Longitudinal cerebral perfusion in presymptomatic genetic frontotemporal dementia: GENFI results.
arterial spin labeling
cerebral perfusion
frontotemporal dementia
presymptomatic biomarker
Journal
Alzheimer's & dementia : the journal of the Alzheimer's Association
ISSN: 1552-5279
Titre abrégé: Alzheimers Dement
Pays: United States
ID NLM: 101231978
Informations de publication
Date de publication:
16 Apr 2024
16 Apr 2024
Historique:
revised:
16
01
2024
received:
21
09
2023
accepted:
21
01
2024
medline:
16
4
2024
pubmed:
16
4
2024
entrez:
16
4
2024
Statut:
aheadofprint
Résumé
Effective longitudinal biomarkers that track disease progression are needed to characterize the presymptomatic phase of genetic frontotemporal dementia (FTD). We investigate the utility of cerebral perfusion as one such biomarker in presymptomatic FTD mutation carriers. We investigated longitudinal profiles of cerebral perfusion using arterial spin labeling magnetic resonance imaging in 42 C9orf72, 70 GRN, and 31 MAPT presymptomatic carriers and 158 non-carrier controls. Linear mixed effects models assessed perfusion up to 5 years after baseline assessment. Perfusion decline was evident in all three presymptomatic groups in global gray matter. Each group also featured its own regional pattern of hypoperfusion over time, with the left thalamus common to all groups. Frontal lobe regions featured lower perfusion in those who symptomatically converted versus asymptomatic carriers past their expected age of disease onset. Cerebral perfusion is a potential biomarker for assessing genetic FTD and its genetic subgroups prior to symptom onset. Gray matter perfusion declines in at-risk genetic frontotemporal dementia (FTD). Regional perfusion decline differs between at-risk genetic FTD subgroups . Hypoperfusion in the left thalamus is common across all presymptomatic groups. Converters exhibit greater right frontal hypoperfusion than non-converters past their expected conversion date. Cerebral hypoperfusion is a potential early biomarker of genetic FTD.
Types de publication
English Abstract
Journal Article
Langues
ita
Sous-ensembles de citation
IM
Subventions
Organisme : CIHR
ID : MOP-327387
Pays : Canada
Organisme : CIHR
ID : PJT-175242
Pays : Canada
Organisme : Medical Research Council
ID : MC_UU_00030/14
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/T033371/1
Pays : United Kingdom
Informations de copyright
© 2024 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
Références
Seelaar H, Rohrer JD, Pijnenburg YAL, Fox NC, van Swieten JC. Clinical, genetic, and pathological heterogeneity of frontotemporal dementia: a review. J Neurology Neurosurg Psychiatry. 2011;82:476. doi:10.1136/jnnp.2010.212225
Onyike CU, Diehl‐Schmid J. The epidemiology of frontotemporal dementia. Int Rev Psychiatr. 2013;25:130‐137. doi:10.3109/09540261.2013.776523
Warren JD, Rohrer JD, Rossor MN. Clinical review. Frontotemporal dementia. Bmj Clin Res Ed. 2013;347:f4827. doi:10.1136/bmj.f4827
Mahoney CJ, Beck J, Rohrer JD, et al. Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain. 2012;135:736‐750. doi:10.1093/brain/awr361
Greaves CV, Rohrer JD. An update on genetic frontotemporal dementia. J Neurol. 2019;266:2075‐2086. doi:10.1007/s00415‐019‐09363‐4
Cenik B, Sephton CF, Dewey CM, et al. Suberoylanilide hydroxamic acid (vorinostat) up‐regulates progranulin transcription. J Biol Chem. 2011;286:16101‐16108. doi:10.1074/jbc.m110.193433
Desmarais P, Rohrer JD, Nguyen QD, et al. Therapeutic trial design for frontotemporal dementia and related disorders. J Neurology Neurosurg Psychiatry. 2018;90:412‐423. doi:10.1136/jnnp‐2018‐318603
Bateman RJ, Xiong C, Benzinger TLS, et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. New Engl J Med. 2012;367:795‐804. doi:10.1056/nejmoa1202753
Zeun P, Scahill R, Osborne‐Crowley K, et al. Biological and clinical manifestations of Huntington's disease in gene carriers very far from predicted onset. J Neurology Neurosurg Psychiatry. 2022;93:A14.1‐A14.2. doi:10.1136/jnnp‐2022‐abn.40
Rohrer JD. Structural brain imaging in frontotemporal dementia. Biochimica Et Biophysica Acta Bba—Mol Basis Dis. 2012;1822:325‐332. doi:10.1016/j.bbadis.2011.07.014
Walhout R, Schmidt R, Westeneng H‐J, et al. Brain morphologic changes in asymptomatic C9orf72 repeat expansion carriers. Neurology. 2015;85:1780‐1788. doi:10.1212/wnl.0000000000002135
Dopper EGP, Chalos V, Ghariq E, et al. Cerebral blood flow in presymptomatic MAPT and GRN mutation carriers: a longitudinal arterial spin labeling study☆. Neuroimage Clin. 2016;12:460‐465. doi:10.1016/j.nicl.2016.08.001
Mutsaerts HJMM, Mirza SS, Petr J, et al. Cerebral perfusion changes in presymptomatic genetic frontotemporal dementia: a GENFI study. Brain. 2019;142:awz039. doi:10.1093/brain/awz039
Bertrand A, Wen J, Rinaldi D, et al. early cognitive, structural, and microstructural changes in presymptomatic C9orf72 carriers younger than 40 years. Jama Neurol. 2018;75:236‐245. doi:10.1001/jamaneurol.2017.4266
Popuri K, Dowds E, Beg MF, et al. Gray matter changes in asymptomatic C9orf72 and GRN mutation carriers. Neuroimage Clin. 2018;18:591‐598. doi:10.1016/j.nicl.2018.02.017
Popuri K, Beg MF, Lee H, et al. FDG‐PET in presymptomatic C9orf72 mutation carriers. Neuroimage Clin. 2021;31:102687. doi:10.1016/j.nicl.2021.102687
Jiskoot LC, Panman JL, Meeter LH, et al. Longitudinal multimodal MRI as prognostic and diagnostic biomarker in presymptomatic familial frontotemporal dementia. Brain. 2019;142:193‐208. doi:10.1093/brain/awy288
Lee SE, Sias AC, Mandelli ML, et al. Network degeneration and dysfunction in presymptomatic C9ORF72 expansion carriers. Neuroimage Clin. 2017;14:286‐297. doi:10.1016/j.nicl.2016.12.006
Cash DM, Bocchetta M, Thomas DL, et al. Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study. Neurobiol Aging. 2017;62:191‐196. doi:10.1016/j.neurobiolaging.2017.10.008
Rohrer JD, Nicholas JM, Cash DM, et al. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross‐sectional analysis. Lancet Neurology. 2015;14:253‐262. doi:10.1016/s1474‐4422(14)70324‐2
Dopper EGP, Rombouts SARB, Jiskoot LC, et al. Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia. Neurology. 2014;83:e19‐e26. doi:10.1212/wnl.0000000000000583
Tavares TP, Mitchell DGV, Coleman K, et al. Ventricular volume expansion in presymptomatic genetic frontotemporal dementia. Neurology. 2019;93. doi:10.1212/wnl.0000000000008386
Wolk DA, Detre JA. Arterial spin labeling MRI: an emerging biomarker for Alzheimer's disease and other neurodegenerative conditions. Curr Opin Neurol. 2012;25:421‐428. doi:10.1097/wco.0b013e328354ff0a
Petr J, Mutsaerts HJMM, Vita ED, et al. Effects of systematic partial volume errors on the estimation of gray matter cerebral blood flow with arterial spin labeling MRI. Magnetic Reson Mater Phys Biology Medicine. 2018;31:725‐734. doi:10.1007/s10334‐018‐0691‐y
DeJesus‐Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p‐Linked FTD and ALS. Neuron. 2011;72:245‐256. doi:10.1016/j.neuron.2011.09.011
Mutsaerts HJMM, Petr J, Groot P, et al. ExploreASL: an image processing pipeline for multi‐center ASL perfusion MRI studies. Neuroimage. 2020;219:117031. doi:10.1016/j.neuroimage.2020.117031
Ashburner J, Friston KJ. Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation. Neuroimage. 2011;55:954‐967. doi:10.1016/j.neuroimage.2010.12.049
Shirzadi Z, Crane DE, Robertson AD, et al. Automated removal of spurious intermediate cerebral blood flow volumes improves image quality among older patients: a clinical arterial spin labeling investigation. J Magn Reson Imaging. 2015;42:1377‐1385. doi:10.1002/jmri.24918
Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magnet Reson Med. 2015;73:102‐116. doi:10.1002/mrm.25197
Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Medicine. 2016;15:155‐163. doi:10.1016/j.jcm.2016.02.012
Mutsaerts HJ, Petr J, Václavů L, et al. The spatial coefficient of variation in arterial spin labeling cerebral blood flow images. J Cereb Blood Flow Metab. 2016;37:3184‐3192. doi:10.1177/0271678X16683690
Mutsaerts HJMM, Petr J, Thomas DL, et al. Comparison of arterial spin labeling registration strategies in the multi‐center Genetic Frontotemporal Dementia Initiative (GENFI): comparison of ASL registration strategies. J Magn Reson Imaging. 2017;47:131‐140. doi:10.1002/jmri.25751
Jezzard P, Chappell MA, Okell TW. Arterial spin labeling for the measurement of cerebral perfusion and angiography. J Cereb Blood Flow Metabolism. 2017;38:603‐626. doi:10.1177/0271678X17743240
Asllani I, Borogovac A, Brown TR. Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magnet Reson Med. 2008;60:1362‐1371. doi:10.1002/mrm.21670
Rolls ET, Joliot M, Tzourio‐Mazoyer N. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage. 2015;122:1‐5. doi:10.1016/j.neuroimage.2015.07.075
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed‐effects models using lme4. J Stat Softw. 2015;67:1. doi:10.18637/jss.v067.i01
Barr DJ, Levy R, Scheepers C, Tily HJ. Random effects structure for confirmatory hypothesis testing: keep it maximal. J Mem Lang. 2013;68:255‐278. doi:10.1016/j.jml.2012.11.001
Lenth RV, emmeans: Estimated Marginal Means, aka Least‐Squares Means. 2023
Zhang N, Gordon ML, Ma Y, et al. The age‐related perfusion pattern measured with arterial spin labeling MRI in healthy subjects. Front Aging Neurosci. 2018;10:214. doi:10.3389/fnagi.2018.00214
Menon V. Brain Mapping. Syst. 2015;2:597‐611. doi:10.1016/b978‐0‐12‐397025‐1.00052‐x
Seeley WW. The Salience Network: a Neural System for Perceiving and Responding to Homeostatic Demands. J Neurosci. 2019;39:9878‐9882. doi:10.1523/jneurosci.1138‐17.2019
Viskontas IV, Possin KL, Miller BL. Symptoms of Frontotemporal Dementia Provide Insights into Orbitofrontal Cortex Function and Social Behavior. Ann Ny Acad Sci. 2007;1121:528‐545. doi:10.1196/annals.1401.025
Seeley WW. Anterior insula degeneration in frontotemporal dementia. Brain Struct Funct. 2010;214:465‐475. doi:10.1007/s00429‐010‐0263‐z
Pasquini L, Nana AL, Toller G, et al. Salience network atrophy links neuron type‐specific pathobiology to loss of empathy in frontotemporal dementia. Biorxiv. 2020:691212. doi:10.1101/691212. bioRxiv.
Gordon E, Rohrer JD, Fox NC. Advances in neuroimaging in frontotemporal dementia. J Neurochem. 2016;138:193‐210. doi:10.1111/jnc.13656
Irwin DJ, McMillan CT, Xie SX, et al. Asymmetry of post‐mortem neuropathology in behavioural‐variant frontotemporal dementia. Brain J Neurology. 2017;141:288‐301. doi:10.1093/brain/awx319
Whitwell JL, Weigand SD, Gunter JL, et al. Trajectories of brain and hippocampal atrophy in FTD with mutations in MAPT or GRN. Neurology. 2011;77:393‐398. doi:10.1212/wnl.0b013e318227047f
Whitwell JL, Jack CR, Pankratz VS, et al. Rates of brain atrophy over time in autopsy‐proven frontotemporal dementia and Alzheimer disease. Neuroimage. 2008;39:1034‐1040. doi:10.1016/j.neuroimage.2007.10.001
Whitwell JL, Weigand SD, Boeve BF, et al. Neuroimaging signatures of frontotemporal dementia genetics: c9ORF72, tau, progranulin and sporadics. Brain. 2012;135:794‐806. doi:10.1093/brain/aws001
Peet BT, Spina S, Mundada N, Joie RL. Neuroimaging in frontotemporal dementia: heterogeneity and relationships with underlying neuropathology. Neurotherapeutics. 2021;18:728‐752. doi:10.1007/s13311‐021‐01101‐x
Spinelli EG, Mandelli ML, Miller ZA, et al. Typical and atypical pathology in primary progressive aphasia variants. Ann Neurol. 2017;81:430‐443. doi:10.1002/ana.24885
Petrides M, Pandya DN. The Human Nervous System. 3rd ed. V Cortex; 2012:988‐1011. doi:10.1016/b978‐0‐12‐374236‐0.10026‐4
Routier A, Habert M‐O, Bertrand A, et al. Structural, microstructural, and metabolic alterations in primary progressive aphasia variants. Front Neurol. 2018;9:766. doi:10.3389/fneur.2018.00766
Herrero M‐T, Barcia C, Navarro J. Functional anatomy of thalamus and basal ganglia. Child S Nerv Syst. 2002;18:386‐404. doi:10.1007/s00381‐002‐0604‐1
Bocchetta M, Gordon E, Cardoso MJ, et al. Thalamic atrophy in frontotemporal dementia — Not just a C9orf72 problem. Neuroimage Clin. 2018;18:675‐681. doi:10.1016/j.nicl.2018.02.019
McKenna MC, Lope J, Bede P, Tan EL. Thalamic pathology in frontotemporal dementia: predilection for specific nuclei, phenotype‐specific signatures, clinical correlates, and practical relevance. Brain Behav. 2023;13:e2881. doi:10.1002/brb3.2881
Tan RH, Wong S, Kril JJ, et al. Beyond the temporal pole: limbic memory circuit in the semantic variant of primary progressive aphasia. Brain. 2014;137:2065‐2076. doi:10.1093/brain/awu118
Broe M, Hodges JR, Schofield E, Shepherd CE, Kril JJ, Halliday GM. Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology. 2003;60:1005‐1011. doi:10.1212/01.wnl.0000052685.09194.39
Bocchetta M, Todd EG, Peakman G, et al. Differential early subcortical involvement in genetic FTD within the GENFI cohort. Neuroimage Clin. 2021;30:102646. doi:10.1016/j.nicl.2021.102646
Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative Diseases Target Large‐Scale Human Brain Networks. Neuron. 2009;62:42‐52. doi:10.1016/j.neuron.2009.03.024
Vis JB, Peng S, Chen X, et al. Arterial‐spin‐labeling (ASL) perfusion MRI predicts cognitive function in elderly individuals: a 4‐year longitudinal study. J Magn Reson Imaging. 2018;48:449‐458. doi:10.1002/jmri.25938
Staffaroni AM, Cobigo Y, Elahi FM, et al. A longitudinal characterization of perfusion in the aging brain and associations with cognition and neural structure. Hum Brain Mapp. 2019;40:3522‐3533. doi:10.1002/hbm.24613
Clement P, Mutsaerts H‐J, Václavů L, et al. Variability of physiological brain perfusion in healthy subjects – A systematic review of modifiers. Considerations for multi‐center ASL studies. J Cereb Blood Flow Metabolism. 2018;38:1418‐1437. doi:10.1177/0271678X17702156