Multi-ancestry meta-analysis of tobacco use disorder identifies 461 potential risk genes and reveals associations with multiple health outcomes.
Journal
Nature human behaviour
ISSN: 2397-3374
Titre abrégé: Nat Hum Behav
Pays: England
ID NLM: 101697750
Informations de publication
Date de publication:
17 Apr 2024
17 Apr 2024
Historique:
received:
24
03
2023
accepted:
21
02
2024
medline:
18
4
2024
pubmed:
18
4
2024
entrez:
17
4
2024
Statut:
aheadofprint
Résumé
Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviours and although strides have been made using genome-wide association studies to identify risk variants, most variants identified have been for nicotine consumption, rather than TUD. Here we leveraged four US biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records) in 653,790 individuals (495,005 European, 114,420 African American and 44,365 Latin American) and data from UK Biobank (n
Identifiants
pubmed: 38632388
doi: 10.1038/s41562-024-01851-6
pii: 10.1038/s41562-024-01851-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIDA NIH HHS
ID : R01 DA042090
Pays : United States
Organisme : NIAAA NIH HHS
ID : K01 AA028292
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH113362
Pays : United States
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Health Effects of Cigarette Smoking (CDC, 2021); www.cdc.gov/tobacco/data_statistics/fact_sheets/health_effects/effects_cig_smoking/index.htm
Oliver, J. A. & Foulds, J. Association between cigarette smoking frequency and tobacco use disorder in U.S. adults. Am. J. Prev. Med. 60, 726–728 (2021).
pubmed: 33358276
doi: 10.1016/j.amepre.2020.10.019
The Top 10 Causes of Death (WHO, 2020); www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
Benowitz, N. L. & Liakoni, E. Tobacco use disorder and cardiovascular health. Addiction 117, 1128–1138 (2022).
pubmed: 34590373
doi: 10.1111/add.15703
Kalman, D., Morissette, S. B. & George, T. P. Co-morbidity of smoking in patients with psychiatric and substance use disorders. Am. J. Addict. 14, 106–123 (2005).
pubmed: 16019961
pmcid: 1199553
doi: 10.1080/10550490590924728
McRobbie, H. & Kwan, B. Tobacco use disorder and the lungs. Addiction 116, 2559–2571 (2021).
Ziedonis, D., Das, S. & Larkin, C. Tobacco use disorder and treatment: new challenges and opportunities. Dialogues Clin. Neurosci. 19, 271–280 (2017).
pubmed: 29302224
pmcid: 5741110
doi: 10.31887/DCNS.2017.19.3/dziedonis
Kendler, K. S., Schmitt, E., Aggen, S. H. & Prescott, C. A. Genetic and environmental influences on alcohol, caffeine, cannabis and nicotine use from early adolescence to middle adulthood. Arch. Gen. Psychiatry 65, 674–682 (2008).
pubmed: 18519825
pmcid: 2844891
doi: 10.1001/archpsyc.65.6.674
Do, E. K. et al. Genetic and environmental influences on smoking behavior across adolescence and young adulthood in the Virginia twin study of adolescent behavioral development and the transitions to substance abuse follow-up. Twin Res. Hum. Genet. 18, 43–51 (2015).
pubmed: 25662421
pmcid: 4720959
doi: 10.1017/thg.2014.78
Agrawal, A., Budney, A. J. & Lynskey, M. T. The co-occurring use and misuse of cannabis and tobacco: a review. Addiction 107, 1221–1233 (2012).
pubmed: 22300456
pmcid: 3397803
doi: 10.1111/j.1360-0443.2012.03837.x
Agrawal, A. et al. The genetics of addiction—a translational perspective. Transl. Psychiatry 2, e140–e140 (2012).
pubmed: 22806211
pmcid: 3410620
doi: 10.1038/tp.2012.54
Sullivan, P. F. & Kendler, K. S. The genetic epidemiology of smoking. Nicotine Tob. Res. 1, S51–S57 (1999).
pubmed: 11768187
doi: 10.1080/14622299050011811
Saunders, G. R. B. et al. Genetic diversity fuels gene discovery for tobacco and alcohol use. Nature 612, 720–724 (2022).
pubmed: 36477530
pmcid: 9771818
doi: 10.1038/s41586-022-05477-4
Larsson, S. C. & Burgess, S. Appraising the causal role of smoking in several diseases: a systematic review and meta-analysis of Mendelian randomization studies. eBioMedicine 82, 104154 (2022).
pubmed: 35816897
pmcid: 9278068
doi: 10.1016/j.ebiom.2022.104154
Yuan, S., Michaëlsson, K., Wan, Z. & Larsson, S. C. Associations of smoking and alcohol and coffee intake with fracture and bone mineral density: a Mendelian randomization study. Calcif. Tissue Int. 105, 582–588 (2019).
pubmed: 31482193
doi: 10.1007/s00223-019-00606-0
Mahedy, L. et al. Testing the association between tobacco and cannabis use and cognitive functioning: findings from an observational and Mendelian randomization study. Drug Alcohol Depend. 221, 108591 (2021).
pubmed: 33618197
pmcid: 8047806
doi: 10.1016/j.drugalcdep.2021.108591
Zhou, H. et al. Association of OPRM1 functional coding variant with opioid use disorder: a genome-wide association study. JAMA Psychiatry 77, 1072 (2020).
pubmed: 32492095
pmcid: 7270886
doi: 10.1001/jamapsychiatry.2020.1206
Wootton, R. E. et al. Evidence for causal effects of lifetime smoking on risk for depression and schizophrenia: a Mendelian randomisation study. Psychol. Med. 50, 2435–2443 (2020).
pubmed: 31689377
doi: 10.1017/S0033291719002678
Harrison, R., Munafò, M. R., Davey Smith, G. & Wootton, R. E. Examining the effect of smoking on suicidal ideation and attempts: triangulation of epidemiological approaches. Br. J. Psychiatry 217, 701–707 (2020).
pubmed: 32290872
pmcid: 7705667
doi: 10.1192/bjp.2020.68
Xu, K. et al. Genome-wide association study of smoking trajectory and meta-analysis of smoking status in 842,000 individuals. Nat. Commun. 11, 5302 (2020).
pubmed: 33082346
pmcid: 7598939
doi: 10.1038/s41467-020-18489-3
Sanchez-Roige, S. et al. Genome-wide association study of alcohol use disorder identification test (AUDIT) scores in 20 328 research participants of European ancestry: GWAS of AUDIT. Addict. Biol. 24, 121–131 (2019).
pubmed: 29058377
doi: 10.1111/adb.12574
Kranzler, H. R. et al. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat. Commun. 10, 1499 (2019).
pubmed: 30940813
pmcid: 6445072
doi: 10.1038/s41467-019-09480-8
Mallard, T. T. & Sanchez-Roige, S. Dimensional phenotypes in psychiatric genetics: lessons from genome-wide association studies of alcohol use phenotypes. Complex Psychiatry 7, 45–48 (2021).
pubmed: 35083441
pmcid: 8739983
doi: 10.1159/000518863
Mallard, T. T. et al. Item-level genome-wide association study of the alcohol use disorders identification test in three population-based cohorts. Am. J. Psychiatry https://doi.org/10.1176/appi.ajp.2020.20091390 (2021).
Sanchez-Roige, S. & Palmer, A. A. Emerging phenotyping strategies will advance our understanding of psychiatric genetics. Nat. Neurosci. 23, 475–480 (2020).
pubmed: 32231337
pmcid: 9200410
doi: 10.1038/s41593-020-0609-7
Johnson, E. C. et al. A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry 7, 1032–1045 (2020).
pubmed: 33096046
pmcid: 7674631
doi: 10.1016/S2215-0366(20)30339-4
Quach, B. C. et al. Expanding the genetic architecture of nicotine dependence and its shared genetics with multiple traits. Nat. Commun. 11, 5562 (2020).
pubmed: 33144568
pmcid: 7642344
doi: 10.1038/s41467-020-19265-z
Hancock, D. B., Markunas, C. A., Bierut, L. J. & Johnson, E. O. Human genetics of addiction: new insights and future directions. Curr. Psychiatry Rep. 20, 8 (2018).
pubmed: 29504045
pmcid: 5983372
doi: 10.1007/s11920-018-0873-3
Sanchez-Roige, S., Cox, N. J., Johnson, E. O., Hancock, D. B. & Davis, L. K. Alcohol and cigarette smoking consumption as genetic proxies for alcohol misuse and nicotine dependence. Drug Alcohol Depend. 221, 108612 (2021).
pubmed: 33631543
pmcid: 8026738
doi: 10.1016/j.drugalcdep.2021.108612
DeBoever, C. et al. Assessing digital phenotyping to enhance genetic studies of human diseases. Am. J. Hum. Genet. 106, 611–622 (2020).
pubmed: 32275883
pmcid: 7212271
doi: 10.1016/j.ajhg.2020.03.007
Sanchez-Roige, S. & Palmer, A. A. Electronic health records are the next frontier for the genetics of substance use disorders. Trends Genet. 35, 317–318 (2019).
pubmed: 30797598
pmcid: 6984003
doi: 10.1016/j.tig.2019.01.007
Zheutlin, A. B. et al. Penetrance and pleiotropy of polygenic risk scores for schizophrenia in 106,160 patients across four health care systems. Am. J. Psychiatry 176, 846–855 (2019).
pubmed: 31416338
pmcid: 6961974
doi: 10.1176/appi.ajp.2019.18091085
Verma, A. et al. The Penn medicine bioBank: towards a genomics-enabled learning healthcare system to accelerate precision medicine in a diverse population. J. Pers. Med. 12, 1974 (2022).
pubmed: 36556195
pmcid: 9785650
doi: 10.3390/jpm12121974
Roughley, S., Marcus, A. & Killcross, S. Dopamine D1 and D2 receptors are important for learning about neutral-valence relationships in sensory preconditioning. Front. Behav. Neurosci. 15, 740992 (2021).
pubmed: 34526883
pmcid: 8435570
doi: 10.3389/fnbeh.2021.740992
Gelernter, J. et al. Haplotype spanning TTC12 and ANKK1, flanked by the DRD2 and NCAM1 loci, is strongly associated to nicotine dependence in two distinct American populations. Hum. Mol. Genet. 15, 3498–3507 (2006).
pubmed: 17085484
doi: 10.1093/hmg/ddl426
Hatoum, A. S. et al. Multivariate genome-wide association meta-analysis of over 1 million subjects identifies loci underlying multiple substance use disorders. Nat. Mental Health. 1, 210–223 (2023).
doi: 10.1038/s44220-023-00034-y
Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).
pubmed: 30643251
pmcid: 6358542
doi: 10.1038/s41588-018-0307-5
Sanchez-Roige, S. et al. Genome-wide association study of problematic opioid prescription use in 132,113 23andMe research participants of European ancestry. Mol. Psychiatry 26, 6209–6217 (2021).
pubmed: 34728798
pmcid: 8562028
doi: 10.1038/s41380-021-01335-3
Karlsson Linnér, R. et al. Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction. Nat. Neurosci. 24, 1367–1376 (2021).
pubmed: 34446935
doi: 10.1038/s41593-021-00908-3
Xiao, M.-F. et al. Neural cell adhesion molecule modulates dopaminergic signaling and behavior by regulating dopamine D2 receptor internalization. J. Neurosci. 29, 14752–14763 (2009).
pubmed: 19940170
pmcid: 6666007
doi: 10.1523/JNEUROSCI.4860-09.2009
Watanabe, K., Umićević Mirkov, M., de Leeuw, C. A., van den Heuvel, M. P. & Posthuma, D. Genetic mapping of cell type specificity for complex traits. Nat. Commun. 10, 3222 (2019).
pubmed: 31324783
pmcid: 6642112
doi: 10.1038/s41467-019-11181-1
Leeuw, C. A., de, Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).
pubmed: 25885710
pmcid: 4401657
doi: 10.1371/journal.pcbi.1004219
Sey, N. Y. A. et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat. Neurosci. 23, 583–593 (2020).
pubmed: 32152537
pmcid: 7131892
doi: 10.1038/s41593-020-0603-0
Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018).
pubmed: 29739930
pmcid: 5940825
doi: 10.1038/s41467-018-03621-1
Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).
pubmed: 26854917
pmcid: 4767558
doi: 10.1038/ng.3506
Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
pubmed: 25642630
pmcid: 4495769
doi: 10.1038/ng.3211
Kember, R. L. et al. Phenome-wide association analysis of substance use disorders in a deeply phenotyped sample. Biol. Psychiatry 93, 536–545 (2023).
pubmed: 36273948
doi: 10.1016/j.biopsych.2022.08.010
Sanchez-Roige, S., Palmer, A. A. & Clarke, T.-K. Recent efforts to dissect the genetic basis of alcohol use and abuse. Biol. Psychiatry 87, 609–618 (2020).
pubmed: 31733789
doi: 10.1016/j.biopsych.2019.09.011
McLellan, A. T., Koob, G. F. & Volkow, N. D. Preaddiction—a missing concept for treating substance use disorders. JAMA Psychiatry 79, 749–751 (2022).
pubmed: 35793096
doi: 10.1001/jamapsychiatry.2022.1652
Miranda, M., Morici, J. F., Zanoni, M. B. & Bekinschtein, P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci. 13, 363 (2019).
pubmed: 31440144
pmcid: 6692714
doi: 10.3389/fncel.2019.00363
Barker, J. M., Taylor, J. R., De Vries, T. J. & Peters, J. Brain-derived neurotrophic factor and addiction: pathological versus therapeutic effects on drug seeking. Brain Res. 1628, 68–81 (2015).
pubmed: 25451116
doi: 10.1016/j.brainres.2014.10.058
Duong, C. et al. Glutathione peroxidase-1 protects against cigarette smoke-induced lung inflammation in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 299, L425–L433 (2010).
pubmed: 20511341
doi: 10.1152/ajplung.00038.2010
Scieszka, D. et al. Subchronic electronic cigarette exposures have overlapping protein biomarkers with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 67, 503–506 (2022).
pubmed: 36178855
pmcid: 9564931
doi: 10.1165/rcmb.2021-0482LE
Aberg, K. A. et al. A comprehensive family-based replication study of schizophrenia genes. JAMA Psychiatry 70, 573 (2013).
pubmed: 23894747
pmcid: 5297889
doi: 10.1001/jamapsychiatry.2013.288
Erzurumluoglu, A. M. et al. Meta-analysis of up to 622,409 individuals identifies 40 new smoking behaviour associated genetic loci. Mol. Psychiatry 25, 2392–2409 (2020).
pubmed: 30617275
doi: 10.1038/s41380-018-0313-0
Toikumo, S., Xu, H., Gelernter, J., Kember, R. L. & Kranzler, H. R. Integrating human brain proteomic data with genome-wide association study findings identifies new brain proteins in substance use traits. Neuropsychopharmacology 47, 2292–2299 (2022).
pubmed: 35941285
pmcid: 9630289
doi: 10.1038/s41386-022-01406-1
Kember, R. L. et al. Cross-ancestry meta-analysis of opioid use disorder uncovers new loci with predominant effects in brain regions associated with addiction. Nat. Neurosci. 25, 1279–1287 (2022).
pubmed: 36171425
pmcid: 9682545
doi: 10.1038/s41593-022-01160-z
Koob, G. F. & Volkow, N. D. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3, 760–773 (2016).
pubmed: 27475769
pmcid: 6135092
doi: 10.1016/S2215-0366(16)00104-8
King, D. P. et al. Smoking cessation pharmacogenetics: analysis of varenicline and bupropion in placebo-controlled clinical trials. Neuropsychopharmacology 37, 641–650 (2012).
pubmed: 22048466
doi: 10.1038/npp.2011.232
King, A. C. et al. Effects of naltrexone on smoking cessation outcomes and weight gain in nicotine-dependent men and women. J. Clin. Psychopharmacol. 32, 630–636 (2012).
pubmed: 22926596
pmcid: 4640209
doi: 10.1097/JCP.0b013e3182676956
Carpenter, M. J. et al. Clinical strategies to enhance the efficacy of nicotine replacement therapy for smoking cessation: a review of the literature. Drugs 73, 407–426 (2013).
pubmed: 23572407
pmcid: 3662024
doi: 10.1007/s40265-013-0038-y
So, H.-C. et al. Analysis of genome-wide association data highlights candidates for drug repositioning in psychiatry. Nat. Neurosci. 20, 1342–1349 (2017).
pubmed: 28805813
doi: 10.1038/nn.4618
Sey, N. Y. A. et al. Chromatin architecture in addiction circuitry identifies risk genes and potential biological mechanisms underlying cigarette smoking and alcohol use traits. Mol. Psychiatry 27, 3085–3094 (2022).
pubmed: 35422469
pmcid: 9853312
doi: 10.1038/s41380-022-01558-y
Chen, F. et al. Multi-ancestry transcriptome-wide association analyses yield insights into tobacco use biology and drug repurposing. Nat. Genet. 55, 291–300 (2023).
pubmed: 36702996
pmcid: 9925385
doi: 10.1038/s41588-022-01282-x
Jamali, Q. Galantamine as a treatment option for nicotine addiction. J. Smok. Cessat. 2021, 9975811 (2021).
pubmed: 34471432
pmcid: 8313356
doi: 10.1155/2021/9975811
McGinnis, K. A. et al. Using the biomarker cotinine and survey self-report to validate smoking data from United States Veterans Health Administration electronic health records. JAMIA Open 5, ooac040 (2022).
pubmed: 37252267
pmcid: 9154288
doi: 10.1093/jamiaopen/ooac040
Border, R. et al. Cross-trait assortative mating is widespread and inflates genetic correlation estimates. Science 378, 754–761 (2022).
pubmed: 36395242
pmcid: 9901291
doi: 10.1126/science.abo2059
Brazel, D. M. et al. Exome ChIP meta-analysis fine maps causal variants and elucidates the genetic architecture of rare coding variants in smoking and alcohol use. Biol. Psychiatry 85, 946–955 (2019).
pubmed: 30679032
doi: 10.1016/j.biopsych.2018.11.024
Jang, S.-K. et al. Rare genetic variants explain missing heritability in smoking. Nat. Hum. Behav. 6, 1577–1586 (2022).
pubmed: 35927319
pmcid: 9985486
doi: 10.1038/s41562-022-01408-5
Malhotra, D. & Sebat, J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 148, 1223–1241 (2012).
pubmed: 22424231
pmcid: 3351385
doi: 10.1016/j.cell.2012.02.039
Hiscock, R., Bauld, L., Amos, A., Fidler, J. A. & Munafò, M. Socioeconomic status and smoking: a review. Ann. NY Acad. Sci. 1248, 107–123 (2012).
pubmed: 22092035
doi: 10.1111/j.1749-6632.2011.06202.x
Pasman, J. A. et al. Genetic risk for smoking: disentangling interplay between genes and socioeconomic status. Behav. Genet. 52, 92–107 (2022).
pubmed: 34855049
doi: 10.1007/s10519-021-10094-4
Treur, J. L. et al. Testing familial transmission of smoking with two different research designs. Nicotine Tob. Res. 20, 836–842 (2018).
pubmed: 28575460
doi: 10.1093/ntr/ntx121
Meyers, J. L. et al. Interaction between polygenic risk for cigarette use and environmental exposures in the Detroit Neighborhood Health Study. Transl. Psychiatry 3, e290 (2013).
pubmed: 23942621
pmcid: 3756291
doi: 10.1038/tp.2013.63
Pasman, J. A., Verweij, K. J. H. & Vink, J. M. Systematic review of polygenic gene-environment interaction in tobacco, alcohol and cannabis use. Behav. Genet. 49, 349–365 (2019).
pubmed: 31111357
pmcid: 6554261
doi: 10.1007/s10519-019-09958-7
Sanchez-Roige, S., Kember, R. L. & Agrawal, A. Substance use and common contributors to morbidity: a genetics perspective. EBioMedicine 83, 104212 (2022).
pubmed: 35970022
pmcid: 9399262
doi: 10.1016/j.ebiom.2022.104212
Dennis, J. K. et al. Clinical laboratory test-wide association scan of polygenic scores identifies biomarkers of complex disease. Genome Med. 13, 6 (2021).
pubmed: 33441150
pmcid: 7807864
doi: 10.1186/s13073-020-00820-8
Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).
pubmed: 16862161
doi: 10.1038/ng1847
The 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
doi: 10.1038/nature15393
Fang, H. et al. Harmonizing genetic ancestry and self-identified race/ethnicity in genome-wide association studies. Am. J. Hum. Genet. 105, 763–772 (2019).
pubmed: 31564439
pmcid: 6817526
doi: 10.1016/j.ajhg.2019.08.012
Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).
pubmed: 27571263
pmcid: 5157836
doi: 10.1038/ng.3656
Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).
pubmed: 30104761
pmcid: 6119127
doi: 10.1038/s41588-018-0184-y
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).
pubmed: 25722852
pmcid: 4342193
doi: 10.1186/s13742-015-0047-8
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795
Altshuler, D. M., Gibbs, R. A., Peltonen, L., Dermitzakis, E. T. & Schaffner, S. F. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).
pubmed: 20811451
doi: 10.1038/nature09298
Luo, Y. et al. Estimating heritability and its enrichment in tissue-specific gene sets in admixed populations. Hum. Mol. Genet. 30, 1521–1534 (2021).
pubmed: 33987664
pmcid: 8330913
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382
pmcid: 2922887
doi: 10.1093/bioinformatics/btq340
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
pubmed: 21167468
pmcid: 3014363
doi: 10.1016/j.ajhg.2010.11.011
Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).
pubmed: 26773131
pmcid: 4866522
doi: 10.1093/bioinformatics/btw018
Kichaev, G. & Pasaniuc, B. Leveraging functional-annotation data in trans-ethnic fine-mapping studies. Am. J. Hum. Genet. 97, 260–271 (2015).
pubmed: 26189819
pmcid: 4573268
doi: 10.1016/j.ajhg.2015.06.007
Beach, T. G. et al. Arizona study of aging and neurodegenerative disorders and brain and body donation program. Neuropathology 35, 354–389 (2015).
pubmed: 25619230
pmcid: 4593391
doi: 10.1111/neup.12189
Wingo, T. S. et al. Brain proteome-wide association study implicates new proteins in depression pathogenesis. Nat. Neurosci. 24, 810–817 (2021).
pubmed: 33846625
pmcid: 8530461
doi: 10.1038/s41593-021-00832-6
Wingo, A. P. et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat. Genet. 53, 143–146 (2021).
pubmed: 33510477
pmcid: 8130821
doi: 10.1038/s41588-020-00773-z
Bennett, D. A. et al. Religious orders study and rush memory and aging project. J. Alzheimers Dis. 64, S161–S189 (2018).
pubmed: 29865057
pmcid: 6380522
doi: 10.3233/JAD-179939
GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).
pubmed: 24830394
pmcid: 4022491
doi: 10.1371/journal.pgen.1004383
Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).
pubmed: 26414678
pmcid: 4626285
doi: 10.1038/ng.3404
Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).
pubmed: 29632380
pmcid: 5896795
doi: 10.1038/s41588-018-0081-4
Bernstein, B. E. et al. The NIH roadmap epigenomics mapping consortium. Nat. Biotechnol. 28, 1045–1048 (2010).
pubmed: 20944595
pmcid: 3607281
doi: 10.1038/nbt1010-1045
Fehrmann, R. S. N. et al. Gene expression analysis identifies global gene dosage sensitivity in cancer. Nat. Genet. 47, 115–125 (2015).
pubmed: 25581432
doi: 10.1038/ng.3173
Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).
pubmed: 25597830
doi: 10.1038/ncomms6890
Delaneau, O., Zagury, J.-F., Robinson, M. R., Marchini, J. L. & Dermitzakis, E. T. Accurate, scalable and integrative haplotype estimation. Nat. Commun. 10, 5436 (2019).
pubmed: 31780650
pmcid: 6882857
doi: 10.1038/s41467-019-13225-y
Liang, Y. et al. BrainXcan identifies brain features associated with behavioral and psychiatric traits using large scale genetic and imaging data. Preprint at medRxiv https://doi.org/10.1101/2021.06.01.21258159 (2022).
Bell, N., Uffelmann, E., van Walree, E., de Leeuw, C. & Posthuma, D. Using genome-wide association results to identify drug repurposing candidates. Preprint at medRxiv https://doi.org/10.1101/2022.09.06.22279660 (2022).
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
pubmed: 24930139
doi: 10.1093/bioinformatics/btu393
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster: Cluster analysis basics and extentions. R package version 2.1.4 (2013).
Bielinski, S. J. et al. Mayo Genome Consortia: a genotype–phenotype resource for genome-wide association studies with an application to the analysis of circulating bilirubin levels. Mayo Clin. Proc. 86, 606–614 (2011).
pubmed: 21646302
pmcid: 3127556
doi: 10.4065/mcp.2011.0178
Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster, stronger. Bioinformatics 36, 5424–5431 (2020).
pmcid: 8016455
doi: 10.1093/bioinformatics/btaa1029
Gelernter, J. et al. Genome-wide association study of alcohol dependence: significant findings in African- and European-Americans including new risk loci. Mol. Psychiatry 19, 41–49 (2014).
pubmed: 24166409
doi: 10.1038/mp.2013.145
Pierucci-Lagha, A. et al. Diagnostic reliability of the Semi-structured Assessment for Drug Dependence and Alcoholism (SSADDA). Drug Alcohol Depend. 80, 303–312 (2005).
pubmed: 15896927
doi: 10.1016/j.drugalcdep.2005.04.005
Pierucci-Lagha, A. et al. Reliability of DSM-IV diagnostic criteria using the semi-structured assessment for drug dependence and alcoholism (SSADDA). Drug Alcohol Depend. 91, 85–90 (2007).
pubmed: 17590536
pmcid: 2039919
doi: 10.1016/j.drugalcdep.2007.04.014
Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) (American Psychiatric Association, 1994).
Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (American Psychiatric Association, 2013).
Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).
pubmed: 30992449
pmcid: 6467998
doi: 10.1038/s41467-019-09718-5
Denny, J. C., Bastarache, L. & Roden, D. M. Phenome-wide association studies as a tool to advance precision medicine. Annu. Rev. Genomics Hum. Genet. 17, 353–373 (2016).
pubmed: 27147087
pmcid: 5480096
doi: 10.1146/annurev-genom-090314-024956
Lam, M. et al. RICOPILI: Rapid imputation for COnsortias PIpeLIne. Bioinformatics 36, 930–933 (2020).
pubmed: 31393554
doi: 10.1093/bioinformatics/btz633
Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 573–580 (2022).
Rescorla, L. et al. Behavioral/emotional problems of preschoolers caregiver/teacher reports from 15 societies. J. Emot. Behav. Disord. 20, 68–81 (2012).
pubmed: 29416292
pmcid: 5798642
doi: 10.1177/1063426611434158
Akshoomoff, N. et al. NIH Toolbox Cognitive Function Battery (CFB): composite scores of crystallized, fluid and overall cognition. Monogr. Soc. Res. Child Dev. 78, 119–132 (2013).
pubmed: 23952206
pmcid: 4103789
doi: 10.1111/mono.12038
Yavorska, O. O. & Burgess, S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 46, 1734–1739 (2017).
pubmed: 28398548
pmcid: 5510723
doi: 10.1093/ije/dyx034
Lawlor, D. A., Harbord, R. M., Sterne, J. A. C., Timpson, N. & Davey Smith, G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27, 1133–1163 (2008).
pubmed: 17886233
doi: 10.1002/sim.3034
Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with several genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).
pubmed: 24114802
pmcid: 4377079
doi: 10.1002/gepi.21758
Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).
pubmed: 27061298
pmcid: 4849733
doi: 10.1002/gepi.21965