Aortic Valve Engineering Advancements: Precision Tuning with Laser Sintering Additive Manufacturing of TPU/TPE Submillimeter Membranes.

TEHV aortic valve shape memory polymer surgical training thermoplastic elastomer (TPE) thermoplastic polyurethane (TPU) valve substitute

Journal

Polymers
ISSN: 2073-4360
Titre abrégé: Polymers (Basel)
Pays: Switzerland
ID NLM: 101545357

Informations de publication

Date de publication:
25 Mar 2024
Historique:
received: 02 01 2024
revised: 12 03 2024
accepted: 19 03 2024
medline: 13 4 2024
pubmed: 13 4 2024
entrez: 13 4 2024
Statut: epublish

Résumé

Synthetic biomaterials play a crucial role in developing tissue-engineered heart valves (TEHVs) due to their versatile mechanical properties. Achieving the right balance between mechanical strength and manufacturability is essential. Thermoplastic polyurethanes (TPUs) and elastomers (TPEs) garner significant attention for TEHV applications due to their notable stability, fatigue resistance, and customizable properties such as shear strength and elasticity. This study explores the additive manufacturing technique of selective laser sintering (SLS) for TPUs and TPEs to optimize process parameters to balance flexibility and strength, mimicking aortic valve tissue properties. Additionally, it aims to assess the feasibility of printing aortic valve models with submillimeter membranes. The results demonstrate that the SLS-TPU/TPE technique can produce micrometric valve structures with soft shape memory properties, resembling aortic tissue in strength, flexibility, and fineness. These models show promise for surgical training and manipulation, display intriguing echogenicity properties, and can potentially be personalized to shape biocompatible valve substitutes.

Identifiants

pubmed: 38611158
pii: polym16070900
doi: 10.3390/polym16070900
pii:
doi:

Types de publication

Journal Article

Langues

eng

Auteurs

Vlad Ciobotaru (V)

Centre Hospitalier Universitaire de Nîmes, Service de Radiologie, Imagerie Cardiovasculaire, 4 Rue du Professeur Robert Debré, 30900 Nîmes, France.
Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Inserm UMR-S 999, BME Lab, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France.
3DHeartModeling, 30132 Caissargues, France.

Marcos Batistella (M)

Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France.

Emily De Oliveira Emmer (E)

Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France.

Louis Clari (L)

Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France.

Arthur Masson (A)

Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France.

Benoit Decante (B)

Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Inserm UMR-S 999, BME Lab, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France.

Emmanuel Le Bret (E)

Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Inserm UMR-S 999, BME Lab, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France.

José-Marie Lopez-Cuesta (JM)

Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France.

Sebastien Hascoet (S)

Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Inserm UMR-S 999, BME Lab, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France.

Classifications MeSH