Hotspots of biogeochemical activity linked to aridity and plant traits across global drylands.
Journal
Nature plants
ISSN: 2055-0278
Titre abrégé: Nat Plants
Pays: England
ID NLM: 101651677
Informations de publication
Date de publication:
12 Apr 2024
12 Apr 2024
Historique:
received:
14
07
2023
accepted:
14
03
2024
medline:
13
4
2024
pubmed:
13
4
2024
entrez:
12
4
2024
Statut:
aheadofprint
Résumé
Perennial plants create productive and biodiverse hotspots, known as fertile islands, beneath their canopies. These hotspots largely determine the structure and functioning of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands under conditions of contrasting grazing by livestock, the most prevalent land use in drylands, remain virtually unknown. Here we evaluated the relative importance of grazing pressure and herbivore type, climate and plant functional traits on 24 soil physical and chemical attributes that represent proxies of key ecosystem services related to decomposition, soil fertility, and soil and water conservation. To do this, we conducted a standardized global survey of 288 plots at 88 sites in 25 countries worldwide. We show that aridity and plant traits are the major factors associated with the magnitude of plant effects on fertile islands in grazed drylands worldwide. Grazing pressure had little influence on the capacity of plants to support fertile islands. Taller and wider shrubs and grasses supported stronger island effects. Stable and functional soils tended to be linked to species-rich sites with taller plants. Together, our findings dispel the notion that grazing pressure or herbivore type are linked to the formation or intensification of fertile islands in drylands. Rather, our study suggests that changes in aridity, and processes that alter island identity and therefore plant traits, will have marked effects on how perennial plants support and maintain the functioning of drylands in a more arid and grazed world.
Identifiants
pubmed: 38609675
doi: 10.1038/s41477-024-01670-7
pii: 10.1038/s41477-024-01670-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 41991232
Organisme : The Hermon Slade Foundation
ID : HSF21040
Organisme : National Science Foundation (NSF)
ID : DEB 1754106, 20-25166
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
ID : DRYFUN Project 656035
Organisme : Generalitat Valenciana (Regional Government of Valencia)
ID : CIDEGENT/2018/041
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Thiery, J. M., d’Herbes, J. M. & Valentin, C. A model simulating the genesis of banded vegetation patterns in Niger. J. Ecol. 459, 497–507 (1995).
doi: 10.2307/2261602
Aguiar, M. R. & Sala, O. E. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol. Evol. 14, 273–277 (1999).
pubmed: 10370263
doi: 10.1016/S0169-5347(99)01612-2
Tongway, D. J. & Ludwig, J. A. Small-scale resource heterogeneity in semi-arid landscapes. Pac. Conserv. Biol. 1, 201 (1994).
doi: 10.1071/PC940201
Ochoa‐Hueso, R. et al. Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. J. Ecol. 106, 242–253 (2018).
doi: 10.1111/1365-2745.12871
Alary, V., Lasseur, J., Frija, A. & Gautier, D. Assessing the sustainability of livestock socio-ecosystems in the drylands through a set of indicators. Agric. Syst. 198, 103389 (2022).
doi: 10.1016/j.agsy.2022.103389
Eldridge, D. J., Delgado‐Baquerizo, M., Travers, S. K., Val, J. & Oliver, I. Do grazing intensity and herbivore type affect soil health? Insights from a semi‐arid productivity gradient. J. Appl. Ecol. 54, 976–985 (2017).
doi: 10.1111/1365-2664.12834
Middleton, N. Rangeland management and climate hazards in drylands: dust storms, desertification and the overgrazing debate. Nat. Hazards 92, 57–70 (2018).
doi: 10.1007/s11069-016-2592-6
Ding, J. & Eldridge, D. J. The fertile island effect varies with aridity and plant patch type across an extensive continental gradient. Plant Soil 459, 1–11 (2020).
Cai, Y. et al. The fertile island effect collapses under extreme overgrazing: evidence from a shrub-encroached grassland. Plant Soil 448, 201–212 (2020).
doi: 10.1007/s11104-020-04426-2
Pei, S., Fu, H., Wan, C., Chen, Y. & Sosebee, R. E. Observations on changes in soil properties in grazed and nongrazed areas of Alxa Desert Steppe, Inner Mongolia. Arid Land Res. Manag. 20, 161–175 (2006).
doi: 10.1080/15324980600549257
Allington, G. R. & Valone, T. Islands of fertility: a byproduct of grazing? Ecosystems 17, 127–141 (2014).
doi: 10.1007/s10021-013-9711-y
Maestre, F. T. et al. Grazing and ecosystem service delivery in global drylands. Science 378, 915–920 (2022).
pubmed: 36423285
doi: 10.1126/science.abq4062
Schade, J. D. & Hobbie, S. E. Spatial and temporal variation in islands of fertility in the Sonoran Desert. Biogeochemistry 73, 541–553 (2005).
doi: 10.1007/s10533-004-1718-1
Ridolfi, L., Laio, F. & D’Odorico, P. Fertility island formation and evolution in dryland ecosystems. Ecol. Soc. 13, 5 (2008).
doi: 10.5751/ES-02302-130105
Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Ann. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).
doi: 10.1146/annurev-ecolsys-121415-032311
Charley, J. L. & West, N. E. Plant-induced soil chemical patterns in some shrub-dominated semi-desert ecosystems of Utah. J. Ecol. 63, 945–963 (1975).
doi: 10.2307/2258613
DeLuca, T. H. & Zackrisson, O. Enhanced soil fertility under Juniperus communis in arctic ecosystems. Plant Soil 294, 147–155 (2007).
doi: 10.1007/s11104-007-9242-4
Whitford, W. G., Anderson, J. & Rice, P. M. Stemflow contribution to the ‘fertile island’ effect in creosotebush, Larrea tridentata. J. Arid Environ. 35, 451–457 (1997).
doi: 10.1006/jare.1996.0164
Dunkerley, D. Systematic variation of soil infiltration rates within and between the components of the vegetation mosaic in an Australian desert landscape. Hydrol. Process. 16, 119–131 (2002).
doi: 10.1002/hyp.357
Ward, D. et al. Large shrubs increase soil nutrients in a semi-arid savanna. Geoderma 310, 153–162 (2018).
doi: 10.1016/j.geoderma.2017.09.023
Hollister, G. B. et al. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME J. 4, 829–838 (2010).
pubmed: 20130657
doi: 10.1038/ismej.2010.3
Van Der Heijden, M. G., Bardgett, R. D. & Van Straalen, N. V. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).
pubmed: 18047587
doi: 10.1111/j.1461-0248.2007.01139.x
Berg, G. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotech. 84, 11–18 (2009).
doi: 10.1007/s00253-009-2092-7
Dohn, J. et al. Tree effects on grass growth in savannas: competition, facilitation and the stress‐gradient hypothesis. J. Ecol. 101, 202–209 (2013).
doi: 10.1111/1365-2745.12010
Lai, L. & Kumar, S. A global meta-analysis of livestock grazing impacts on soil properties. PLoS ONE 15, e0236638 (2020).
pubmed: 32764754
pmcid: 7413490
doi: 10.1371/journal.pone.0236638
Schlesinger, W. H. et al. Biological feedbacks in global desertification. Science 247, 1043–1048 (1990).
pubmed: 17800060
doi: 10.1126/science.247.4946.1043
Reynolds, J. F., Virginia, R. A., Kemp, P. R., De Soyza, A. G. & Tremmel, D. C. Impact of drought on desert shrubs: effects of seasonality and degree of resource island development. Ecol. Monogr. 69, 69–106 (1999).
doi: 10.1890/0012-9615(1999)069[0069:IODODS]2.0.CO;2
Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).
pubmed: 27103505
doi: 10.1111/brv.12275
Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge Univ. Press, 2006).
Chen, S., Cao, R., Yoshitake, S. & Ohtsuka, T. Stemflow hydrology and DOM flux in relation to tree size and rainfall event characteristics. Agric. For. Meteorol. 279, 107753 (2019).
doi: 10.1016/j.agrformet.2019.107753
Fischer, M. et al. Plant species richness and functional traits affect community stability after a flood event. Phil. Trans. R. Soc. B 371, 20150276 (2016).
pubmed: 27114578
pmcid: 4843697
doi: 10.1098/rstb.2015.0276
Verheyen, K. et al. Can complementarity in water use help to explain diversity–productivity relationships in experimental grassland plots? Oecologia 156, 351–361 (2008).
pubmed: 18305961
doi: 10.1007/s00442-008-0998-x
Hook, P. B., Burke, I. C. & Lauenroth, W. K. Heterogeneity of soil and plant N and C associated with individual plants and openings in North American shortgrass steppe. Plant Soil 138, 247–256 (1991).
doi: 10.1007/BF00012252
Ludwig, J. A., Wilcox, B. P., Breshears, D. D., Tongway, D. J. & Imeson, A. C. Vegetation patches and runoff—erosion as interacting ecohydrological processes in semiarid landscapes. Ecology 86, 288–297 (2005).
doi: 10.1890/03-0569
Eldridge, D. J., Beecham, G. & Grace, J. B. Do shrubs reduce the adverse effects of grazing on soil properties? Ecohydrology 8, 1503–1513 (2015).
doi: 10.1002/eco.1600
Travers, S. K. & Berdugo, M. Grazing and productivity alter individual grass size dynamics in semi-arid woodlands. Ecography 43, 1003–1013 (2020).
doi: 10.1111/ecog.04764
Piluzza, G., Sulas, L. & Bullitta, S. Tannins in forage plants and their role in animal husbandry and environmental sustainability: a review. Grass Forage Sci. 69, 32–48 (2014).
doi: 10.1111/gfs.12053
De Soyza, A. G., Franco, A. C., Virginia, R. A., Reynolds, J. F. & Whitford, W. G. Effects of plant size on photosynthesis and water relations in the desert shrub Prosopis glandulosa (Fabaceae). Am. J. Bot. 83, 99–105 (1996).
doi: 10.1002/j.1537-2197.1996.tb13880.x
Dean, W. R. G., Milton, S. J. & Jeltsch, F. Large trees, fertile islands, and birds in arid savanna. J. Arid Environ. 41, 61–78 (1999).
doi: 10.1006/jare.1998.0455
Gibb, H. Effects of planting method on the recovery of arboreal ant activity on revegetated farmland. Austral Ecol. 37, 789–799 (2012).
doi: 10.1111/j.1442-9993.2011.02339.x
Bolling, J. D. & Walker, L. R. Fertile island development around perennial shrubs across a Mojave Desert chronosequence. West. N. Am. Nat. 62, 88–100 (2002).
Tiedemann, A. R. & Klemmedson, J. O. Long-term effects of mesquite removal on soil characteristics: I: Nutrients and bulk density. Soil Sci. Soc. Am. J. 50, 472–475 (1986).
doi: 10.2136/sssaj1986.03615995005000020044x
Belsky, A. J., Mwonga, S. M. & Duxbury, J. M. Effects of widely spaced trees and livestock grazing on understory environments in tropical savannas. Agrofor. Syst. 24, 1–20 (1993).
doi: 10.1007/BF00705265
Maestre, F. T. et al. The BIODESERT survey: assessing the impacts of grazing on the structure and functioning of global drylands. Web Ecol. 22, 75–96 (2022).
doi: 10.5194/we-22-75-2022
Turner, M. D. Long-term effects of daily grazing orbits on nutrient availability in Sahelian West Africa: I: Gradients in the chemical composition of rangeland soils and vegetation. J. Biogeogr. 25, 669–682 (1998).
doi: 10.1046/j.1365-2699.1998.2540669.x
Rasmussen, H. B., Kahindi, O., Vollrath, F. & Douglas‐Hamilton, I. Estimating elephant densities from wells and droppings in dried out riverbeds. Afr. J. Ecol. 43, 312–319 (2005).
doi: 10.1111/j.1365-2028.2005.00580.x
Guerra Alonso, C., Zurita, G. & Bellocq, M. Response of dung beetle taxonomic and functional diversity to livestock grazing in an arid ecosystem. Ecol. Entomol. 46, 582–591 (2020).
doi: 10.1111/een.13004
Dickinson, C. H., Underhay, V. S. H. & Ross, V. Effect of season, soil fauna and water content on the decomposition of cattle dung pats. New Phytol. 88, 129–141 (1981).
doi: 10.1111/j.1469-8137.1981.tb04576.x
Eldridge, D. J., Poore, A. G. B., Ruiz-Colmenero, M., Letnic, M. & Soliveres, S. Ecosystem structure, function and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 36, 1273–1283 (2016).
doi: 10.1890/15-1234
Travers, S. K., Eldridge, D. J., Koen, T. B., Val, J. & Oliver, I. Livestock and kangaroo grazing have little effect on biomass and fuel hazard in semi-arid woodlands. For. Ecol. Manag. 467, 118165 (2020).
doi: 10.1016/j.foreco.2020.118165
Goutte, C., Toft, P., Rostrup, E., Nielsen, F. A. & Hansen, L. K. On clustering fMRI time series. Neuroimage 9, 298–310 (1999).
pubmed: 10075900
doi: 10.1006/nimg.1998.0391
Lange, R. T. The piosphere: sheep track and dung patterns. J. Range Manag. 22, 396–400 (1969).
doi: 10.2307/3895849
Pringle, H. J. R. & Landsberg, J. Predicting the distribution of livestock grazing pressure in rangelands. Austral Ecol. 29, 31–39 (2004).
doi: 10.1111/j.1442-9993.2004.01363.x
Tavşanoğlu, Ç. & Pausas, J. A functional trait database for Mediterranean Basin plants. Sci. Data 5, 180135 (2018).
pubmed: 29989590
pmcid: 6038851
doi: 10.1038/sdata.2018.135
National Plant Data Team. The PLANTS Database (USDA, 2019).
Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).
doi: 10.1111/j.1365-2486.2011.02451.x
Kettler, T. A., Doran, J. W. & Gilbert, T. L. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65, 849–852 (2001).
doi: 10.2136/sssaj2001.653849x
Armas, C., Ordiales, R. & Pugnaire, F. I. Measuring plant interactions: a new comparative index. Ecology 85, 2682–2686 (2004).
doi: 10.1890/03-0650
R Core Team. R: a language and environment for statistical computing (R Foundation, 2018).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
doi: 10.1002/joc.5086
Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 9, 409 (2022).
pubmed: 35840601
pmcid: 9287331
doi: 10.1038/s41597-022-01493-1
Zhang, Y.-W., Wang, K.-B., Wang, J., Liu, C. & Shangguan, Z. P. Changes in soil water holding capacity and water availability following vegetation restoration on the Chinese Loess Plateau. Sci. Rep. 11, 9692 (2021).
pubmed: 33963219
pmcid: 8105322
doi: 10.1038/s41598-021-88914-0
Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).
pubmed: 36568334
pmcid: 9788645
doi: 10.18637/jss.v076.i01
Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian applied regression modeling via Stan. R package version 2.21.1 https://mc-stan.org/rstanarm (R Foundation, 2020).
McElreath, R. Statistical Rethinking 2nd edn (CRC, 2020).
Archer E. rfPermute: estimate permutation P-values for random forest importance metrics. R package version 1. 5. 2 (R Foundation, 2016).
Eldridge, D., Ding, J., Maestre, F. T. BIODESERT Fertile Island. Figshare https://doi.org/10.6084/m9.figshare.25283074.v1 (2024).