remy S, Beck H. Dendritic integration in hippocampal dentate granule cells. Neuron. 2011;71:512–28.
pubmed: 21835347
doi: 10.1016/j.neuron.2011.05.043
Kim S, Kim Y, Lee SH, Ho WK. Dendritic spikes in hippocampal granule cells are necessary for long-term potentiation at the perforant path synapse. Elife. 2018;7:e35269.
pubmed: 29578411
pmcid: 5896953
doi: 10.7554/eLife.35269
Kwon HB, Castillo PE. Long-term potentiation selectively expressed by NMDA receptors at hippocampal mossy fiber synapses. Neuron. 2008;57:108–20.
pubmed: 18184568
pmcid: 2390917
doi: 10.1016/j.neuron.2007.11.024
Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science. 2002;297:211–8.
pubmed: 12040087
pmcid: 2877140
doi: 10.1126/science.1071795
Hasan MT, Althammer F, Silva da Gouveia M, Goyon S, Eliava M, Lefevre A, et al. A fear memory engram and its plasticity in the hypothalamic oxytocin system. Neuron. 2019;103:133–146.e138.
pubmed: 31104950
doi: 10.1016/j.neuron.2019.04.029
Roy DS, Park YG, Kim ME, Zhang Y, Ogawa SK, DiNapoli N, et al. Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions. Nat Commun. 2022;13:1799.
pubmed: 35379803
pmcid: 8980018
doi: 10.1038/s41467-022-29384-4
Vardy E, Robinson JE, Li C, Olsen RHJ, DiBerto JF, Giguere PM, et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron. 2015;86:936–46.
pubmed: 25937170
pmcid: 4441592
doi: 10.1016/j.neuron.2015.03.065
Madronal N, Delgado-Garcia JM, Fernandez-Guizan A, Chatterjee J, Kohn M, Mattucci C, et al. Rapid erasure of hippocampal memory following inhibition of dentate gyrus granule cells. Nat Commun. 2016;7:10923.
pubmed: 26988806
pmcid: 4802048
doi: 10.1038/ncomms10923
Denny CA, Kheirbek MA, Alba EL, Tanaka KF, Brachman RA, Laughman KB, et al. Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron. 2014;83:189–201.
pubmed: 24991962
pmcid: 4169172
doi: 10.1016/j.neuron.2014.05.018
Rogers S, Rozman PA, Valero M, Doyle WK, Buzsaki G. Mechanisms and plasticity of chemogenically induced interneuronal suppression of principal cells. Proc Natl Acad Sci USA. 2021;118:e2014157118.
pubmed: 33372130
doi: 10.1073/pnas.2014157118
Reus-Garcia MM, Sanchez-Campusano R, Ledderose J, Dogbevia GK, Trevino M, Hasan MT, et al. The claustrum is involved in cognitive processes related to the classical conditioning of eyelid responses in behaving rabbits. Cereb Cortex. 2021;31:281–300.
pubmed: 32885230
doi: 10.1093/cercor/bhaa225
Dogbevia GK, Robetamanith M, Sprengel R, Hasan MT. Flexible, AAV-equipped genetic modules for inducible control of gene expression in mammalian brain. Mol Ther Nucleic Acids. 2016;5:e309.
pubmed: 27070301
pmcid: 5014524
doi: 10.1038/mtna.2016.23
Dogbevia GK, Marticorena-Alvarez R, Bausen M, Sprengel R, Hasan MT. Inducible and combinatorial gene manipulation in mouse brain. Front Cell Neurosci. 2015;9:142.
pubmed: 25954155
pmcid: 4404871
doi: 10.3389/fncel.2015.00142
Gruart A, Delgado-Garcia JM. Activity-dependent changes of the hippocampal CA3-CA1 synapse during the acquisition of associative learning in conscious mice. Genes Brain Behav. 2007;6:24–31.
pubmed: 17543036
doi: 10.1111/j.1601-183X.2007.00319.x
Gruart A, Schreurs BG, del Toro ED, Delgado-Garcia JM. Kinetic and frequency-domain properties of reflex and conditioned eyelid responses in the rabbit. J Neurophysiol. 2000;83:836–52.
pubmed: 10669498
doi: 10.1152/jn.2000.83.2.836
Herzog E, Takamori S, Jahn R, Brose N, Wojcik SM. Synaptic and vesicular co-localization of the glutamate transporters VGLUT1 and VGLUT2 in the mouse hippocampus. J Neurochem. 2006;99:1011–8.
pubmed: 16942593
doi: 10.1111/j.1471-4159.2006.04144.x
Sheng M, Kim E. The postsynaptic organization of synapses. Cold Spring Harb Perspect Biol. 2011;3:a005678.
pubmed: 22046028
pmcid: 3225953
doi: 10.1101/cshperspect.a005678
Harms KJ, Craig AM. Synapse composition and organization following chronic activity blockade in cultured hippocampal neurons. J Comp Neurol. 2005;490:72–84.
pubmed: 16041714
doi: 10.1002/cne.20635
Bertocchi, et al. Pre- and postsynaptic N-methyl-D-aspartate receptors are required for sequential printing of fear memory engrams. iScience. 2023;26:108050.
pubmed: 37876798
pmcid: 10590821
doi: 10.1016/j.isci.2023.108050
Weninger A, Arlotta P. A family portrait of human brain cells. Science. 2023;382:168–9.
pubmed: 37824657
doi: 10.1126/science.adk4857
Lu Z, Zhang M, Lee J, Sziraki A, Anderson S, Zhang Z, et al. Tracking cell-type-specific temporal dynamics in human and mouse brains. Cell. 2023;186:4345–4364.e4324.
pubmed: 37774676
pmcid: 10545416
doi: 10.1016/j.cell.2023.08.042
Chi Y, Qi R, Zhou Y, Tong H, Jin H, Turck CW, et al. scBrainMap: a landscape for cell types and associated genetic markers in the brain. Database. 2023;2023:baad035.
pubmed: 37195696
pmcid: 10191140
doi: 10.1093/database/baad035
Rosenberg RN. The universal brain code a genetic mechanism for memory. J Neurol Sci. 2021;429:118073.
pubmed: 34517228
doi: 10.1016/j.jns.2021.118073
Busch RM, Yehia L, Hu B, Goldman M, Hermann BP, Najm IM, et al. Brain single cell transcriptomic profiles in episodic memory phenotypes associated with temporal lobe epilepsy. NPJ Genom Med. 2022;7:69.
pubmed: 36446800
pmcid: 9709106
doi: 10.1038/s41525-022-00339-4
Basu J, Siegelbaum SA. The corticohippocampal circuit, synaptic plasticity, and memory. Cold Spring Harb Perspect Biol. 2015;7:a021733.
pubmed: 26525152
pmcid: 4632668
doi: 10.1101/cshperspect.a021733
Bassett DS, Gazzaniga MS. Understanding complexity in the human brain. Trends Cogn Sci. 2011;15:200–9.
pubmed: 21497128
pmcid: 3170818
doi: 10.1016/j.tics.2011.03.006
Sweis BM, Mau W, Rabinowitz S, Cai DJ. Dynamic and heterogeneous neural ensembles contribute to a memory engram. Curr Opin Neurobiol. 2021;67:199–206.
pubmed: 33388602
doi: 10.1016/j.conb.2020.11.017
Dent EW. Of microtubules and memory: implications for microtubule dynamics in dendrites and spines. Mol Biol Cell. 2017;28:1–8.
pubmed: 28035040
pmcid: 5221613
doi: 10.1091/mbc.e15-11-0769
Barnes SJ, Opitz T, Merkens M, Kelly T, von der Brelie C, Krueppel R, et al. Stable mossy fiber long-term potentiation requires calcium influx at the granule cell soma, protein synthesis, and microtubule-dependent axonal transport. J Neurosci. 2010;30:12996–3004.
pubmed: 20881117
pmcid: 6633504
doi: 10.1523/JNEUROSCI.1847-10.2010
Yoshii A, Constantine-Paton M. BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat Neurosci. 2007;10:702–11.
pubmed: 17515902
doi: 10.1038/nn1903
Hawkins RD, Zhuo M, Arancio O. Nitric oxide and carbon monoxide as possible retrograde messengers in hippocampal long-term potentiation. J Neurobiol. 1994;25:652–65.
pubmed: 8071665
doi: 10.1002/neu.480250607
Uchigashima M, Yamazaki M, Yamasaki M, Tanimura A, Sakimura K, Kano M, et al. Molecular and morphological configuration for 2-arachidonoylglycerol-mediated retrograde signaling at mossy cell-granule cell synapses in the dentate gyrus. J Neurosci. 2011;31:7700–14.
pubmed: 21613483
pmcid: 6633146
doi: 10.1523/JNEUROSCI.5665-10.2011
Richardson BD, Saha K, Krout D, Cabrera E, Felts B, Henry LK, et al. Membrane potential shapes regulation of dopamine transporter trafficking at the plasma membrane. Nat Commun. 2016;7:10423.
pubmed: 26804245
pmcid: 4737753
doi: 10.1038/ncomms10423
Meadows JP, Guzman-Karlsson MC, Phillips S, Brown JA, Strange SK, Sweatt JD, et al. Dynamic DNA methylation regulates neuronal intrinsic membrane excitability. Sci Signal. 2016;9:ra83.
pubmed: 27555660
pmcid: 5709999
doi: 10.1126/scisignal.aaf5642
Zhu Z, Ortiz TS, Mezan S, Kadener S.Blau J. Transcription of a plasticity gene is activated by neuronal hyperpolarization. Rxiv. 1999;636878:101101/636878.
Pozzi D, Lignani G, Ferrea E, Contestabile A, Paonessa F, D’Alessandro R, et al. REST/NRSF-mediated intrinsic homeostasis protects neuronal networks from hyperexcitability. EMBO J. 2013;32:2994–3007.
pubmed: 24149584
pmcid: 3831314
doi: 10.1038/emboj.2013.231
Lopez-Rojas J, Heine M, Kreutz MR. Plasticity of intrinsic excitability in mature granule cells of the dentate gyrus. Sci Rep. 2016;6:21615.
pubmed: 26857841
pmcid: 4746665
doi: 10.1038/srep21615
Turrigiano G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol. 2012;4:a005736.
pubmed: 22086977
pmcid: 3249629
doi: 10.1101/cshperspect.a005736
Tsukamoto M, Yasui T, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y. Mossy fibre synaptic NMDA receptors trigger non-Hebbian long-term potentiation at entorhino-CA3 synapses in the rat. J Physiol. 2003;546:665–75.
pubmed: 12562995
doi: 10.1113/jphysiol.2002.033803
Rebola N, Carta M, Mulle C. Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat Rev Neurosci. 2017;18:208–20.
pubmed: 28251990
doi: 10.1038/nrn.2017.10
Sheffield ME, Dombeck DA. Calcium transient prevalence across the dendritic arbour predicts place field properties. Nature. 2015;517:200–4.
pubmed: 25363782
doi: 10.1038/nature13871
Aery Jones EA, Rao A, Zilberter M, Djukic B, Bant JS, Gillespie AK, et al. Dentate gyrus and CA3 GABAergic interneurons bidirectionally modulate signatures of internal and external drive to CA1. Cell Rep. 2021;37:110159.
pubmed: 34965435
doi: 10.1016/j.celrep.2021.110159
Fuchsberger T, Paulsen O. Modulation of hippocampal plasticity in learning and memory. Curr Opin Neurobiol. 2022;75:102558.
pubmed: 35660989
doi: 10.1016/j.conb.2022.102558
Cholvin T, Hainmueller T, Bartos M. The hippocampus converts dynamic entorhinal inputs into stable spatial maps. Neuron. 2021;109:3135–3148.e3137.
pubmed: 34619088
pmcid: 8516433
doi: 10.1016/j.neuron.2021.09.019
Woods NI, Stefanini F, Apodaca-Montano DL, Tan IMC, Biane JS, Kheirbek MA. The dentate gyrus classifies cortical representations of learned stimuli. Neuron. 2020;107:173–184.e176.
pubmed: 32359400
pmcid: 7426196
doi: 10.1016/j.neuron.2020.04.002
Engel AK, Singer W. Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci. 2001;5:16–25.
pubmed: 11164732
doi: 10.1016/S1364-6613(00)01568-0
Cooper RA, Ritchey M. Progression from feature-specific brain activity to hippocampal binding during episodic encoding. J Neurosci. 2020;40:1701–9.
pubmed: 31826947
pmcid: 7046330
doi: 10.1523/JNEUROSCI.1971-19.2019
Fernandez-Ruiz A, Oliva A, Soula M, Rocha-Almeida F, Nagy GA, Martin-Vazquez G, et al. Gamma rhythm communication between entorhinal cortex and dentate gyrus neuronal assemblies. Science. 2021;372:eabf3119.
pubmed: 33795429
pmcid: 8285088
doi: 10.1126/science.abf3119
Traub RD, Whittington MA, Buhl EH, LeBeau FE, Bibbig A, Boyd S, et al. A possible role for gap junctions in generation of very fast EEG oscillations preceding the onset of, and perhaps initiating, seizures. Epilepsia. 2001;42:153–70.
pubmed: 11240585
Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature. 2012;484:381–5.
pubmed: 22441246
pmcid: 3331914
doi: 10.1038/nature11028
Frankland PW, Ding HK, Takahashi E, Suzuki A, Kida S, Silva AJ. Stability of recent and remote contextual fear memory. Learn Mem. 2006;13:451–7.
pubmed: 16882861
pmcid: 1538922
doi: 10.1101/lm.183406
Rao-Ruiz P, Visser E, Mitric M, Smit AB, van den Oever MC. A synaptic framework for the persistence of memory engrams. Front Synaptic Neurosci. 2021;13:661476.
pubmed: 33841124
pmcid: 8024575
doi: 10.3389/fnsyn.2021.661476
Keinath AT, Nieto-Posadas A, Robinson JC, Brandon MP. DG-CA3 circuitry mediates hippocampal representations of latent information. Nat Commun. 2020;11:3026.
pubmed: 32541860
pmcid: 7296021
doi: 10.1038/s41467-020-16825-1
Roy DS, Muralidhar S, Smith LM, Tonegawa S. Silent memory engrams as the basis for retrograde amnesia. Proc Natl Acad Sci USA. 2017;114:E9972–E9979.
pubmed: 29078397
pmcid: 5699085
doi: 10.1073/pnas.1714248114
Lopez CM, Pelkey KA, Chittajallu R, Nakashiba T, Toth K, Tonegawa S, et al. Competition from newborn granule cells does not drive axonal retraction of silenced old granule cells in the adult hippocampus. Front Neural Circuits. 2012;6:85.
pubmed: 23162435
pmcid: 3499763
doi: 10.3389/fncir.2012.00085
Schneiderman N, Gormezano I. Conditioning of the nictitating membrane of the rabbit as a function of CS-US interval. J Comp Physiol Psychol. 1964;57:188–95.
pubmed: 14168641
doi: 10.1037/h0043419
Martinez-Galan JR, Garcia-Belando M, Cabanes-Sanchis JJ, Caminos E. Pre- and postsynaptic alterations in the visual cortex of the P23H-1 retinal degeneration rat model. Front Neuroanat. 2022;16:1000085.
pubmed: 36312296
pmcid: 9608761
doi: 10.3389/fnana.2022.1000085
Broadhead MJ, Horrocks MH, Zhu F, Muresan L, Benavides-Piccione R, DeFelipe J, et al. PSD95 nanoclusters are postsynaptic building blocks in hippocampus circuits. Sci Rep. 2016;6:24626.
pubmed: 27109929
pmcid: 4842999
doi: 10.1038/srep24626
Berry KP, Nedivi E. Spine dynamics: are they all the same? Neuron. 2017;96:43–55.
pubmed: 28957675
pmcid: 5661952
doi: 10.1016/j.neuron.2017.08.008
Ehrlich I, Klein M, Rumpel S, Malinow R. PSD-95 is required for activity-driven synapse stabilization. Proc Natl Acad Sci USA. 2007;104:4176–81.
pubmed: 17360496
pmcid: 1820728
doi: 10.1073/pnas.0609307104
Mochida S. Stable and flexible synaptic transmission controlled by the active zone protein interactions. Int J Mol Sci. 2021;22:11775.
pubmed: 34769208
pmcid: 8583982
doi: 10.3390/ijms222111775
Ortega JM, Genc O, Davis GW. Molecular mechanisms that stabilize short-term synaptic plasticity during presynaptic homeostatic plasticity. Elife. 2018;7:e40385.
pubmed: 30422113
pmcid: 6250423
doi: 10.7554/eLife.40385
Hu X, Ballo L, Pietila L, Viesselmann C, Ballweg J, Lumbard D, et al. BDNF-induced increase of PSD-95 in dendritic spines requires dynamic microtubule invasions. J Neurosci. 2011;31:15597–603.
pubmed: 22031905
pmcid: 3224154
doi: 10.1523/JNEUROSCI.2445-11.2011
Gonzalez-Forero D, Pastor AM, Delgado-Garcia JM, de la Cruz RR, Alvarez FJ. Synaptic structural modification following changes in activity induced by tetanus neurotoxin in cat abducens neurons. J Comp Neurol. 2004;471:201–18.
pubmed: 14986313
doi: 10.1002/cne.20039
Uhlig M, Levina A, Geisel T, Herrmann JM. Critical dynamics in associative memory networks. Front Comput Neurosci. 2013;7:87.
pubmed: 23898261
pmcid: 3721048
doi: 10.3389/fncom.2013.00087
Agnes EJ, Luppi AI, Vogels TP. Complementary inhibitory weight profiles emerge from plasticity and allow flexible switching of receptive fields. J Neurosci. 2020;40:9634–49.
pubmed: 33168622
pmcid: 7726533
doi: 10.1523/JNEUROSCI.0276-20.2020
Ocker GK, Buice MA. Flexible neural connectivity under constraints on total connection strength. PLoS Comput Biol. 2020;16:e1008080.
pubmed: 32745134
pmcid: 7425997
doi: 10.1371/journal.pcbi.1008080
Hainmueller T, Bartos M. Parallel emergence of stable and dynamic memory engrams in the hippocampus. Nature. 2018;558:292–6.
pubmed: 29875406
pmcid: 7115829
doi: 10.1038/s41586-018-0191-2
Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods. 1991;37:173–82.
pubmed: 1715499
doi: 10.1016/0165-0270(91)90128-M
Trevino M, Vivar C, Gutierrez R. Excitation-inhibition balance in the CA3 network-neuronal specificity and activity-dependent plasticity. Eur J Neurosci. 2011;33:1771–85.
pubmed: 21501253
doi: 10.1111/j.1460-9568.2011.07670.x
Leal-Campanario R, Fairen A, Delgado-Garcia JM, Gruart A. Electrical stimulation of the rostral medial prefrontal cortex in rabbits inhibits the expression of conditioned eyelid responses but not their acquisition. Proc Natl Acad Sci USA. 2007;104:11459–64.
pubmed: 17592148
pmcid: 1899194
doi: 10.1073/pnas.0704548104
Soiza-Reilly M, Commons KG. Quantitative analysis of glutamatergic innervation of the mouse dorsal raphe nucleus using array tomography. J Comp Neurol. 2011;519:3802–14.
pubmed: 21800318
pmcid: 3268343
doi: 10.1002/cne.22734
Vlachos A, Bas Orth C, Schneider G, Deller T. Time-lapse imaging of granule cells in mouse entorhino-hippocampal slice cultures reveals changes in spine stability after entorhinal denervation. J Comp Neurol. 2012;520:1891–902.
pubmed: 22134835
doi: 10.1002/cne.23017
Willems LM, Zahn N, Ferreiros N, Scholich K, Maggio N, Deller T, et al. Sphingosine-1-phosphate receptor inhibition prevents denervation-induced dendritic atrophy. Acta Neuropathol Commun. 2016;4:28.
pubmed: 27036416
pmcid: 4818430
doi: 10.1186/s40478-016-0303-x