Multi-ancestry meta-analysis of tobacco use disorder identifies 461 potential risk genes and reveals associations with multiple health outcomes.


Journal

Nature human behaviour
ISSN: 2397-3374
Titre abrégé: Nat Hum Behav
Pays: England
ID NLM: 101697750

Informations de publication

Date de publication:
17 Apr 2024
Historique:
received: 24 03 2023
accepted: 21 02 2024
medline: 18 4 2024
pubmed: 18 4 2024
entrez: 17 4 2024
Statut: aheadofprint

Résumé

Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviours and although strides have been made using genome-wide association studies to identify risk variants, most variants identified have been for nicotine consumption, rather than TUD. Here we leveraged four US biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records) in 653,790 individuals (495,005 European, 114,420 African American and 44,365 Latin American) and data from UK Biobank (n

Identifiants

pubmed: 38632388
doi: 10.1038/s41562-024-01851-6
pii: 10.1038/s41562-024-01851-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIDA NIH HHS
ID : R01 DA042090
Pays : United States
Organisme : NIAAA NIH HHS
ID : K01 AA028292
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH113362
Pays : United States

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Health Effects of Cigarette Smoking (CDC, 2021); www.cdc.gov/tobacco/data_statistics/fact_sheets/health_effects/effects_cig_smoking/index.htm
Oliver, J. A. & Foulds, J. Association between cigarette smoking frequency and tobacco use disorder in U.S. adults. Am. J. Prev. Med. 60, 726–728 (2021).
pubmed: 33358276 doi: 10.1016/j.amepre.2020.10.019
The Top 10 Causes of Death (WHO, 2020); www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
Benowitz, N. L. & Liakoni, E. Tobacco use disorder and cardiovascular health. Addiction 117, 1128–1138 (2022).
pubmed: 34590373 doi: 10.1111/add.15703
Kalman, D., Morissette, S. B. & George, T. P. Co-morbidity of smoking in patients with psychiatric and substance use disorders. Am. J. Addict. 14, 106–123 (2005).
pubmed: 16019961 pmcid: 1199553 doi: 10.1080/10550490590924728
McRobbie, H. & Kwan, B. Tobacco use disorder and the lungs. Addiction 116, 2559–2571 (2021).
Ziedonis, D., Das, S. & Larkin, C. Tobacco use disorder and treatment: new challenges and opportunities. Dialogues Clin. Neurosci. 19, 271–280 (2017).
pubmed: 29302224 pmcid: 5741110 doi: 10.31887/DCNS.2017.19.3/dziedonis
Kendler, K. S., Schmitt, E., Aggen, S. H. & Prescott, C. A. Genetic and environmental influences on alcohol, caffeine, cannabis and nicotine use from early adolescence to middle adulthood. Arch. Gen. Psychiatry 65, 674–682 (2008).
pubmed: 18519825 pmcid: 2844891 doi: 10.1001/archpsyc.65.6.674
Do, E. K. et al. Genetic and environmental influences on smoking behavior across adolescence and young adulthood in the Virginia twin study of adolescent behavioral development and the transitions to substance abuse follow-up. Twin Res. Hum. Genet. 18, 43–51 (2015).
pubmed: 25662421 pmcid: 4720959 doi: 10.1017/thg.2014.78
Agrawal, A., Budney, A. J. & Lynskey, M. T. The co-occurring use and misuse of cannabis and tobacco: a review. Addiction 107, 1221–1233 (2012).
pubmed: 22300456 pmcid: 3397803 doi: 10.1111/j.1360-0443.2012.03837.x
Agrawal, A. et al. The genetics of addiction—a translational perspective. Transl. Psychiatry 2, e140–e140 (2012).
pubmed: 22806211 pmcid: 3410620 doi: 10.1038/tp.2012.54
Sullivan, P. F. & Kendler, K. S. The genetic epidemiology of smoking. Nicotine Tob. Res. 1, S51–S57 (1999).
pubmed: 11768187 doi: 10.1080/14622299050011811
Saunders, G. R. B. et al. Genetic diversity fuels gene discovery for tobacco and alcohol use. Nature 612, 720–724 (2022).
pubmed: 36477530 pmcid: 9771818 doi: 10.1038/s41586-022-05477-4
Larsson, S. C. & Burgess, S. Appraising the causal role of smoking in several diseases: a systematic review and meta-analysis of Mendelian randomization studies. eBioMedicine 82, 104154 (2022).
pubmed: 35816897 pmcid: 9278068 doi: 10.1016/j.ebiom.2022.104154
Yuan, S., Michaëlsson, K., Wan, Z. & Larsson, S. C. Associations of smoking and alcohol and coffee intake with fracture and bone mineral density: a Mendelian randomization study. Calcif. Tissue Int. 105, 582–588 (2019).
pubmed: 31482193 doi: 10.1007/s00223-019-00606-0
Mahedy, L. et al. Testing the association between tobacco and cannabis use and cognitive functioning: findings from an observational and Mendelian randomization study. Drug Alcohol Depend. 221, 108591 (2021).
pubmed: 33618197 pmcid: 8047806 doi: 10.1016/j.drugalcdep.2021.108591
Zhou, H. et al. Association of OPRM1 functional coding variant with opioid use disorder: a genome-wide association study. JAMA Psychiatry 77, 1072 (2020).
pubmed: 32492095 pmcid: 7270886 doi: 10.1001/jamapsychiatry.2020.1206
Wootton, R. E. et al. Evidence for causal effects of lifetime smoking on risk for depression and schizophrenia: a Mendelian randomisation study. Psychol. Med. 50, 2435–2443 (2020).
pubmed: 31689377 doi: 10.1017/S0033291719002678
Harrison, R., Munafò, M. R., Davey Smith, G. & Wootton, R. E. Examining the effect of smoking on suicidal ideation and attempts: triangulation of epidemiological approaches. Br. J. Psychiatry 217, 701–707 (2020).
pubmed: 32290872 pmcid: 7705667 doi: 10.1192/bjp.2020.68
Xu, K. et al. Genome-wide association study of smoking trajectory and meta-analysis of smoking status in 842,000 individuals. Nat. Commun. 11, 5302 (2020).
pubmed: 33082346 pmcid: 7598939 doi: 10.1038/s41467-020-18489-3
Sanchez-Roige, S. et al. Genome-wide association study of alcohol use disorder identification test (AUDIT) scores in 20 328 research participants of European ancestry: GWAS of AUDIT. Addict. Biol. 24, 121–131 (2019).
pubmed: 29058377 doi: 10.1111/adb.12574
Kranzler, H. R. et al. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat. Commun. 10, 1499 (2019).
pubmed: 30940813 pmcid: 6445072 doi: 10.1038/s41467-019-09480-8
Mallard, T. T. & Sanchez-Roige, S. Dimensional phenotypes in psychiatric genetics: lessons from genome-wide association studies of alcohol use phenotypes. Complex Psychiatry 7, 45–48 (2021).
pubmed: 35083441 pmcid: 8739983 doi: 10.1159/000518863
Mallard, T. T. et al. Item-level genome-wide association study of the alcohol use disorders identification test in three population-based cohorts. Am. J. Psychiatry https://doi.org/10.1176/appi.ajp.2020.20091390 (2021).
Sanchez-Roige, S. & Palmer, A. A. Emerging phenotyping strategies will advance our understanding of psychiatric genetics. Nat. Neurosci. 23, 475–480 (2020).
pubmed: 32231337 pmcid: 9200410 doi: 10.1038/s41593-020-0609-7
Johnson, E. C. et al. A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry 7, 1032–1045 (2020).
pubmed: 33096046 pmcid: 7674631 doi: 10.1016/S2215-0366(20)30339-4
Quach, B. C. et al. Expanding the genetic architecture of nicotine dependence and its shared genetics with multiple traits. Nat. Commun. 11, 5562 (2020).
pubmed: 33144568 pmcid: 7642344 doi: 10.1038/s41467-020-19265-z
Hancock, D. B., Markunas, C. A., Bierut, L. J. & Johnson, E. O. Human genetics of addiction: new insights and future directions. Curr. Psychiatry Rep. 20, 8 (2018).
pubmed: 29504045 pmcid: 5983372 doi: 10.1007/s11920-018-0873-3
Sanchez-Roige, S., Cox, N. J., Johnson, E. O., Hancock, D. B. & Davis, L. K. Alcohol and cigarette smoking consumption as genetic proxies for alcohol misuse and nicotine dependence. Drug Alcohol Depend. 221, 108612 (2021).
pubmed: 33631543 pmcid: 8026738 doi: 10.1016/j.drugalcdep.2021.108612
DeBoever, C. et al. Assessing digital phenotyping to enhance genetic studies of human diseases. Am. J. Hum. Genet. 106, 611–622 (2020).
pubmed: 32275883 pmcid: 7212271 doi: 10.1016/j.ajhg.2020.03.007
Sanchez-Roige, S. & Palmer, A. A. Electronic health records are the next frontier for the genetics of substance use disorders. Trends Genet. 35, 317–318 (2019).
pubmed: 30797598 pmcid: 6984003 doi: 10.1016/j.tig.2019.01.007
Zheutlin, A. B. et al. Penetrance and pleiotropy of polygenic risk scores for schizophrenia in 106,160 patients across four health care systems. Am. J. Psychiatry 176, 846–855 (2019).
pubmed: 31416338 pmcid: 6961974 doi: 10.1176/appi.ajp.2019.18091085
Verma, A. et al. The Penn medicine bioBank: towards a genomics-enabled learning healthcare system to accelerate precision medicine in a diverse population. J. Pers. Med. 12, 1974 (2022).
pubmed: 36556195 pmcid: 9785650 doi: 10.3390/jpm12121974
Roughley, S., Marcus, A. & Killcross, S. Dopamine D1 and D2 receptors are important for learning about neutral-valence relationships in sensory preconditioning. Front. Behav. Neurosci. 15, 740992 (2021).
pubmed: 34526883 pmcid: 8435570 doi: 10.3389/fnbeh.2021.740992
Gelernter, J. et al. Haplotype spanning TTC12 and ANKK1, flanked by the DRD2 and NCAM1 loci, is strongly associated to nicotine dependence in two distinct American populations. Hum. Mol. Genet. 15, 3498–3507 (2006).
pubmed: 17085484 doi: 10.1093/hmg/ddl426
Hatoum, A. S. et al. Multivariate genome-wide association meta-analysis of over 1 million subjects identifies loci underlying multiple substance use disorders. Nat. Mental Health. 1, 210–223 (2023).
doi: 10.1038/s44220-023-00034-y
Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).
pubmed: 30643251 pmcid: 6358542 doi: 10.1038/s41588-018-0307-5
Sanchez-Roige, S. et al. Genome-wide association study of problematic opioid prescription use in 132,113 23andMe research participants of European ancestry. Mol. Psychiatry 26, 6209–6217 (2021).
pubmed: 34728798 pmcid: 8562028 doi: 10.1038/s41380-021-01335-3
Karlsson Linnér, R. et al. Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction. Nat. Neurosci. 24, 1367–1376 (2021).
pubmed: 34446935 doi: 10.1038/s41593-021-00908-3
Xiao, M.-F. et al. Neural cell adhesion molecule modulates dopaminergic signaling and behavior by regulating dopamine D2 receptor internalization. J. Neurosci. 29, 14752–14763 (2009).
pubmed: 19940170 pmcid: 6666007 doi: 10.1523/JNEUROSCI.4860-09.2009
Watanabe, K., Umićević Mirkov, M., de Leeuw, C. A., van den Heuvel, M. P. & Posthuma, D. Genetic mapping of cell type specificity for complex traits. Nat. Commun. 10, 3222 (2019).
pubmed: 31324783 pmcid: 6642112 doi: 10.1038/s41467-019-11181-1
Leeuw, C. A., de, Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).
pubmed: 25885710 pmcid: 4401657 doi: 10.1371/journal.pcbi.1004219
Sey, N. Y. A. et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat. Neurosci. 23, 583–593 (2020).
pubmed: 32152537 pmcid: 7131892 doi: 10.1038/s41593-020-0603-0
Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018).
pubmed: 29739930 pmcid: 5940825 doi: 10.1038/s41467-018-03621-1
Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).
pubmed: 26854917 pmcid: 4767558 doi: 10.1038/ng.3506
Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
pubmed: 25642630 pmcid: 4495769 doi: 10.1038/ng.3211
Kember, R. L. et al. Phenome-wide association analysis of substance use disorders in a deeply phenotyped sample. Biol. Psychiatry 93, 536–545 (2023).
pubmed: 36273948 doi: 10.1016/j.biopsych.2022.08.010
Sanchez-Roige, S., Palmer, A. A. & Clarke, T.-K. Recent efforts to dissect the genetic basis of alcohol use and abuse. Biol. Psychiatry 87, 609–618 (2020).
pubmed: 31733789 doi: 10.1016/j.biopsych.2019.09.011
McLellan, A. T., Koob, G. F. & Volkow, N. D. Preaddiction—a missing concept for treating substance use disorders. JAMA Psychiatry 79, 749–751 (2022).
pubmed: 35793096 doi: 10.1001/jamapsychiatry.2022.1652
Miranda, M., Morici, J. F., Zanoni, M. B. & Bekinschtein, P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci. 13, 363 (2019).
pubmed: 31440144 pmcid: 6692714 doi: 10.3389/fncel.2019.00363
Barker, J. M., Taylor, J. R., De Vries, T. J. & Peters, J. Brain-derived neurotrophic factor and addiction: pathological versus therapeutic effects on drug seeking. Brain Res. 1628, 68–81 (2015).
pubmed: 25451116 doi: 10.1016/j.brainres.2014.10.058
Duong, C. et al. Glutathione peroxidase-1 protects against cigarette smoke-induced lung inflammation in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 299, L425–L433 (2010).
pubmed: 20511341 doi: 10.1152/ajplung.00038.2010
Scieszka, D. et al. Subchronic electronic cigarette exposures have overlapping protein biomarkers with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 67, 503–506 (2022).
pubmed: 36178855 pmcid: 9564931 doi: 10.1165/rcmb.2021-0482LE
Aberg, K. A. et al. A comprehensive family-based replication study of schizophrenia genes. JAMA Psychiatry 70, 573 (2013).
pubmed: 23894747 pmcid: 5297889 doi: 10.1001/jamapsychiatry.2013.288
Erzurumluoglu, A. M. et al. Meta-analysis of up to 622,409 individuals identifies 40 new smoking behaviour associated genetic loci. Mol. Psychiatry 25, 2392–2409 (2020).
pubmed: 30617275 doi: 10.1038/s41380-018-0313-0
Toikumo, S., Xu, H., Gelernter, J., Kember, R. L. & Kranzler, H. R. Integrating human brain proteomic data with genome-wide association study findings identifies new brain proteins in substance use traits. Neuropsychopharmacology 47, 2292–2299 (2022).
pubmed: 35941285 pmcid: 9630289 doi: 10.1038/s41386-022-01406-1
Kember, R. L. et al. Cross-ancestry meta-analysis of opioid use disorder uncovers new loci with predominant effects in brain regions associated with addiction. Nat. Neurosci. 25, 1279–1287 (2022).
pubmed: 36171425 pmcid: 9682545 doi: 10.1038/s41593-022-01160-z
Koob, G. F. & Volkow, N. D. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3, 760–773 (2016).
pubmed: 27475769 pmcid: 6135092 doi: 10.1016/S2215-0366(16)00104-8
King, D. P. et al. Smoking cessation pharmacogenetics: analysis of varenicline and bupropion in placebo-controlled clinical trials. Neuropsychopharmacology 37, 641–650 (2012).
pubmed: 22048466 doi: 10.1038/npp.2011.232
King, A. C. et al. Effects of naltrexone on smoking cessation outcomes and weight gain in nicotine-dependent men and women. J. Clin. Psychopharmacol. 32, 630–636 (2012).
pubmed: 22926596 pmcid: 4640209 doi: 10.1097/JCP.0b013e3182676956
Carpenter, M. J. et al. Clinical strategies to enhance the efficacy of nicotine replacement therapy for smoking cessation: a review of the literature. Drugs 73, 407–426 (2013).
pubmed: 23572407 pmcid: 3662024 doi: 10.1007/s40265-013-0038-y
So, H.-C. et al. Analysis of genome-wide association data highlights candidates for drug repositioning in psychiatry. Nat. Neurosci. 20, 1342–1349 (2017).
pubmed: 28805813 doi: 10.1038/nn.4618
Sey, N. Y. A. et al. Chromatin architecture in addiction circuitry identifies risk genes and potential biological mechanisms underlying cigarette smoking and alcohol use traits. Mol. Psychiatry 27, 3085–3094 (2022).
pubmed: 35422469 pmcid: 9853312 doi: 10.1038/s41380-022-01558-y
Chen, F. et al. Multi-ancestry transcriptome-wide association analyses yield insights into tobacco use biology and drug repurposing. Nat. Genet. 55, 291–300 (2023).
pubmed: 36702996 pmcid: 9925385 doi: 10.1038/s41588-022-01282-x
Jamali, Q. Galantamine as a treatment option for nicotine addiction. J. Smok. Cessat. 2021, 9975811 (2021).
pubmed: 34471432 pmcid: 8313356 doi: 10.1155/2021/9975811
McGinnis, K. A. et al. Using the biomarker cotinine and survey self-report to validate smoking data from United States Veterans Health Administration electronic health records. JAMIA Open 5, ooac040 (2022).
pubmed: 37252267 pmcid: 9154288 doi: 10.1093/jamiaopen/ooac040
Border, R. et al. Cross-trait assortative mating is widespread and inflates genetic correlation estimates. Science 378, 754–761 (2022).
pubmed: 36395242 pmcid: 9901291 doi: 10.1126/science.abo2059
Brazel, D. M. et al. Exome ChIP meta-analysis fine maps causal variants and elucidates the genetic architecture of rare coding variants in smoking and alcohol use. Biol. Psychiatry 85, 946–955 (2019).
pubmed: 30679032 doi: 10.1016/j.biopsych.2018.11.024
Jang, S.-K. et al. Rare genetic variants explain missing heritability in smoking. Nat. Hum. Behav. 6, 1577–1586 (2022).
pubmed: 35927319 pmcid: 9985486 doi: 10.1038/s41562-022-01408-5
Malhotra, D. & Sebat, J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 148, 1223–1241 (2012).
pubmed: 22424231 pmcid: 3351385 doi: 10.1016/j.cell.2012.02.039
Hiscock, R., Bauld, L., Amos, A., Fidler, J. A. & Munafò, M. Socioeconomic status and smoking: a review. Ann. NY Acad. Sci. 1248, 107–123 (2012).
pubmed: 22092035 doi: 10.1111/j.1749-6632.2011.06202.x
Pasman, J. A. et al. Genetic risk for smoking: disentangling interplay between genes and socioeconomic status. Behav. Genet. 52, 92–107 (2022).
pubmed: 34855049 doi: 10.1007/s10519-021-10094-4
Treur, J. L. et al. Testing familial transmission of smoking with two different research designs. Nicotine Tob. Res. 20, 836–842 (2018).
pubmed: 28575460 doi: 10.1093/ntr/ntx121
Meyers, J. L. et al. Interaction between polygenic risk for cigarette use and environmental exposures in the Detroit Neighborhood Health Study. Transl. Psychiatry 3, e290 (2013).
pubmed: 23942621 pmcid: 3756291 doi: 10.1038/tp.2013.63
Pasman, J. A., Verweij, K. J. H. & Vink, J. M. Systematic review of polygenic gene-environment interaction in tobacco, alcohol and cannabis use. Behav. Genet. 49, 349–365 (2019).
pubmed: 31111357 pmcid: 6554261 doi: 10.1007/s10519-019-09958-7
Sanchez-Roige, S., Kember, R. L. & Agrawal, A. Substance use and common contributors to morbidity: a genetics perspective. EBioMedicine 83, 104212 (2022).
pubmed: 35970022 pmcid: 9399262 doi: 10.1016/j.ebiom.2022.104212
Dennis, J. K. et al. Clinical laboratory test-wide association scan of polygenic scores identifies biomarkers of complex disease. Genome Med. 13, 6 (2021).
pubmed: 33441150 pmcid: 7807864 doi: 10.1186/s13073-020-00820-8
Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).
pubmed: 16862161 doi: 10.1038/ng1847
The 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
doi: 10.1038/nature15393
Fang, H. et al. Harmonizing genetic ancestry and self-identified race/ethnicity in genome-wide association studies. Am. J. Hum. Genet. 105, 763–772 (2019).
pubmed: 31564439 pmcid: 6817526 doi: 10.1016/j.ajhg.2019.08.012
Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).
pubmed: 27571263 pmcid: 5157836 doi: 10.1038/ng.3656
Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).
pubmed: 30104761 pmcid: 6119127 doi: 10.1038/s41588-018-0184-y
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).
pubmed: 25722852 pmcid: 4342193 doi: 10.1186/s13742-015-0047-8
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901 pmcid: 1950838 doi: 10.1086/519795
Altshuler, D. M., Gibbs, R. A., Peltonen, L., Dermitzakis, E. T. & Schaffner, S. F. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).
pubmed: 20811451 doi: 10.1038/nature09298
Luo, Y. et al. Estimating heritability and its enrichment in tissue-specific gene sets in admixed populations. Hum. Mol. Genet. 30, 1521–1534 (2021).
pubmed: 33987664 pmcid: 8330913
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382 pmcid: 2922887 doi: 10.1093/bioinformatics/btq340
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
pubmed: 21167468 pmcid: 3014363 doi: 10.1016/j.ajhg.2010.11.011
Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).
pubmed: 26773131 pmcid: 4866522 doi: 10.1093/bioinformatics/btw018
Kichaev, G. & Pasaniuc, B. Leveraging functional-annotation data in trans-ethnic fine-mapping studies. Am. J. Hum. Genet. 97, 260–271 (2015).
pubmed: 26189819 pmcid: 4573268 doi: 10.1016/j.ajhg.2015.06.007
Beach, T. G. et al. Arizona study of aging and neurodegenerative disorders and brain and body donation program. Neuropathology 35, 354–389 (2015).
pubmed: 25619230 pmcid: 4593391 doi: 10.1111/neup.12189
Wingo, T. S. et al. Brain proteome-wide association study implicates new proteins in depression pathogenesis. Nat. Neurosci. 24, 810–817 (2021).
pubmed: 33846625 pmcid: 8530461 doi: 10.1038/s41593-021-00832-6
Wingo, A. P. et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat. Genet. 53, 143–146 (2021).
pubmed: 33510477 pmcid: 8130821 doi: 10.1038/s41588-020-00773-z
Bennett, D. A. et al. Religious orders study and rush memory and aging project. J. Alzheimers Dis. 64, S161–S189 (2018).
pubmed: 29865057 pmcid: 6380522 doi: 10.3233/JAD-179939
GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).
pubmed: 24830394 pmcid: 4022491 doi: 10.1371/journal.pgen.1004383
Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).
pubmed: 26414678 pmcid: 4626285 doi: 10.1038/ng.3404
Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).
pubmed: 29632380 pmcid: 5896795 doi: 10.1038/s41588-018-0081-4
Bernstein, B. E. et al. The NIH roadmap epigenomics mapping consortium. Nat. Biotechnol. 28, 1045–1048 (2010).
pubmed: 20944595 pmcid: 3607281 doi: 10.1038/nbt1010-1045
Fehrmann, R. S. N. et al. Gene expression analysis identifies global gene dosage sensitivity in cancer. Nat. Genet. 47, 115–125 (2015).
pubmed: 25581432 doi: 10.1038/ng.3173
Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).
pubmed: 25597830 doi: 10.1038/ncomms6890
Delaneau, O., Zagury, J.-F., Robinson, M. R., Marchini, J. L. & Dermitzakis, E. T. Accurate, scalable and integrative haplotype estimation. Nat. Commun. 10, 5436 (2019).
pubmed: 31780650 pmcid: 6882857 doi: 10.1038/s41467-019-13225-y
Liang, Y. et al. BrainXcan identifies brain features associated with behavioral and psychiatric traits using large scale genetic and imaging data. Preprint at medRxiv https://doi.org/10.1101/2021.06.01.21258159 (2022).
Bell, N., Uffelmann, E., van Walree, E., de Leeuw, C. & Posthuma, D. Using genome-wide association results to identify drug repurposing candidates. Preprint at medRxiv https://doi.org/10.1101/2022.09.06.22279660 (2022).
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
pubmed: 24930139 doi: 10.1093/bioinformatics/btu393
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster: Cluster analysis basics and extentions. R package version 2.1.4 (2013).
Bielinski, S. J. et al. Mayo Genome Consortia: a genotype–phenotype resource for genome-wide association studies with an application to the analysis of circulating bilirubin levels. Mayo Clin. Proc. 86, 606–614 (2011).
pubmed: 21646302 pmcid: 3127556 doi: 10.4065/mcp.2011.0178
Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster, stronger. Bioinformatics 36, 5424–5431 (2020).
pmcid: 8016455 doi: 10.1093/bioinformatics/btaa1029
Gelernter, J. et al. Genome-wide association study of alcohol dependence: significant findings in African- and European-Americans including new risk loci. Mol. Psychiatry 19, 41–49 (2014).
pubmed: 24166409 doi: 10.1038/mp.2013.145
Pierucci-Lagha, A. et al. Diagnostic reliability of the Semi-structured Assessment for Drug Dependence and Alcoholism (SSADDA). Drug Alcohol Depend. 80, 303–312 (2005).
pubmed: 15896927 doi: 10.1016/j.drugalcdep.2005.04.005
Pierucci-Lagha, A. et al. Reliability of DSM-IV diagnostic criteria using the semi-structured assessment for drug dependence and alcoholism (SSADDA). Drug Alcohol Depend. 91, 85–90 (2007).
pubmed: 17590536 pmcid: 2039919 doi: 10.1016/j.drugalcdep.2007.04.014
Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) (American Psychiatric Association, 1994).
Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (American Psychiatric Association, 2013).
Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).
pubmed: 30992449 pmcid: 6467998 doi: 10.1038/s41467-019-09718-5
Denny, J. C., Bastarache, L. & Roden, D. M. Phenome-wide association studies as a tool to advance precision medicine. Annu. Rev. Genomics Hum. Genet. 17, 353–373 (2016).
pubmed: 27147087 pmcid: 5480096 doi: 10.1146/annurev-genom-090314-024956
Lam, M. et al. RICOPILI: Rapid imputation for COnsortias PIpeLIne. Bioinformatics 36, 930–933 (2020).
pubmed: 31393554 doi: 10.1093/bioinformatics/btz633
Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 573–580 (2022).
Rescorla, L. et al. Behavioral/emotional problems of preschoolers caregiver/teacher reports from 15 societies. J. Emot. Behav. Disord. 20, 68–81 (2012).
pubmed: 29416292 pmcid: 5798642 doi: 10.1177/1063426611434158
Akshoomoff, N. et al. NIH Toolbox Cognitive Function Battery (CFB): composite scores of crystallized, fluid and overall cognition. Monogr. Soc. Res. Child Dev. 78, 119–132 (2013).
pubmed: 23952206 pmcid: 4103789 doi: 10.1111/mono.12038
Yavorska, O. O. & Burgess, S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 46, 1734–1739 (2017).
pubmed: 28398548 pmcid: 5510723 doi: 10.1093/ije/dyx034
Lawlor, D. A., Harbord, R. M., Sterne, J. A. C., Timpson, N. & Davey Smith, G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27, 1133–1163 (2008).
pubmed: 17886233 doi: 10.1002/sim.3034
Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with several genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).
pubmed: 24114802 pmcid: 4377079 doi: 10.1002/gepi.21758
Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).
pubmed: 27061298 pmcid: 4849733 doi: 10.1002/gepi.21965

Auteurs

Sylvanus Toikumo (S)

Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA.
Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

Mariela V Jennings (MV)

Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.

Benjamin K Pham (BK)

Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.

Hyunjoon Lee (H)

Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.

Travis T Mallard (TT)

Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA.

Sevim B Bianchi (SB)

Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.

John J Meredith (JJ)

Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.

Laura Vilar-Ribó (L)

Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.

Heng Xu (H)

Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.

Alexander S Hatoum (AS)

Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA.

Emma C Johnson (EC)

Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA.

Vanessa K Pazdernik (VK)

Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.

Zeal Jinwala (Z)

Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

Shreya R Pakala (SR)

Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.

Brittany S Leger (BS)

Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
Program in Biomedical Sciences, University of California San Diego, La Jolla, CA, USA.

Maria Niarchou (M)

Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA.

Michael Ehinmowo (M)

Department of Psychology, University of Ibadan, Ibadan, Nigeria.

Greg D Jenkins (GD)

Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.

Anthony Batzler (A)

Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.

Richard Pendegraft (R)

Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.

Abraham A Palmer (AA)

Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.

Hang Zhou (H)

Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.

Joanna M Biernacka (JM)

Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA.

Brandon J Coombes (BJ)

Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.

Joel Gelernter (J)

Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.

Ke Xu (K)

Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.

Dana B Hancock (DB)

RTI International, Research Triangle Park, NC, USA.

Nancy J Cox (NJ)

Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.

Jordan W Smoller (JW)

Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA.

Lea K Davis (LK)

Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.
Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA.
Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.

Amy C Justice (AC)

Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
Yale University School of Public Health, New Haven, CT, USA.
Yale University School of Medicine, New Haven, CT, USA.

Henry R Kranzler (HR)

Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA.
Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

Rachel L Kember (RL)

Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA.
Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

Sandra Sanchez-Roige (S)

Department of Psychiatry, University of California San Diego, La Jolla, CA, USA. sanchezroige@ucsd.edu.
Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA. sanchezroige@ucsd.edu.
Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA. sanchezroige@ucsd.edu.

Classifications MeSH