Mendelian Causes of Autoimmunity: the Lupus Phenotype.
Monogenic SLE
autoimmunity
autoinflammation
complement deficiency
efferocytosis
inborn errors of immunity
primary immunodeficiency
type-I interferonopathy
Journal
Journal of clinical immunology
ISSN: 1573-2592
Titre abrégé: J Clin Immunol
Pays: Netherlands
ID NLM: 8102137
Informations de publication
Date de publication:
15 Apr 2024
15 Apr 2024
Historique:
received:
26
01
2024
accepted:
25
03
2024
medline:
15
4
2024
pubmed:
15
4
2024
entrez:
15
4
2024
Statut:
epublish
Résumé
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is characterized by its large heterogeneity in terms of clinical presentation and severity. The pathophysiology of SLE involves an aberrant autoimmune response against various tissues, an excess of apoptotic bodies, and an overproduction of type-I interferon. The genetic contribution to the disease is supported by studies of monozygotic twins, familial clustering, and genome-wide association studies (GWAS) that have identified numerous risk loci. In the early 70s, complement deficiencies led to the description of familial forms of SLE caused by a single gene defect. High-throughput sequencing has recently identified an increasing number of monogenic defects associated with lupus, shaping the concept of monogenic lupus and enhancing our insights into immune tolerance mechanisms. Monogenic lupus (moSLE) should be suspected in patients with either early-onset lupus or syndromic lupus, in male, or in familial cases of lupus. This review discusses the genetic basis of monogenic SLE and proposes its classification based on disrupted pathways. These pathways include defects in the clearance of apoptotic cells or immune complexes, interferonopathies, JAK-STATopathies, TLRopathies, and T and B cell dysregulations.
Identifiants
pubmed: 38619739
doi: 10.1007/s10875-024-01696-8
pii: 10.1007/s10875-024-01696-8
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
99Subventions
Organisme : Agence Nationale de la Recherche
ID : ANR-21-CE17-0064 SOCSIMMUNITY
Organisme : Agence Nationale de la Recherche
ID : ANR-21-RHUS-08 COVIFERON
Organisme : Agence Nationale de la Recherche
ID : ANR-21-CE17-0064 SOCSIMMUNITY
Organisme : HORIZON EUROPE Health
ID : 01057100 [UNDINE]
Organisme : HORIZON EUROPE Health
ID : 01057100 [UNDINE]
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Aringer M et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis. 2019;78(9):1151–9. https://doi.org/10.1136/annrheumdis-2018-214819 .
doi: 10.1136/annrheumdis-2018-214819
pubmed: 31383717
Tsokos GC, Lo MS, Reis PC, Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol. 2016;12(12):716–30. https://doi.org/10.1038/nrrheum.2016.186 .
doi: 10.1038/nrrheum.2016.186
pubmed: 27872476
Lemke G. How macrophages deal with death. Nat Rev Immunol. 2019;19(9):539–49. https://doi.org/10.1038/s41577-019-0167-y .
doi: 10.1038/s41577-019-0167-y
pubmed: 31019284
pmcid: 6733267
Doran AC, Yurdagul A, Tabas I. Efferocytosis in health and disease. Nat Rev Immunol. 2020;20(4):254–67. https://doi.org/10.1038/s41577-019-0240-6 .
doi: 10.1038/s41577-019-0240-6
pubmed: 31822793
Mehrotra P, Ravichandran KS. Drugging the efferocytosis process: concepts and opportunities. Nat Rev Drug Discov. 2022;21(8):601-620. https://doi.org/10.1038/s41573-022-00470-y .
doi: 10.1038/s41573-022-00470-y
Rose T, Dörner T. Drivers of the immunopathogenesis in systemic lupus erythematosus. Best Pract Res Clin Rheumatol. 2017;31(3):321–33. https://doi.org/10.1016/j.berh.2017.09.007 .
doi: 10.1016/j.berh.2017.09.007
pubmed: 29224674
Kamphuis S, Silverman ED. Prevalence and burden of pediatric-onset systemic lupus erythematosus. Nat Rev Rheumatol. 2010;6(9):538–46. https://doi.org/10.1038/nrrheum.2010.121 .
doi: 10.1038/nrrheum.2010.121
pubmed: 20683438
Arnaud L, Fagot J-P, Mathian A, Paita M, Fagot-Campagna A, Amoura Z. Prevalence and incidence of systemic lupus erythematosus in France: a 2010 nation-wide population-based study. Autoimmun Rev. 2014;13(11):1082–9. https://doi.org/10.1016/j.autrev.2014.08.034 .
doi: 10.1016/j.autrev.2014.08.034
pubmed: 25172239
Bader-Meunier B, et al. Initial presentation of childhood-onset systemic lupus erythematosus: a French multicenter study. J Pediatr. 2005;146(5):648–53. https://doi.org/10.1016/j.jpeds.2004.12.045 .
doi: 10.1016/j.jpeds.2004.12.045
pubmed: 15870669
Alexander T, Hedrich CM. Systemic lupus erythematosus – are children miniature adults? Clin Immunol. 2022;234:108907. https://doi.org/10.1016/j.clim.2021.108907 .
doi: 10.1016/j.clim.2021.108907
pubmed: 34890808
Papadimitraki ED, Isenberg DA. Childhood- and adult-onset lupus: an update of similarities and differences. Expert Rev Clin Immunol. 2009;5(4):391–403. https://doi.org/10.1586/eci.09.29 .
doi: 10.1586/eci.09.29
pubmed: 20477036
Gutierrez-Arcelus M, Rich SS, Raychaudhuri S. Autoimmune diseases — connecting risk alleles with molecular traits of the immune system. Nat Rev Genet. 2016;17(3):160. https://doi.org/10.1038/nrg.2015.33 .
doi: 10.1038/nrg.2015.33
pubmed: 26907721
pmcid: 4896831
Criswell LA. The genetic contribution to systemic lupus erythematosus. Bull NYU Hosp Jt Dis. 2008;66(3):176–83.
pubmed: 18937628
Deapen D, et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum. 1992;35(3):311–8. https://doi.org/10.1002/art.1780350310 .
doi: 10.1002/art.1780350310
pubmed: 1536669
Ulff-Møller CJ, Svendsen AJ, Viemose LN, Jacobsen S. Concordance of autoimmune disease in a nationwide Danish systemic lupus erythematosus twin cohort. Semin Arthritis Rheum. 2018;47(4):538–44. https://doi.org/10.1016/j.semarthrit.2017.06.007 .
doi: 10.1016/j.semarthrit.2017.06.007
pubmed: 28755788
Deng Y, Tsao BP. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat Rev Rheumatol. 2010;6(12):683–92. https://doi.org/10.1038/nrrheum.2010.176 .
doi: 10.1038/nrrheum.2010.176
pubmed: 21060334
pmcid: 3135416
Cui Y, Sheng Y, Zhang X. Genetic susceptibility to SLE: recent progress from GWAS. J Autoimmun. 2013;41:25–33. https://doi.org/10.1016/j.jaut.2013.01.008 .
doi: 10.1016/j.jaut.2013.01.008
pubmed: 23395425
Kozyrev SV, et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet. 2008;40(2):211–6. https://doi.org/10.1038/ng.79 .
doi: 10.1038/ng.79
pubmed: 18204447
Jiang SH, et al. Functional rare and low frequency variants in BLK and BANK1 contribute to human lupus. Nat Commun. 2019;10. https://doi.org/10.1038/s41467-019-10242-9 .
Alkaissi H, Havarinasab S, Nielsen JB, Söderkvist P, Hultman P. Bank1 and NF-kappaB as key regulators in anti-nucleolar antibody development. PLoS ONE. 2018;13(7):e0199979. https://doi.org/10.1371/journal.pone.0199979 .
doi: 10.1371/journal.pone.0199979
pubmed: 30016332
pmcid: 6049909
Belot A, Cimaz R. Monogenic forms of systemic lupus erythematosus: new insights into SLE pathogenesis. Pediatr Rheumatol Online J. 2012;10(1):21. https://doi.org/10.1186/1546-0096-10-21 .
doi: 10.1186/1546-0096-10-21
pubmed: 22883345
pmcid: 3489560
Belot A, Cochat P. Monogenic systemic lupus erythematosus. Nephrol Ther. 2012;8(1):1–4. https://doi.org/10.1016/j.nephro.2011.05.003 .
doi: 10.1016/j.nephro.2011.05.003
pubmed: 21757414
Belot A, et al. Contribution of rare and predicted pathogenic gene variants to childhood-onset lupus: a large, genetic panel analysis of British and French cohorts. Lancet Rheumatol. 2020;2(2):e99–109. https://doi.org/10.1016/S2665-9913(19)30142-0 .
doi: 10.1016/S2665-9913(19)30142-0
pubmed: 38263665
Agnello V, De Bracco MM, Kunkel HG. Hereditary C2 deficiency with some manifestations of systemic lupus erythematosus. J Immunol Baltim Md 1950. 1972;108(3):837–40.
Moncada B, Day NKB, Good RA, Windhorst DB. Lupus-erythematosus-like syndrome with a familial defect of complement. N Engl J Med. 1972;286(13):689–93. https://doi.org/10.1056/nejm197203302861304 .
doi: 10.1056/nejm197203302861304
pubmed: 4110615
Santer DM, et al. C1q deficiency leads to the defective suppression of IFN-alpha in response to nucleoprotein containing immune complexes. J Immunol Baltim Md 1950. 2010;185(8):4738–49. https://doi.org/10.4049/jimmunol.1001731 .
doi: 10.4049/jimmunol.1001731
Batu ED, et al. Whole exome sequencing in early-onset systemic lupus erythematosus. J Rheumatol. 2018;45(12):1671–9. https://doi.org/10.3899/jrheum.171358 .
doi: 10.3899/jrheum.171358
pubmed: 30008451
Abel G, Agnello V. Complement deficiency and systemic lupus erythematosus. Elsevier; 2004. pp. 173–201. https://doi.org/10.1016/b9-78-012433-9/01950-0090 .
Lintner KE, et al. Early components of the complement classical activation pathway in human systemic autoimmune diseases. Front Immunol. 2016;7:36. https://doi.org/10.3389/fimmu.2016.00036 .
doi: 10.3389/fimmu.2016.00036
pubmed: 26913032
pmcid: 4753731
Tusseau M, et al. DNASE1L3 deficiency, new phenotypes, and evidence for a transient type I IFN signaling. J Clin Immunol. 2022;42(6):1310–20. https://doi.org/10.1007/s10875-022-01287-5 .
doi: 10.1007/s10875-022-01287-5
pubmed: 35670985
Sisirak V, et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell. 2016;166(1):88–101. https://doi.org/10.1016/j.cell.2016.05.034 .
doi: 10.1016/j.cell.2016.05.034
pubmed: 27293190
pmcid: 5030815
Al-Mayouf SM, et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat Genet. 2011;43(12):1186–8. https://doi.org/10.1038/ng.975 .
doi: 10.1038/ng.975
pubmed: 22019780
Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011;365:2110–21. https://doi.org/10.1056/NEJMra1100359 .
Aicardi J, Goutières F. A Progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann Neurol. 1984;15(1):49–54. https://doi.org/10.1002/ana.410150109 .
doi: 10.1002/ana.410150109
pubmed: 6712192
Lebon P, Badoual J, Ponsot G, Goutières F, Hémeury-Cukier F, Aicardi J. Intrathecal synthesis of interferon-alpha in infants with progressive familial encephalopathy. J Neurol Sci. 1988;84(2):201–8. https://doi.org/10.1016/0022-510X(88)90125-6 .
doi: 10.1016/0022-510X(88)90125-6
pubmed: 2837539
Crow YJ, Rehwinkel J. Aicardi-Goutières syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum Mol Genet. 2009;18(R2):R130–6. https://doi.org/10.1093/hmg/ddp293 .
doi: 10.1093/hmg/ddp293
pubmed: 19808788
pmcid: 2758706
Crow YJ, et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat Genet. 2006;38(8):Art. no. 8. https://doi.org/10.1038/ng1845 .
doi: 10.1038/ng1845
Crow YJ. Type I interferonopathies: a novel set of inborn errors of immunity. Ann N Y Acad Sci. 2011;1238(1):91–8. https://doi.org/10.1111/j.1749-6632.2011.06220.x .
doi: 10.1111/j.1749-6632.2011.06220.x
pubmed: 22129056
Crow YJ, Stetson DB. The type I interferonopathies: 10 years on. Nat Rev Immunol. 2022;22(8):471-483. https://doi.org/10.1038/s41577-021-00633-9 .
doi: 10.1038/s41577-021-00633-9
Rice GI, Rodero MP, Crow YJ. Human disease phenotypes associated with mutations in TREX1. J Clin Immunol. 2015;35(3):235–43. https://doi.org/10.1007/s10875-015-0147-3 .
doi: 10.1007/s10875-015-0147-3
pubmed: 25731743
Richards A, et al. C-terminal truncations in human 3’-5’ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet. 2007;39(9):1068–70. https://doi.org/10.1038/ng2082 .
doi: 10.1038/ng2082
pubmed: 17660820
Liu Y, et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med. 2014;371(6):507–18. https://doi.org/10.1056/NEJMoa1312625 .
doi: 10.1056/NEJMoa1312625
pubmed: 25029335
pmcid: 4174543
König N, et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis. 2017;76(2):468–72. https://doi.org/10.1136/annrheumdis-2016-209841 .
doi: 10.1136/annrheumdis-2016-209841
pubmed: 27566796
Jeremiah N, et al. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest. 2014;124(12):5516–20. https://doi.org/10.1172/JCI79100 .
doi: 10.1172/JCI79100
pubmed: 25401470
pmcid: 4348945
Lepelley A, et al. Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling. J Exp Med. 2020;217(11):e20200600. https://doi.org/10.1084/jem.20200600 .
doi: 10.1084/jem.20200600
pubmed: 32725128
pmcid: 7596811
Watkin LB, et al. COPA mutations impair ER-Golgi transport causing hereditary autoimmune-mediated lung disease and arthritis. Nat Genet. 2015;47(6):654–60. https://doi.org/10.1038/ng.3279 .
doi: 10.1038/ng.3279
pubmed: 25894502
pmcid: 4513663
Briggs TA, et al. Spondyloenchondrodysplasia due to mutations in ACP5: a comprehensive survey. J Clin Immunol. 2016;36:220–34. https://doi.org/10.1007/s10875-016-0252-y .
doi: 10.1007/s10875-016-0252-y
pubmed: 26951490
pmcid: 4792361
Rodero MP, et al. Type I interferon-mediated autoinflammation due to DNase II deficiency. Nat Commun. 2017;8(1):2176. https://doi.org/10.1038/s41467-017-01932-3 .
doi: 10.1038/s41467-017-01932-3
pubmed: 29259162
pmcid: 5736616
Thaventhiran JED, et al. Whole-genome sequencing of a sporadic primary immunodeficiency cohort. Nature. 2020;583(7814):Art. no. 7814. https://doi.org/10.1038/s41586-020-2265-1 .
doi: 10.1038/s41586-020-2265-1
Hadjadj J, et al. Early-onset autoimmunity associated with SOCS1 haploinsufficiency. Nat Commun. 2020;11:5341. https://doi.org/10.1038/s41467-020-18925-4 .
doi: 10.1038/s41467-020-18925-4
pubmed: 33087723
pmcid: 7578789
Gruber C, et al. IL4Rα and IL17A blockade rescue autoinflammation in SOCS1 haploinsufficiency. J Clin Immunol. 2023;44(1):36. https://doi.org/10.1007/s10875-023-01635-z .
doi: 10.1007/s10875-023-01635-z
pubmed: 38157076
Rodari MM, et al. Insights into the expanding intestinal phenotypic spectrum of SOCS1 haploinsufficiency and therapeutic options. J Clin Immunol. 2023. https://doi.org/10.1007/s10875-023-01495-7 .
doi: 10.1007/s10875-023-01495-7
pubmed: 37156989
pmcid: 10354128
Parlato M, et al. Loss-of-function mutation in PTPN2 causes aberrant activation of JAK signaling via STAT and very early onset intestinal inflammation. Gastroenterology. 2020;159(5):1968-1971.e4. https://doi.org/10.1053/j.gastro.2020.07.040 .
doi: 10.1053/j.gastro.2020.07.040
pubmed: 32721438
Okada S, et al. Human STAT1 gain-of-function heterozygous mutations: chronic mucocutaneous candidiasis and type I interferonopathy. J Clin Immunol. 2020;40(8):1065–81. https://doi.org/10.1007/s10875-020-00847-x .
doi: 10.1007/s10875-020-00847-x
pubmed: 32852681
pmcid: 8561788
Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype | Blood | American Society of Hematology. https://ashpublications-org.proxy.insermbiblio.inist.fr/blood/article/127/25/3154/35201/Heterozygous-STAT1-gain-of-function-mutations . Accessed 17 Nov 2023.
Brown GJ, et al. TLR7 gain-of-function genetic variation causes human lupus. Nature. 2022;605(7909):349–56. https://doi.org/10.1038/s41586-022-04642-z .
doi: 10.1038/s41586-022-04642-z
pubmed: 35477763
pmcid: 9095492
Xie C, et al. De novo PACSIN1 gene variant found in childhood lupus and a role for PACSIN1/TRAF4 complex in toll-like receptor 7 activation. Arthritis Rheumatol Hoboken NJ. 2023;75(6):1058–71. https://doi.org/10.1002/art.42416 .
doi: 10.1002/art.42416
Wolf C, et al. UNC93B1 variants underlie TLR7-dependent autoimmunity. Sci Immunol. 2024;eadi9769. https://doi.org/10.1126/sciimmunol.adi9769 .
Rieux-Laucat F, et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science. 1995;268(5215):1347–9. https://doi.org/10.1126/science.7539157 .
doi: 10.1126/science.7539157
pubmed: 7539157
Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest. 1996;98(5):1107–13. https://doi.org/10.1172/JCI118892 .
doi: 10.1172/JCI118892
pubmed: 8787672
pmcid: 507531
Vaishnaw AK, et al. The spectrum of apoptotic defects and clinical manifestations, including systemic lupus erythematosus, in humans with CD95 (Fas/APO-1) mutations. Arthritis Rheum. 1999;42(9):1833–42. https://doi.org/10.1002/1529-0131(199909)42:9%3c1833::AID-ANR7%3e3.0.CO;2-Q .
doi: 10.1002/1529-0131(199909)42:9<1833::AID-ANR7>3.0.CO;2-Q
pubmed: 10513797
Rieux-Laucat F. What’s up in the ALPS. Curr Opin Immunol. 2017;49:79–86. https://doi.org/10.1016/j.coi.2017.10.001 .
doi: 10.1016/j.coi.2017.10.001
pubmed: 29073495
Kuehn HS, Boast B, Rosenzweig SD. Inborn errors of human IKAROS: LOF and GOF variants associated with primary immunodeficiency. Clin Exp Immunol. 2023;212(2):129–36. https://doi.org/10.1093/cei/uxac109 .
doi: 10.1093/cei/uxac109
pubmed: 36433803
Su G, et al. Analysis of five cases of monogenic lupus related to primary immunodeficiency diseases. Inflamm Res Off J Eur Histamine Res Soc Al. 2021;70(10–12):1211–6. https://doi.org/10.1007/s00011-021-01479-6 .
doi: 10.1007/s00011-021-01479-6
Walter JE, et al. Impaired receptor editing and heterozygous RAG2 mutation in a patient with systemic lupus erythematosus and erosive arthritis. J Allergy Clin Immunol. 2015;135(1):272–3. https://doi.org/10.1016/j.jaci.2014.07.063 .
doi: 10.1016/j.jaci.2014.07.063
pubmed: 25312763
Belot A, et al. Protein kinase cδ deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum. 2013;65(8):2161–71. https://doi.org/10.1002/art.38008 .
doi: 10.1002/art.38008
pubmed: 23666743
pmcid: 4066615
Jefferson L, et al. Phenotypic variability in PRKCD: a review of the literature. J Clin Immunol. 2023. https://doi.org/10.1007/s10875-023-01579-4 .
doi: 10.1007/s10875-023-01579-4
pubmed: 37794137
Neehus A-L, et al. Impaired respiratory burst contributes to infections in PKCδ-deficient patients. J Exp Med. 2021;218(9):e20210501. https://doi.org/10.1084/jem.20210501 .
doi: 10.1084/jem.20210501
pubmed: 34264265
pmcid: 8288504
Bader-Meunier B, et al. Are RASopathies new monogenic predisposing conditions to the development of systemic lupus erythematosus? Case report and systematic review of the literature. Semin Arthritis Rheum. 2013;43(2):217–9. https://doi.org/10.1016/j.semarthrit.2013.04.009 .
doi: 10.1016/j.semarthrit.2013.04.009
pubmed: 23786871
Quaio CRDC, et al. Autoimmune disease and multiple autoantibodies in 42 patients with RASopathies. Am J Med Genet A. 2012;158A(5):1077–82. https://doi.org/10.1002/ajmg.a.35290 .
doi: 10.1002/ajmg.a.35290
pubmed: 22488759
Oliveira JB, et al. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci. 2007;104(21):8953–8. https://doi.org/10.1073/pnas.0702975104 .
doi: 10.1073/pnas.0702975104
pubmed: 17517660
pmcid: 1885609
Niemela JE, et al. Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis. Blood. 2011;117(10):2883–6. https://doi.org/10.1182/blood-2010-07-295501 .
doi: 10.1182/blood-2010-07-295501
pubmed: 21079152
pmcid: 3062298
Eni-Aganga I, Lanaghan ZM, Balasubramaniam M, Dash C, Pandhare J. PROLIDASE: a review from discovery to its role in health and disease. Front Mol Biosci. 2021;8:723003. https://doi.org/10.3389/fmolb.2021.723003 .
Klar A, et al. Prolidase deficiency: it looks like systemic lupus erythematosus but it is not. Eur J Pediatr. 2010;169(6):727–32. https://doi.org/10.1007/s00431-009-1102-1 .
doi: 10.1007/s00431-009-1102-1
pubmed: 19937054
Hodgson R, et al. Prolidase deficiency causes spontaneous T cell activation and lupus-like autoimmunity. J Immunol Author Choice. 2023;210(5):547. https://doi.org/10.4049/jimmunol.2200212 .
doi: 10.4049/jimmunol.2200212
Rossignol F, et al. Quantitative analysis of the natural history of prolidase deficiency: description of 17 families and systematic review of published cases. Genet Med Off J Am Coll Med Genet. 2021;23(9):1604. https://doi.org/10.1038/s41436-021-01200-2 .
doi: 10.1038/s41436-021-01200-2
He Y, et al. P2RY8 variants in lupus patients uncover a role for the receptor in immunological tolerance. J Exp Med. 2022;219(1):e20211004. https://doi.org/10.1084/jem.20211004 .
doi: 10.1084/jem.20211004
pubmed: 34889940
Tusseau M, Belot A. ‘P2RY8-son’ break of tolerance promotes SLE. J Exp Med. 2022;219(1):e20211972. https://doi.org/10.1084/jem.20211972 .
doi: 10.1084/jem.20211972
pubmed: 34901992
Elhani I, Riller Q, Boursier G, Hentgen V, Rieux-Laucat F, Georgin-Lavialle S. A20 haploinsufficiency: a systematic review of 177 cases. J Invest Dermatol. 2023. https://doi.org/10.1016/j.jid.2023.12.007 .
doi: 10.1016/j.jid.2023.12.007
pubmed: 38128752
Xu L, et al. Loss-of-function variants in SAT1 cause X-linked childhood-onset systemic lupus erythematosus. Ann Rheum Dis. 2022;81(12):1712–21. https://doi.org/10.1136/ard-2022-222795 .
doi: 10.1136/ard-2022-222795
pubmed: 35977808
Boussard C, et al. DOCK11 deficiency in patients with X-linked actinopathy and autoimmunity. Blood. 2023. https://doi.org/10.1182/blood.2022018486 .
Block J, et al. Systemic inflammation and normocytic anemia in DOCK11 deficiency. N Engl J Med. 2023;389(6):527–39. https://doi.org/10.1056/NEJMoa2210054 .
doi: 10.1056/NEJMoa2210054
pubmed: 37342957
Pescarmona R, et al. Comparison of RT-qPCR and Nanostring in the measurement of blood interferon response for the diagnosis of type I interferonopathies. Cytokine. 2019;113:446–52. https://doi.org/10.1016/j.cyto.2018.10.023 .
doi: 10.1016/j.cyto.2018.10.023
pubmed: 30413290
Wahadat MJ, et al. Serum IFNα2 levels are associated with disease activity and outperform IFN-I gene signature in a longitudinal childhood-onset SLE cohort. Rheumatol Oxf Engl. 2023;62(8):2872–9. https://doi.org/10.1093/rheumatology/keac698 .
doi: 10.1093/rheumatology/keac698
Nombel A, et al. Assessment of type I interferon response in routine practice in France in 2022. RMD Open. 2023; 9. https://doi.org/10.1136/rmdopen-2023-003211 .
Rodríguez-Carrio J, et al. 2022 EULAR points to consider for the measurement, reporting and application of IFN-I pathway activation assays in clinical research and practice. Ann Rheum Dis. 2023;82(6):754–62. https://doi.org/10.1136/ard-2022-223628 .
doi: 10.1136/ard-2022-223628
pubmed: 36858821
Rice GI, et al. Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol. 2013;12(12):1159–69. https://doi.org/10.1016/S1474-4422(13)70258-8 .
doi: 10.1016/S1474-4422(13)70258-8
pubmed: 24183309
pmcid: 4349523
Picard C, et al. Anti-C1q autoantibodies as markers of renal involvement in childhood-onset systemic lupus erythematosus. Pediatr Nephrol. 2017;32(9):1537–45. https://doi.org/10.1007/s00467-017-3646-z .
doi: 10.1007/s00467-017-3646-z
pubmed: 28343355
Hartl J, et al. Autoantibody-mediated impairment of DNASE1L3 activity in sporadic systemic lupus erythematosus. J Exp Med. 2021;218(5):e20201138. https://doi.org/10.1084/jem.20201138 .
doi: 10.1084/jem.20201138
pubmed: 33783474
pmcid: 8020718
Salzer E, et al. B-cell deficiency and severe autoimmunity caused by deficiency of protein kinase C δ. Blood. 2013;121(16):3112–6. https://doi.org/10.1182/blood-2012-10-460741 .
doi: 10.1182/blood-2012-10-460741
pubmed: 23319571
pmcid: 3630826
Kuehn HS, et al. Loss-of-function of the protein kinase C δ (PKCδ) causes a B-cell lymphoproliferative syndrome in humans. Blood. 2013;121(16):3117–25. https://doi.org/10.1182/blood-2012-12-469544 .
doi: 10.1182/blood-2012-12-469544
pubmed: 23430113
pmcid: 3630827
Lei L, et al. Successful use of ofatumumab in two cases of early-onset juvenile SLE with thrombocytopenia caused by a mutation in protein kinase C δ. Pediatr Rheumatol. 2018;16(1):61. https://doi.org/10.1186/s12969-018-0278-1 .
doi: 10.1186/s12969-018-0278-1
Gu H, et al. Sirolimus is effective in autoimmune lymphoproliferative syndrome-type III: a pedigree case report with homozygous variation PRKCD. Int J Immunopathol Pharmacol. 2021;35:20587384211025936. https://doi.org/10.1177/20587384211025934 .
doi: 10.1177/20587384211025934
pubmed: 34187243
pmcid: 8252363
Moreews M, et al. mTOR activation underlies enhanced B cell proliferation and autoimmunity in PrkcdG510S/G510S mice. J Immunol. 2023;210:1209–21. https://doi.org/10.4049/jimmunol.2200818 .
doi: 10.4049/jimmunol.2200818
pubmed: 36961448
Akbar L, Alsagheir R, Al-Mayouf SM. Efficacy of a sequential treatment by belimumab in monogenic systemic lupus erythematosus. Eur J Rheumatol. 2020;7(4):184–9. https://doi.org/10.5152/eurjrheum.2020.20087 .
doi: 10.5152/eurjrheum.2020.20087
pubmed: 32910770
pmcid: 7574768
Chen F, et al. Belimumab in childhood systemic lupus erythematosus: a review of available data. Front Immunol. 2022;13:940416. https://doi.org/10.3389/fimmu.2022.940416 .
doi: 10.3389/fimmu.2022.940416
pubmed: 35967351
pmcid: 9363663
Gómez-Arias PJ, Gómez-García F, Hernández-Parada J, Montilla-López AM, Ruano J, Parra-Peralbo E. Efficacy and safety of Janus kinase inhibitors in type I interferon-mediated monogenic autoinflammatory disorders: a scoping review. Dermatol Ther. 2021;11(3):733–50. https://doi.org/10.1007/s13555-021-00517-9 .
doi: 10.1007/s13555-021-00517-9
Berrada KR, et al. Lung transplantation under a Janus kinase inhibitor in three patients with SAVI syndrome. J Clin Immunol. 2023. https://doi.org/10.1007/s10875-023-01595-4 .
doi: 10.1007/s10875-023-01595-4
pubmed: 37814086
Anifrolumab normalizes the type I interferon signature in a cohort of patients with type I interferonopathies. ACR meeting abstracts. https://acrabstracts.org/abstract/anifrolumab-normalizes-the-type-i-interferon-signature-in-a-cohort-of-patients-with-type-i-interferonopathies/ . Accessed 17 Dec 2023.
Brodszki N, et al. European Society for Immunodeficiencies (ESID) and European reference network on rare primary immunodeficiency, autoinflammatory and autoimmune diseases (ERN RITA) complement guideline: deficiencies, diagnosis, and management. J Clin Immunol. 2020;40(4):576–91. https://doi.org/10.1007/s10875-020-00754-1 .
doi: 10.1007/s10875-020-00754-1
pubmed: 32064578
pmcid: 7253377
Mackensen A, et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat Med. 2022;28(10):10. https://doi.org/10.1038/s41591-022-02017-5 .
doi: 10.1038/s41591-022-02017-5
Mougiakakos D, et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N Engl J Med. 2021;385(6):567–9. https://doi.org/10.1056/NEJMc2107725 .
doi: 10.1056/NEJMc2107725
pubmed: 34347960
Li G, et al. Genetic heterogeneity in Chinese children with systemic lupus erythematosus. Clin Exp Rheumatol. 2021;39(1):214–22.
doi: 10.55563/clinexprheumatol/zte897
pubmed: 33337996
Misztal MC, et al. Genome-wide sequencing identified rare genetic variants for childhood-onset monogenic lupus. J Rheumatol. 2023;50(5):671–5. https://doi.org/10.3899/jrheum.220513 .
doi: 10.3899/jrheum.220513
pubmed: 36379578
de Inocencio J, et al. Somatic NOD2 mosaicism in Blau syndrome. J Allergy Clin Immunol. 2015;136(2):484-487.e2. https://doi.org/10.1016/j.jaci.2014.12.1941 .
doi: 10.1016/j.jaci.2014.12.1941
pubmed: 25724124
pmcid: 4530052
Jiménez-Treviño S, González-Roca E, Ruiz-Ortiz E, Yagüe J, Ramos E, Aróstegui JI. First report of vertical transmission of a somatic NLRP3 mutation in cryopyrin-associated periodic syndromes. Ann Rheum Dis. 2013;72(6):1109–10. https://doi.org/10.1136/annrheumdis-2012-202913 .
doi: 10.1136/annrheumdis-2012-202913
pubmed: 23486414
Labrousse M, et al. Mosaicism in autoinflammatory diseases: cryopyrin-associated periodic syndromes (CAPS) and beyond. A systematic review. Crit Rev Clin Lab Sci. 2018;55:432–42. https://doi.org/10.1080/10408363.2018.1488805 .
doi: 10.1080/10408363.2018.1488805
pubmed: 30035647
Holzelova E, et al. Autoimmune lymphoproliferative syndrome with somatic Fas mutations. N Engl J Med. 2004;351(14):1409–18. https://doi.org/10.1056/NEJMoa040036 .
doi: 10.1056/NEJMoa040036
pubmed: 15459302
Beck DB, et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N Engl J Med. 2020;383(27):2628–38. https://doi.org/10.1056/NEJMoa2026834 .
doi: 10.1056/NEJMoa2026834
pubmed: 33108101
pmcid: 7847551
Almlöf JC, et al. Whole-genome sequencing identifies complex contributions to genetic risk by variants in genes causing monogenic systemic lupus erythematosus. Hum Genet. 2019;138(2):141–50. https://doi.org/10.1007/s00439-018-01966-7 .
doi: 10.1007/s00439-018-01966-7
pubmed: 30707351
pmcid: 6373277
Charras A, et al. Panel sequencing links rare, likely damaging gene variants with distinct clinical phenotypes and outcomes in juvenile-onset SLE. Rheumatology. 2023;62(SI2):SI210–25. https://doi.org/10.1093/rheumatology/keac275 .
doi: 10.1093/rheumatology/keac275
pubmed: 35532072
Boulisfane-El Khalifi S, et al. COPA syndrome as a cause of lupus nephritis. Kidney Int Rep. 2019;4:1187–1189. https://doi.org/10.1016/j.ekir.2019.04.014 .
doi: 10.1016/j.ekir.2019.04.014
pubmed: 31440710
pmcid: 6698288
Crow YJ, AGS group. Clinical non-penetrance associated with biallelic mutations in the RNase H2 complex. J Clin Immunol. 2023;43(4):706–8. https://doi.org/10.1007/s10875-023-01438-2 .
doi: 10.1007/s10875-023-01438-2
pubmed: 36705819
pmcid: 7614947
Javierre BM, et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 2010;20(2):170–9. https://doi.org/10.1101/gr.100289.109 .
doi: 10.1101/gr.100289.109
pubmed: 20028698
pmcid: 2813473
Garau J, et al. Altered DNA methylation and gene expression predict disease severity in patients with Aicardi-Goutières syndrome. Clin Immunol Orlando Fla. 2023;249:109299. https://doi.org/10.1016/j.clim.2023.109299 .
doi: 10.1016/j.clim.2023.109299