The Impact of Prevotella on Neurobiology in Aging: Deciphering Dendritic Cell Activity and Inflammatory Dynamics.
Prevotella
Aging
Gastrointestinal microbiome
Immune response
Inflammation
Journal
Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963
Informations de publication
Date de publication:
13 Apr 2024
13 Apr 2024
Historique:
received:
22
12
2023
accepted:
29
03
2024
medline:
13
4
2024
pubmed:
13
4
2024
entrez:
13
4
2024
Statut:
aheadofprint
Résumé
Prevotella species, notably Prevotella copri, significantly populate the human gut. In particular, P. copri is prevalent among non-Western populations with diets high in fiber. These species show complex relationships with diverse health aspects, associating with beneficial outcomes, including reduced visceral fat and improved glucose tolerance. Studies implicate various Prevotella species in specific diseases. Prevotella nigrescens and Porphyromonas gingivalis were linked to periodontal disease, promoting immune responses and influencing T helper type 17 (Th17) cells. Prevotella bivia was associated with bacterial vaginosis and a specific increase in activated cells in the vaginal mucosa. In contrast, they have shown substantial potential for inducing connective tissue degradation and alveolar bone resorption. Prevotella's role in neuroinflammatory disorders and autoinflammatory conditions such as Alzheimer's disease and Parkinson's disease has also been noted. The complex relationship between Prevotella and age-related conditions further extends to neurobiological changes in aging, with varying associations with Alzheimer's, Parkinson's, and other inflammatory conditions. Studies have also identified Prevotella to be implicated in cognitive decline in middle aged and the elderly. Future directions in this research area are anticipated to explore Prevotella-associated inflammatory mechanisms and therapeutic interventions. Investigating specific drug targets and immunomodulatory measures could lead to novel therapeutic strategies. Understanding how Prevotella-induced inflammation interacts with aging diseases would offer promising insights for treatments and interventions. This review urges ongoing research to discover therapeutic targets and mechanisms for moderating Prevotella-associated inflammation to further enhance our understanding and improve health outcomes.
Identifiants
pubmed: 38613648
doi: 10.1007/s12035-024-04156-x
pii: 10.1007/s12035-024-04156-x
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Tett A, Pasolli E, Masetti G, Ercolini D, Segata N (2021) Prevotella diversity, niches and interactions with the human host. Nat Rev Microbiol 19(9):585–599. https://doi.org/10.1038/s41579-021-00559-y
doi: 10.1038/s41579-021-00559-y
pubmed: 34050328
Rosenberg E (2014) The family Prevotellaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38954-2_131
doi: 10.1007/978-3-642-38954-2_131
Accetto T, Avguštin G (2019) The diverse and extensive plant polysaccharide degradative apparatuses of the rumen and hindgut Prevotella species: a factor in their ubiquity? Syst Appl Microbiol 42(2):107–116. https://doi.org/10.1016/j.syapm.2018.10.001
doi: 10.1016/j.syapm.2018.10.001
pubmed: 30853065
Chen T, Long W, Zhang C, Liu S, Zhao L, Hamaker BR (2017) Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci Rep 7(1):2594. https://doi.org/10.1038/s41598-017-02995-4
doi: 10.1038/s41598-017-02995-4
pubmed: 28572676
pmcid: 5453967
Portincasa P, Bonfrate L, Vacca M et al (2022) Gut microbiota and short chain fatty acids: implications in glucose homeostasis. Int J Mol Sci 23(3):1105. https://doi.org/10.3390/ijms23031105
doi: 10.3390/ijms23031105
pubmed: 35163038
pmcid: 8835596
Hayashi H, Shibata K, Sakamoto M, Tomita S, Benno Y (2007) Prevotella copri sp. Nov. and Prevotella stercorea sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57(5):941–946. https://doi.org/10.1099/ijs.0.64778-0
doi: 10.1099/ijs.0.64778-0
pubmed: 17473237
Könönen E, Gursoy UK (2022) Oral Prevotella species and their connection to events of clinical relevance in gastrointestinal and respiratory tracts. Front Microbiol 12:798763. https://doi.org/10.3389/fmicb.2021.798763
doi: 10.3389/fmicb.2021.798763
pubmed: 35069501
pmcid: 8770924
Richter HE, Carnes MU, Komesu YM et al (2022) Association between the urogenital microbiome and surgical treatment response in women undergoing midurethral sling operation for mixed urinary incontinence. Am J Obstet Gynecol 226(1):93.e1-93.e15. https://doi.org/10.1016/j.ajog.2021.07.008
doi: 10.1016/j.ajog.2021.07.008
pubmed: 34297969
Dubourg G, Morand A, Mekhalif F et al (2020) Deciphering the urinary microbiota repertoire by culturomics reveals mostly anaerobic bacteria from the gut. Front Microbiol 11:513305. https://doi.org/10.3389/fmicb.2020.513305
doi: 10.3389/fmicb.2020.513305
pubmed: 33178140
pmcid: 7596177
Thomas-White K, Forster SC, Kumar N et al (2018) Culturing of female bladder bacteria reveals an interconnected urogenital microbiota. Nat Commun 9(1):1557. https://doi.org/10.1038/s41467-018-03968-5
doi: 10.1038/s41467-018-03968-5
pubmed: 29674608
pmcid: 5908796
Tett A, Huang KD, Asnicar F et al (2019) The Prevotella copri complex comprises four distinct clades underrepresented in westernized populations. Cell Host Microbe 26(5):666-679.e7. https://doi.org/10.1016/j.chom.2019.08.018
doi: 10.1016/j.chom.2019.08.018
pubmed: 31607556
pmcid: 6854460
Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052):105–108. https://doi.org/10.1126/science.1208344
doi: 10.1126/science.1208344
pubmed: 21885731
pmcid: 3368382
David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. https://doi.org/10.1038/nature12820
doi: 10.1038/nature12820
pubmed: 24336217
De Filippis F, Pellegrini N, Vannini L et al (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65(11):1812–1821. https://doi.org/10.1136/gutjnl-2015-309957
doi: 10.1136/gutjnl-2015-309957
pubmed: 26416813
Kovatcheva-Datchary P, Nilsson A, Akrami R et al (2015) Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab 22(6):971–982. https://doi.org/10.1016/j.cmet.2015.10.001
doi: 10.1016/j.cmet.2015.10.001
pubmed: 26552345
Asnicar F, Berry SE, Valdes AM et al (2021) Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med 27(2):321–332. https://doi.org/10.1038/s41591-020-01183-8
doi: 10.1038/s41591-020-01183-8
pubmed: 33432175
pmcid: 8353542
Mangiola F, Nicoletti A, Gasbarrini A, Ponziani FR (2018) Gut microbiota and aging. Eur Rev Med Pharmacol Sci 22(21):7404–7413. https://doi.org/10.26355/eurrev_201811_16280
doi: 10.26355/eurrev_201811_16280
pubmed: 30468488
Badal VD, Vaccariello ED, Murray ER et al (2020) The gut microbiome, aging, and longevity: a systematic review. Nutrients 12(12):3759. https://doi.org/10.3390/nu12123759
doi: 10.3390/nu12123759
pubmed: 33297486
pmcid: 7762384
Gmür R, Thurnheer T (2002) Direct quantitative differentiation between Prevotella intermedia and Prevotella nigrescens in clinical specimens. Microbiology 148(5):1379–1387. https://doi.org/10.1099/00221287-148-5-1379
doi: 10.1099/00221287-148-5-1379
pubmed: 11988511
Zambon JJ, Reynolds HS, Slots J (1981) Black-pigmented bacteroides spp. in the human oral cavity. Infect Immun 32(1):198–203. https://doi.org/10.1128/iai.32.1.198-203.1981
doi: 10.1128/iai.32.1.198-203.1981
pubmed: 6111541
pmcid: 350607
Segata N, Haake S, Mannon P et al (2012) Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 13(6):R42. https://doi.org/10.1186/gb-2012-13-6-r42
doi: 10.1186/gb-2012-13-6-r42
pubmed: 22698087
pmcid: 3446314
Donati C, Zolfo M, Albanese D et al (2016) Uncovering oral Neisseria tropism and persistence using metagenomics sequencing. Nat Microbiol 1(7):16070. https://doi.org/10.1038/nmicrobiol.2016.70
doi: 10.1038/nmicrobiol.2016.70
pubmed: 27572971
Schmidt TS, Hayward MR, Coelho LP et al (2019) Extensive transmission of microbes along the gastrointestinal tract. Elife 8:e42693. https://doi.org/10.7554/eLife.42693
doi: 10.7554/eLife.42693
pubmed: 30747106
pmcid: 6424576
Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS (2010) Oral multispecies biofilm development and the key role of cell–cell distance. Nat Rev Microbiol 8(7):471–480. https://doi.org/10.1038/nrmicro2381
doi: 10.1038/nrmicro2381
pubmed: 20514044
Kolenbrander PE (2000) Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol 54(1):413–437. https://doi.org/10.1146/annurev.micro.54.1.413
doi: 10.1146/annurev.micro.54.1.413
pubmed: 11018133
The Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214. https://doi.org/10.1038/nature11234
doi: 10.1038/nature11234
pmcid: 3564958
Qin J, MetaHIT Consortium, Li R et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65. https://doi.org/10.1038/nature08821
Pasolli E, Schiffer L, Manghi P et al (2017) Accessible, curated metagenomic data through ExperimentHub. Nat Methods 14(11):1023–1024. https://doi.org/10.1038/nmeth.4468
doi: 10.1038/nmeth.4468
pubmed: 29088129
pmcid: 5862039
Scher JU, Sczesnak A, Longman RS et al (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2:e01202. https://doi.org/10.7554/eLife.01202
doi: 10.7554/eLife.01202
pubmed: 24192039
pmcid: 3816614
Cani PD (2018) Human gut microbiome: hopes, threats and promises. Gut 67(9):1716–1725. https://doi.org/10.1136/gutjnl-2018-316723
doi: 10.1136/gutjnl-2018-316723
pubmed: 29934437
Claus SP (2019) The strange case of Prevotella copri: Dr. Jekyll or Mr. Hyde?. Cell Host Microbe 26(5):577–578. https://doi.org/10.1016/j.chom.2019.10.020
Pianta A, Arvikar S, Strle K et al (2017) Evidence of the immune relevance of Prevotella copri, a gut microbe, in patients with rheumatoid arthritis. Arthritis Rheumatol 69(5):964–975. https://doi.org/10.1002/art.40003
doi: 10.1002/art.40003
pubmed: 27863183
pmcid: 5406252
Wen C, Zheng Z, Shao T et al (2017) Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol 18(1). https://doi.org/10.1186/s13059-017-1271-6
Iljazovic A, Amend L, Galvez EJC, de Oliveira R, Strowig T (2021) Modulation of inflammatory responses by gastrointestinal Prevotella spp. – from associations to functional studies. Int J Med Microbiol 311(2):151472. https://doi.org/10.1016/j.ijmm.2021.151472
doi: 10.1016/j.ijmm.2021.151472
pubmed: 33461110
Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323. https://doi.org/10.1038/nri2515
doi: 10.1038/nri2515
pubmed: 19343057
pmcid: 4095778
Cury PR, Carmo JP, Horewicz VV, Santos JN, Barbuto JA (2013) Altered phenotype and function of dendritic cells in individuals with chronic periodontitis. Arch Oral Biol 58(9):1208–1216. https://doi.org/10.1016/j.archoralbio.2013.03.013
doi: 10.1016/j.archoralbio.2013.03.013
pubmed: 23623310
Horst OV, Tompkins KA, Coats SR, Braham PH, Darveau RP, Dale BA (2009) TGF-β1 inhibits TLR-mediated odontoblast responses to oral bacteria. J Dent Res 88(4):333–338. https://doi.org/10.1177/0022034509334846
doi: 10.1177/0022034509334846
pubmed: 19407153
pmcid: 3317952
Ji S, Kim Y, Min BM, Han SH, Choi Y (2007) Innate immune responses of gingival epithelial cells to nonperiodontopathic and periodontopathic bacteria. J Periodontal Res 42(6):503–510. https://doi.org/10.1111/j.1600-0765.2007.00974.x
doi: 10.1111/j.1600-0765.2007.00974.x
pubmed: 17956462
de Aquino SG, Abdollahi-Roodsaz S, Koenders MI et al (2014) Periodontal pathogens directly promote autoimmune experimental arthritis by inducing a TLR2- and IL-1–driven Th17 response. J Immunol 192(9):4103–4111. https://doi.org/10.4049/jimmunol.1301970
doi: 10.4049/jimmunol.1301970
pubmed: 24683190
Schincaglia GP, Hong BY, Rosania A et al (2017) Clinical, immune, and microbiome traits of gingivitis and peri-implant mucositis. J Dent Res 96(1):47–55. https://doi.org/10.1177/0022034516668847
doi: 10.1177/0022034516668847
pubmed: 28033066
Greer A, Irie K, Hashim A et al (2016) Site-specific neutrophil migration and CXCL2 expression in periodontal tissue. J Dent Res 95(8):946–952. https://doi.org/10.1177/0022034516641036
doi: 10.1177/0022034516641036
pubmed: 27013641
pmcid: 4935833
Matsui A, Jin JO, Johnston CD, Yamazaki H, Houri-Haddad Y, Rittling SR (2014) Pathogenic bacterial species associated with endodontic infection evade innate immune control by disabling neutrophils. Infect Immun 82(10):4068–4079. https://doi.org/10.1128/iai.02256-14
doi: 10.1128/iai.02256-14
pubmed: 25024367
pmcid: 4187851
Uriarte SM, Edmisson JS, Jimenez-Flores E (2016) Human neutrophils and oral microbiota: a constant tug-of-war between a harmonious and a discordant coexistence. Immunol Rev 273(1):282–298. https://doi.org/10.1111/imr.12451
doi: 10.1111/imr.12451
pubmed: 27558341
pmcid: 5353849
Anahtar MN, Byrne EH, Doherty KE et al (2015) Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity 42(5):965–976. https://doi.org/10.1016/j.immuni.2015.04.019
doi: 10.1016/j.immuni.2015.04.019
pubmed: 25992865
pmcid: 4461369
Gosmann C, Anahtar MN, Handley SA et al (2017) Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in young South African women. Immunity 46(1):29–37. https://doi.org/10.1016/j.immuni.2016.12.013
doi: 10.1016/j.immuni.2016.12.013
pubmed: 28087240
pmcid: 5270628
Si J, You HJ, Yu J, Sung J, Ko G (2017) Prevotella as a hub for vaginal microbiota under the influence of host genetics and their association with obesity. Cell Host Microbe 21(1):97–105. https://doi.org/10.1016/j.chom.2016.11.010
doi: 10.1016/j.chom.2016.11.010
pubmed: 28017660
Morrison DC, Ryan JL (1987) Endotoxins and disease mechanisms. Annu Rev Med 38(1):417–432. https://doi.org/10.1146/annurev.me.38.020187.002221
doi: 10.1146/annurev.me.38.020187.002221
pubmed: 3555304
Birkedal-Hansen H (1993) Role of cytokines and inflammatory mediators in tissue destruction. J Periodontal Res 28(7):500–510. https://doi.org/10.1111/j.1600-0765.1993.tb02113.x
doi: 10.1111/j.1600-0765.1993.tb02113.x
pubmed: 8263720
Shapira L, Champagne C, Van Dyke TE, Amar S (1998) Strain-dependent activation of monocytes and inflammatory macrophages by lipopolysaccharide of Porphyromonas gingivalis. Infect Immun 66(6):2736–2742. https://doi.org/10.1128/iai.66.6.2736-2742.1998
doi: 10.1128/iai.66.6.2736-2742.1998
pubmed: 9596741
pmcid: 108263
Janský L, Reymanová P, Kopecký J (2003) Dynamics of cytokine production in human peripheral blood mononuclear cells stimulated by LPS or infected by Borrelia. Physiol Res 52(5):593–598
doi: 10.33549/physiolres.930372
pubmed: 14964289
Rossomando EF, Kennedy JE, Hadjimichael J (1990) Tumour necrosis factor alpha in gingival crevicular fluid as a possible indicator of periodontal disease in humans. Arch Oral Biol 35(6):431–434. https://doi.org/10.1016/0003-9969(90)90205-o
doi: 10.1016/0003-9969(90)90205-o
pubmed: 2196868
Stashenko P, Jandinski JJ, Fujiyoshi P, Rynar J, Socransky SS (1991) Tissue levels of bone resorptive cytokines in periodontal disease. J Periodontol 62(8):504–509. https://doi.org/10.1902/jop.1991.62.8.504
doi: 10.1902/jop.1991.62.8.504
pubmed: 1920018
Abu-Amer Y, Ross FP, Edwards J, Teitelbaum SL (1997) Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J Clin Invest 100(6):1557–1565. https://doi.org/10.1172/jci119679
doi: 10.1172/jci119679
pubmed: 9294124
pmcid: 508337
Kobayashi K, Takahashi N, Jimi E et al (2000) Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the odf/rankl–rank interaction. J Exp Med 191(2):275–286. https://doi.org/10.1084/jem.191.2.275
doi: 10.1084/jem.191.2.275
pubmed: 10637272
pmcid: 2195746
Assuma R, Oates T, Cochran D, Amar S, Graves DT (1998) IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J Immunol 160(1):403–409. https://doi.org/10.4049/jimmunol.160.1.403
doi: 10.4049/jimmunol.160.1.403
pubmed: 9551997
Nagaoka S, Tokuda M, Sakuta T et al (1996) Interleukin-8 gene expression by human dental pulp fibroblast in cultures stimulated with Prevotella intermedia lipopolysaccharide. J Endod 22(1):9–12. https://doi.org/10.1016/s0099-2399(96)80228-7
doi: 10.1016/s0099-2399(96)80228-7
pubmed: 8618087
Tokuda M, Nagaoka S, Torii M (2003) Interleukin-10 receptor expression in human dental pulp cells in response to lipopolysaccharide from Prevotella intermedia. J Endod 29(1):48–50. https://doi.org/10.1097/00004770-200301000-00013
doi: 10.1097/00004770-200301000-00013
pubmed: 12540220
Tokuda M, Sakuta T, Fushuku A, Torii M, Nagaoka S (2001) Regulation of interleukin-6 expression in human dental pulp cell cultures stimulated with Prevotella intermedia lipopolysaccharide. J Endod 27(4):273–277. https://doi.org/10.1097/00004770-200104000-00008
doi: 10.1097/00004770-200104000-00008
pubmed: 11485266
Kim SJ, Choi EY, Kim EG et al (2007) Prevotella intermedia lipopolysaccharide stimulates release of tumor necrosis factor-α through mitogen-activated protein kinase signaling pathways in monocyte-derived macrophages. FEMS Immunol Med Microbiol 51(2):407–413. https://doi.org/10.1111/j.1574-695x.2007.00318.x
doi: 10.1111/j.1574-695x.2007.00318.x
pubmed: 17727652
Huang Y, Tang J, Cai Z et al (2020) Prevotella induces the production of Th17 cells in the colon of mice. J Immunol Res 2020:1–14. https://doi.org/10.1155/2020/9607328
doi: 10.1155/2020/9607328
Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87(6):2095–2147. https://doi.org/10.1182/blood.v87.6.2095.bloodjournal8762095
doi: 10.1182/blood.v87.6.2095.bloodjournal8762095
pubmed: 8630372
Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29(3):301–305. https://doi.org/10.1038/ng756
doi: 10.1038/ng756
pubmed: 11687797
pmcid: 4322000
Aksentijevich I, Nowak M, Mallah M et al (2002) De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 46(12):3340–3348. https://doi.org/10.1002/art.10688
doi: 10.1002/art.10688
pubmed: 12483741
pmcid: 4556432
Feldmann J, Prieur AM, Quartier P et al (2002) Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 71(1):198–203. https://doi.org/10.1086/341357
doi: 10.1086/341357
pubmed: 12032915
pmcid: 384980
Goldbach-Mansky R, Dailey NJ, Canna SW et al (2006) Neonatal-onset multisystem inflammatory disease responsive to interleukin-1β inhibition. N Engl J Med 355(6):581–592. https://doi.org/10.1056/nejmoa055137
doi: 10.1056/nejmoa055137
pubmed: 16899778
pmcid: 4178954
Gattorno M, Tassi S, Carta S et al (2007) Pattern of interleukin-1β secretion in response to lipopolysaccharide and ATP before and after interleukin-1 blockade in patients with CIAS1 mutations. Arthritis Rheum 56(9):3138–3148. https://doi.org/10.1002/art.22842
doi: 10.1002/art.22842
pubmed: 17763411
Hoffman HM, Brydges SD (2011) Genetic and molecular basis of inflammasome-mediated disease. J Biol Chem 286(13):10889–10896. https://doi.org/10.1074/jbc.r110.135491
doi: 10.1074/jbc.r110.135491
pubmed: 21296874
pmcid: 3064144
Masters SL, Dunne A, Subramanian SL et al (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol 11(10):897–904. https://doi.org/10.1038/ni.1935
doi: 10.1038/ni.1935
pubmed: 20835230
pmcid: 3103663
Mandrup-Poulsen T (2010) IAPP boosts islet macrophage IL-1 in type 2 diabetes. Nat Immunol 11(10):881–883. https://doi.org/10.1038/ni1010-881
doi: 10.1038/ni1010-881
pubmed: 20856216
Maedler K, Sergeev P, Ris F et al (2002) Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110(6):851–860. https://doi.org/10.1172/jci200215318
doi: 10.1172/jci200215318
pubmed: 12235117
pmcid: 151125
Böni-Schnetzler M, Boller S, Debray S et al (2009) Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology 150(12):5218–5229. https://doi.org/10.1210/en.2009-0543
doi: 10.1210/en.2009-0543
pubmed: 19819943
Westwell-Roper CY, Ehses JA, Verchere CB (2014) Resident macrophages mediate islet amyloid polypeptide–induced islet IL-1β production and β-cell dysfunction. Diabetes 63(5):1698–1711. https://doi.org/10.2337/db13-0863
doi: 10.2337/db13-0863
pubmed: 24222351
Halle A, Hornung V, Petzold GC et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat Immunol 9(8):857–865. https://doi.org/10.1038/ni.1636
doi: 10.1038/ni.1636
pubmed: 18604209
pmcid: 3101478
Carter KW, Hung J, Powell BL et al (2008) Association of interleukin-1 gene polymorphisms with central obesity and metabolic syndrome in a coronary heart disease population. Hum Genet 124(3):199–206. https://doi.org/10.1007/s00439-008-0540-6
doi: 10.1007/s00439-008-0540-6
pubmed: 18716798
Jin L, Yuan RQ, Fuchs A et al (1997) Expression of interleukin-1β in human breast carcinoma. Cancer 80(3):421–434. https://doi.org/10.1002/(sici)1097-0142(19970801)80:3%3c421::aid-cncr10%3e3.0.co;2-z
doi: 10.1002/(sici)1097-0142(19970801)80:3<421::aid-cncr10>3.0.co;2-z
pubmed: 9241076
Pantschenko AG, Pushkar I, Anderson KH et al (2003) The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol 23(2):269–284. https://doi.org/10.3892/ijo.23.2.269
doi: 10.3892/ijo.23.2.269
pubmed: 12851675
Kolb R, Phan L, Borcherding N et al (2016) Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nat Commun 7:13007. https://doi.org/10.1038/ncomms13007
doi: 10.1038/ncomms13007
pubmed: 27708283
pmcid: 5059727
Böni-Schnetzler M, Méreau H, Rachid L et al (2021) IL-1beta promotes the age-associated decline of beta cell function. iScience 24(11):103250. https://doi.org/10.1016/j.isci.2021.103250
doi: 10.1016/j.isci.2021.103250
pubmed: 34746709
pmcid: 8554531
Starr ME, Saito M, Evers BM, Saito H (2015) Age-associated increase in cytokine production during systemic inflammation—II: the role of IL-1β in age-dependent IL-6 upregulation in adipose tissue. J Gerontol A Biol Sci Med Sci 70(12):1508–1515. https://doi.org/10.1093/gerona/glu197
doi: 10.1093/gerona/glu197
pubmed: 25344820
Khedr EM, Omeran N, Karam-Allah Ramadan H, Ahmed GK, Abdelwarith AM (2022) Alteration of gut microbiota in Alzheimer’s disease and their relation to the cognitive impairment. J Alzheimers Dis 88(3):1103–1114. https://doi.org/10.3233/JAD-220176
doi: 10.3233/JAD-220176
pubmed: 35754271
Taati Moghadam M, Amirmozafari N, Mojtahedi A, Bakhshayesh B, Shariati A, Masjedian Jazi F (2022) Association of perturbation of oral bacterial with incident of Alzheimer’s disease: a pilot study. J Clin Lab Anal 36(7). https://doi.org/10.1002/jcla.24483
Scheperjans F, Aho V, Pereira PAB et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30(3):350–358. https://doi.org/10.1002/mds.26069
doi: 10.1002/mds.26069
pubmed: 25476529
Keshavarzian A, Green SJ, Engen PA et al (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30(10):1351–1360. https://doi.org/10.1002/mds.26307
doi: 10.1002/mds.26307
pubmed: 26179554
Lin A, Zheng W, He Y et al (2018) Gut microbiota in patients with Parkinson’s disease in southern China. Parkinsonism Relat Disord 53:82–88. https://doi.org/10.1016/j.parkreldis.2018.05.007
doi: 10.1016/j.parkreldis.2018.05.007
pubmed: 29776865
Li W, Wu X, Hu X et al (2017) Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features. Sci China Life Sci 60(11):1223–1233. https://doi.org/10.1007/s11427-016-9001-4
doi: 10.1007/s11427-016-9001-4
pubmed: 28536926
Unger MM, Spiegel J, Dillmann KU et al (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72. https://doi.org/10.1016/j.parkreldis.2016.08.019
doi: 10.1016/j.parkreldis.2016.08.019
pubmed: 27591074
Hasegawa S, Goto S, Tsuji H et al (2015) Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS ONE 10(11):e0142164. https://doi.org/10.1371/journal.pone.0142164
doi: 10.1371/journal.pone.0142164
pubmed: 26539989
pmcid: 4634857
Bedarf JR, Hildebrand F, Coelho LP et al (2017) Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson's disease patients [published correction appears in Genome Med. 2017 Jun 29;9(1):61]. Genome Med 9(1):39. https://doi.org/10.1186/s13073-017-0428-y
doi: 10.1186/s13073-017-0428-y
pubmed: 28449715
pmcid: 5408370
Petrov VA, Saltykova IV, Zhukova IA et al (2017) Analysis of gut microbiota in patients with Parkinson’s disease. Bull Exp Biol Med 162(6):734–737. https://doi.org/10.1007/s10517-017-3700-7
doi: 10.1007/s10517-017-3700-7
pubmed: 28429209
Hill-Burns EM, Debelius JW, Morton JT et al (2017) Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord 32(5):739–749. https://doi.org/10.1002/mds.26942
doi: 10.1002/mds.26942
pubmed: 28195358
pmcid: 5469442
Barichella M, Severgnini M, Cilia R et al (2019) Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov Disord 34(3):396–405. https://doi.org/10.1002/mds.27581
doi: 10.1002/mds.27581
pubmed: 30576008
Tetz G, Brown SM, Hao Y, Tetz V (2018) Parkinson’s disease and bacteriophages as its overlooked contributors. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-29173-4
Heintz-Buschart A, Pandey U, Wicke T et al (2018) The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord 33(1):88–98. https://doi.org/10.1002/mds.27105
doi: 10.1002/mds.27105
pubmed: 28843021
Johansson MEV, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 105(39):15064–15069. https://doi.org/10.1073/pnas.0803124105
doi: 10.1073/pnas.0803124105
pubmed: 18806221
pmcid: 2567493
Hollister EB, Gao C, Versalovic J (2014) Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 146(6):1449–1458. https://doi.org/10.1053/j.gastro.2014.01.052
doi: 10.1053/j.gastro.2014.01.052
pubmed: 24486050
Precup G, Vodnar DC (2019) Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive literature review. Br J Nutr 122(2):131–140. https://doi.org/10.1017/s0007114519000680
doi: 10.1017/s0007114519000680
pubmed: 30924428
Hartstra AV, Schüppel V, Imangaliyev S et al (2020) Infusion of donor feces affects the gut–brain axis in humans with metabolic syndrome. Mol Metab 42(101076):101076. https://doi.org/10.1016/j.molmet.2020.101076
doi: 10.1016/j.molmet.2020.101076
pubmed: 32916306
pmcid: 7536740
Threlfell S, Mohammadi AS, Ryan BJ et al (2021) Striatal dopamine transporter function is facilitated by converging biology of α-synuclein and cholesterol. Front Cell Neurosci 15:658244. https://doi.org/10.3389/fncel.2021.658244
doi: 10.3389/fncel.2021.658244
pubmed: 33935654
pmcid: 8081845
Iyer V, Venkiteswaran K, Savaliya S et al (2021) The cross-hemispheric nigrostriatal pathway prevents the expression of levodopa-induced dyskinesias. Neurobiol Dis 159(105491):105491. https://doi.org/10.1016/j.nbd.2021.105491
doi: 10.1016/j.nbd.2021.105491
pubmed: 34461264
pmcid: 8597404
Cramb KML, Beccano-Kelly D, Cragg SJ, Wade-Martins R (2023) Impaired dopamine release in Parkinson’s disease. Brain 146(8):3117–3132. https://doi.org/10.1093/brain/awad064
doi: 10.1093/brain/awad064
pubmed: 36864664
pmcid: 10393405
Murman D (2015) The impact of age on cognition. Semin Hear 36(03):111–121. https://doi.org/10.1055/s-0035-1555115
doi: 10.1055/s-0035-1555115
pubmed: 27516712
pmcid: 4906299
Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74(10):720–726. https://doi.org/10.1016/j.biopsych.2013.05.001
doi: 10.1016/j.biopsych.2013.05.001
pubmed: 23759244
Aljumaah MR, Bhatia U, Roach J, Gunstad J, Azcarate Peril MA (2022) The gut microbiome, mild cognitive impairment, and probiotics: a randomized clinical trial in middle-aged and older adults. Clin Nutr 41(11):2565–2576. https://doi.org/10.1016/j.clnu.2022.09.012
doi: 10.1016/j.clnu.2022.09.012
pubmed: 36228569
Kumar A (2018) Editorial: neuroinflammation and cognition. Front Aging Neurosci 10:413. https://doi.org/10.3389/fnagi.2018.00413
doi: 10.3389/fnagi.2018.00413
pubmed: 30618719
pmcid: 6297877
Lo EH (2010) Degeneration and repair in central nervous system disease. Nat Med 16(11):1205–1209. https://doi.org/10.1038/nm.2226
doi: 10.1038/nm.2226
pubmed: 21052074
pmcid: 3985732
Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28(2):203–209
pubmed: 25830558
pmcid: 4367209
Chen Y, Xu J, Chen Y (2021) Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients 13(6):2099. https://doi.org/10.3390/nu13062099
doi: 10.3390/nu13062099
pubmed: 34205336
pmcid: 8234057
Xu Y, Yan J, Zhou P et al (2012) Neurotransmitter receptors and cognitive dysfunction in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 97(1):1–13. https://doi.org/10.1016/j.pneurobio.2012.02.002
doi: 10.1016/j.pneurobio.2012.02.002
pubmed: 22387368
pmcid: 3371373
Duan R, Hou J, Wang X et al (2023) Prevotella histicola transplantation ameliorates cognitive impairment and decreases oxidative stress in vascular dementia rats. Brain Sci 13(8):1136. https://doi.org/10.3390/brainsci13081136
doi: 10.3390/brainsci13081136
pubmed: 37626492
pmcid: 10452631
Gąssowska-Dobrowolska M, Chlubek M, Kolasa A et al (2023) Microglia and astroglia—the potential role in neuroinflammation induced by pre- and neonatal exposure to lead (Pb). Int J Mol Sci 24(12):9903. https://doi.org/10.3390/ijms24129903
doi: 10.3390/ijms24129903
pubmed: 37373050
pmcid: 10298497
Song Q, Fan C, Wang P, Li Y, Yang M, Yu SY (2018) Hippocampal CA1 βCaMKII mediates neuroinflammatory responses via COX-2/PGE2 signaling pathways in depression. J Neuroinflammation 15(1):338. https://doi.org/10.1186/s12974-018-1377-0
doi: 10.1186/s12974-018-1377-0
pubmed: 30526621
pmcid: 6286788
Bathina S, Das UN (2015) Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 11(6):1164–1178. https://doi.org/10.5114/aoms.2015.56342
doi: 10.5114/aoms.2015.56342
pubmed: 26788077
pmcid: 4697050
Huang F, Liu X, Xu S et al (2021) Prevotella histicola mitigated estrogen deficiency-induced depression via gut microbiota-dependent modulation of inflammation in ovariectomized mice. Front Nutr 8:805465. https://doi.org/10.3389/fnut.2021.805465
doi: 10.3389/fnut.2021.805465
pubmed: 35155523
Montagnani M, Bottalico L, Potenza MA et al (2023) The crosstalk between gut microbiota and nervous system: a bidirectional interaction between microorganisms and metabolome. Int J Mol Sci 24(12):10322. https://doi.org/10.3390/ijms241210322
doi: 10.3390/ijms241210322
pubmed: 37373470
pmcid: 10299104
Dillon SM, Lee EJ, Kotter CV et al (2016) Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection. Mucosal Immunol 9(1):24–37. https://doi.org/10.1038/mi.2015.33
doi: 10.1038/mi.2015.33
pubmed: 25921339
Geva-Zatorsky N, Sefik E, Kua L et al (2017) Mining the human gut microbiota for immunomodulatory organisms. Cell 168(5):928-943.e11. https://doi.org/10.1016/j.cell.2017.01.022
doi: 10.1016/j.cell.2017.01.022
pubmed: 28215708
pmcid: 7774263
Ley RE (2016) Prevotella in the gut: choose carefully. Nat Rev Gastroenterol Hepatol 13(2):69–70. https://doi.org/10.1038/nrgastro.2016.4
doi: 10.1038/nrgastro.2016.4
pubmed: 26828918
Zhu A, Sunagawa S, Mende DR, Bork P (2015) Inter-individual differences in the gene content of human gut bacterial species. Genome Biol 16(1):82. https://doi.org/10.1186/s13059-015-0646-9
doi: 10.1186/s13059-015-0646-9
pubmed: 25896518
pmcid: 4428241
De Vadder F, Kovatcheva-Datchary P, Zitoun C, Duchampt A, Bäckhed F, Mithieux G (2016) Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab 24(1):151–157. https://doi.org/10.1016/j.cmet.2016.06.013
doi: 10.1016/j.cmet.2016.06.013
pubmed: 27411015
Sandberg J, Kovatcheva-Datchary P, Björck I, Bäckhed F, Nilsson A (2019) Abundance of gut Prevotella at baseline and metabolic response to barley prebiotics. Eur J Nutr 58(6):2365–2376. https://doi.org/10.1007/s00394-018-1788-9
doi: 10.1007/s00394-018-1788-9
pubmed: 30046942
Chang CJ, Lin TL, Tsai YL et al (2019) Next generation probiotics in disease amelioration. J Food Drug Anal 27(3):615–622. https://doi.org/10.1016/j.jfda.2018.12.011
doi: 10.1016/j.jfda.2018.12.011
pubmed: 31324278
pmcid: 9307044
Castillo-Álvarez F, Pérez-Matute P, Oteo JA, Marzo-Sola ME (2021) The influence of interferon β-1b on gut microbiota composition in patients with multiple sclerosis. Neurol (Engl Ed) 36(7):495–503. https://doi.org/10.1016/j.nrleng.2020.05.006
doi: 10.1016/j.nrleng.2020.05.006
Reynders T, Devolder L, Valles-Colomer M et al (2020) Gut microbiome variation is associated to multiple sclerosis phenotypic subtypes. Ann Clin Transl Neurol 7(4):406–419. https://doi.org/10.1002/acn3.51004
doi: 10.1002/acn3.51004
pubmed: 32162850
pmcid: 7187717