Promiscuous G-protein activation by the calcium-sensing receptor.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
17 Apr 2024
Historique:
received: 27 06 2023
accepted: 18 03 2024
medline: 18 4 2024
pubmed: 18 4 2024
entrez: 17 4 2024
Statut: aheadofprint

Résumé

The human calcium-sensing receptor (CaSR) detects fluctuations in the extracellular Ca

Identifiants

pubmed: 38632411
doi: 10.1038/s41586-024-07331-1
pii: 10.1038/s41586-024-07331-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Brown, E. M. et al. Cloning and characterization of an extracellular Ca
pubmed: 8255296 doi: 10.1038/366575a0
Hofer, A. M. & Brown, E. M. Extracellular calcium sensing and signalling. Nat. Rev. Mol. Cell Biol. 4, 530–538 (2003).
pubmed: 12838336 doi: 10.1038/nrm1154
Gray, E. et al. Activation of the extracellular calcium-sensing receptor initiates insulin secretion from human islets of Langerhans: involvement of protein kinases. J. Endocrinol. 190, 703–710 (2006).
pubmed: 17003271 doi: 10.1677/joe.1.06891
Mace, O. J., Schindler, M. & Patel, S. The regulation of K- and L-cell activity by GLUT2 and the calcium-sensing receptor CasR in rat small intestine. J. Physiol. 590, 2917–2936 (2012).
pubmed: 22495587 pmcid: 3448156 doi: 10.1113/jphysiol.2011.223800
Ruat, M. & Traiffort, E. Roles of the calcium sensing receptor in the central nervous system. Best Pract. Res. Clin. Endocrinol. Metab. 27, 429–442 (2013).
pubmed: 23856270 doi: 10.1016/j.beem.2013.03.001
Conigrave, A. D. & Ward, D. T. Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways. Best Pract. Res. Clin. Endocrinol. Metab. 27, 315–331 (2013).
pubmed: 23856262 doi: 10.1016/j.beem.2013.05.010
Hendy, G. N., Guarnieri, V. & Canaff, L. Calcium-sensing receptor and associated diseases. Prog. Mol. Biol. Transl. Sci. 89, 31–95 (2009).
pubmed: 20374733 doi: 10.1016/S1877-1173(09)89003-0
de Jesus Ferreira, M. C. et al. Co-expression of a Ca
pubmed: 9614133 doi: 10.1074/jbc.273.24.15192
Kifor, O. et al. Regulation of MAP kinase by calcium-sensing receptor in bovine parathyroid and CaR-transfected HEK293 cells. Am. J. Physiol. Renal Physiol. 280, F291–F302 (2001).
pubmed: 11208605 doi: 10.1152/ajprenal.2001.280.2.F291
Mamillapalli, R., VanHouten, J., Zawalich, W. & Wysolmerski, J. Switching of G-protein usage by the calcium-sensing receptor reverses its effect on parathyroid hormone-related protein secretion in normal versus malignant breast cells. J. Biol. Chem. 283, 24435–24447 (2008).
pubmed: 18621740 pmcid: 2528989 doi: 10.1074/jbc.M801738200
Mamillapalli, R. & Wysolmerski, J. The calcium-sensing receptor couples to Gα
pubmed: 20032198 doi: 10.1677/JOE-09-0183
Huang, C., Hujer, K. M., Wu, Z. & Miller, R. T. The Ca
pubmed: 12954603 doi: 10.1152/ajpcell.00229.2003
Abid, H. A., Inoue, A. & Gorvin, C. M. Heterogeneity of G protein activation by the calcium-sensing receptor. J. Mol. Endocrinol. 67, 41–53 (2021).
pubmed: 34077389 pmcid: 8240730 doi: 10.1530/JME-21-0058
Liang, Y. L. et al. Dominant negative G proteins enhance formation and purification of agonist-GPCR-G protein complexes for structure determination. ACS Pharmacol. Transl. Sci. 1, 12–20 (2018).
pubmed: 32219201 pmcid: 7089020 doi: 10.1021/acsptsci.8b00017
Nehme, R. et al. Mini-G proteins: novel tools for studying GPCRs in their active conformation. PLoS ONE 12, e0175642 (2017).
pubmed: 28426733 pmcid: 5398546 doi: 10.1371/journal.pone.0175642
Geng, Y. et al. Structural mechanism of ligand activation in human calcium-sensing receptor. eLife 5, e13662 (2016).
pubmed: 27434672 pmcid: 4977154 doi: 10.7554/eLife.13662
Zhang, C. et al. Structural basis for regulation of human calcium-sensing receptor by magnesium ions and an unexpected tryptophan derivative co-agonist. Sci. Adv. 2, e1600241 (2016).
pubmed: 27386547 pmcid: 4928972 doi: 10.1126/sciadv.1600241
Nemeth, E. F. Allosteric modulators of the extracellular calcium receptor. Drug Discov. Today Technol.10, e277–e284 (2013).
pubmed: 24050279 doi: 10.1016/j.ddtec.2012.11.002
Rasmussen, S. G. et al. Crystal structure of the β
pubmed: 21772288 pmcid: 3184188 doi: 10.1038/nature10361
Maeda, S. et al. Development of an antibody fragment that stabilizes GPCR/G-protein complexes. Nat. Commun. 9, 3712 (2018).
pubmed: 30213947 pmcid: 6137068 doi: 10.1038/s41467-018-06002-w
Park, J. et al. Symmetric activation and modulation of the human calcium-sensing receptor. Proc. Natl Acad. Sci. USA 118, e2115849118 (2021).
pubmed: 34916296 pmcid: 8713963 doi: 10.1073/pnas.2115849118
Isberg, V. et al. Generic GPCR residue numbers—aligning topology maps while minding the gaps. Trends Pharmacol. Sci. 36, 22–31 (2015).
pubmed: 25541108 doi: 10.1016/j.tips.2014.11.001
Ray, K., Fan, G. F., Goldsmith, P. K. & Spiegel, A. M. The carboxyl terminus of the human calcium receptor. Requirements for cell-surface expression and signal transduction. J. Biol. Chem. 272, 31355–31361 (1997).
pubmed: 9395465 doi: 10.1074/jbc.272.50.31355
Gama, L. & Breitwieser, G. E. A carboxyl-terminal domain controls the cooperativity for extracellular Ca
pubmed: 9792684 doi: 10.1074/jbc.273.45.29712
Chang, W., Chen, T. H., Pratt, S. & Shoback, D. Amino acids in the second and third intracellular loops of the parathyroid Ca
pubmed: 10764812 doi: 10.1074/jbc.M909613199
Goolam, M. A. et al. Roles of intraloops-2 and -3 and the proximal C-terminus in signalling pathway selection from the human calcium-sensing receptor. FEBS Lett. 588, 3340–3346 (2014).
pubmed: 25080008 doi: 10.1016/j.febslet.2014.07.022
Gao, Y. et al. Asymmetric activation of the calcium-sensing receptor homodimer. Nature 595, 455–459 (2021).
pubmed: 34194040 pmcid: 8826748 doi: 10.1038/s41586-021-03691-0
Wen, T. et al. Structural basis for activation and allosteric modulation of full-length calcium-sensing receptor. Sci. Adv. 7, eabg1483 (2021).
pubmed: 34088669 pmcid: 8177707 doi: 10.1126/sciadv.abg1483
Ling, S. et al. Structural mechanism of cooperative activation of the human calcium-sensing receptor by Ca
pubmed: 33603117 pmcid: 8115157 doi: 10.1038/s41422-021-00474-0
Chen, X. et al. Structural insights into the activation of human calcium-sensing receptor. eLife 10, e68578 (2021).
pubmed: 34467854 pmcid: 8476121 doi: 10.7554/eLife.68578
Wall, M. A. et al. The structure of the G protein heterotrimer G
pubmed: 8521505 doi: 10.1016/0092-8674(95)90220-1
Flock, T. et al. Universal allosteric mechanism for Gα activation by GPCRs. Nature 524, 173–179 (2015).
pubmed: 26147082 pmcid: 4866443 doi: 10.1038/nature14663
Conklin, B. R., Farfel, Z., Lustig, K. D., Julius, D. & Bourne, H. R. Substitution of three amino acids switches receptor specificity of G
pubmed: 8387644 doi: 10.1038/363274a0
Conklin, B. R. et al. Carboxyl-terminal mutations of Gq alpha and Gs alpha that alter the fidelity of receptor activation. Mol. Pharmacol. 50, 885–890 (1996).
pubmed: 8863834
Bettler, B., Kaupmann, K., Mosbacher, J. & Gassmann, M. Molecular structure and physiological functions of GABA
pubmed: 15269338 doi: 10.1152/physrev.00036.2003
Pollak, M. R. et al. Mutations in the human Ca
pubmed: 7916660 doi: 10.1016/0092-8674(93)90617-Y
Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).
pubmed: 25299155 pmcid: 4291175 doi: 10.1038/nprot.2014.173
Gorkhali, R. et al. Extracellular calcium alters calcium-sensing receptor network integrating intracellular calcium-signaling and related key pathway. Sci. Rep. 11, 20576 (2021).
pubmed: 34663830 pmcid: 8523568 doi: 10.1038/s41598-021-00067-2
Ritchie, T. K. et al. Chapter 11—Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 464, 211–231 (2009).
pubmed: 19903557 pmcid: 4196316 doi: 10.1016/S0076-6879(09)64011-8
Reeves, P. J., Callewaert, N., Contreras, R. & Khorana, H. G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl Acad. Sci. USA 99, 13419–13424 (2002).
pubmed: 12370423 pmcid: 129688 doi: 10.1073/pnas.212519299
Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).
pubmed: 31591578 pmcid: 6858545 doi: 10.1038/s41592-019-0575-8
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473 doi: 10.1038/nmeth.4169
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670 doi: 10.1107/S0907444909052925
Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Thom, C. et al. Structures of neurokinin 1 receptor in complex with G
pubmed: 34878828 pmcid: 8654284 doi: 10.1126/sciadv.abk2872
Qu, X. et al. Structural basis of tethered agonism of the adhesion GPCRs ADGRD1 and ADGRF1. Nature 604, 779–785 (2022).
pubmed: 35418679 pmcid: 9046087 doi: 10.1038/s41586-022-04580-w
Cao, C. et al. Structure, function and pharmacology of human itch GPCRs. Nature 600, 170–175 (2021).
pubmed: 34789874 pmcid: 9150435 doi: 10.1038/s41586-021-04126-6
Johnson, R. M. et al. Cryo-EM structure of the dual incretin receptor agonist, peptide-19, in complex with the glucagon-like peptide-1 receptor. Biochem. Biophys. Res. Commun. 578, 84–90 (2021).
pubmed: 34547628 doi: 10.1016/j.bbrc.2021.09.016
Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D Biol. Crystallogr. 65, 1074–1080 (2009).
pubmed: 19770504 pmcid: 2748967 doi: 10.1107/S0907444909029436
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).
pubmed: 20057044 doi: 10.1107/S0907444909042073
Novotny, M., Madsen, D. & Kleywegt, G. J. Evaluation of protein fold comparison servers. Proteins 54, 260–270 (2004).
pubmed: 14696188 doi: 10.1002/prot.10553
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
pubmed: 28710774 doi: 10.1002/pro.3235
Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013).
pubmed: 24040512 pmcid: 3771563 doi: 10.7554/eLife.01456
Schrage, R. et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nat. Commun. 6, 10156 (2015).
pubmed: 26658454 doi: 10.1038/ncomms10156
Olsen, R. H. J. et al. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat. Chem. Biol. 16, 841–849 (2020).
pubmed: 32367019 pmcid: 7648517 doi: 10.1038/s41589-020-0535-8

Auteurs

Hao Zuo (H)

Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA.

Jinseo Park (J)

Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA.

Aurel Frangaj (A)

Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA.

Jianxiang Ye (J)

Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.

Guanqi Lu (G)

Department of Biological Sciences, Columbia University, New York, NY, USA.

Jamie J Manning (JJ)

Department of Psychiatry, Columbia University, New York, NY, USA.
Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.

Wesley B Asher (WB)

Department of Psychiatry, Columbia University, New York, NY, USA.
Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.

Zhengyuan Lu (Z)

Department of Biological Sciences, Columbia University, New York, NY, USA.

Guo-Bin Hu (GB)

Laboratory for BioMolecular Structure, Brookhaven National Laboratory, Upton, NY, USA.

Liguo Wang (L)

Laboratory for BioMolecular Structure, Brookhaven National Laboratory, Upton, NY, USA.

Joshua Mendez (J)

National Center for Cryo-EM Access and Training, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA.

Edward Eng (E)

National Center for Cryo-EM Access and Training, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA.

Zhening Zhang (Z)

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.

Xin Lin (X)

Department of Psychiatry, Columbia University, New York, NY, USA.
Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.

Robert Grassucci (R)

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.

Wayne A Hendrickson (WA)

Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.

Oliver B Clarke (OB)

Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.
Department of Anesthesiology, Columbia University, New York, NY, USA.
Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA.

Jonathan A Javitch (JA)

Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA. Jonathan.Javitch@nyspi.columbia.edu.
Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA. Jonathan.Javitch@nyspi.columbia.edu.
Department of Psychiatry, Columbia University, New York, NY, USA. Jonathan.Javitch@nyspi.columbia.edu.
Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA. Jonathan.Javitch@nyspi.columbia.edu.

Arthur D Conigrave (AD)

School of Life & Environmental Sciences, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia. arthur.conigrave@sydney.edu.au.

Qing R Fan (QR)

Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA. qf13@cumc.columbia.edu.
Department of Pathology and Cell Biology, Columbia University, New York, NY, USA. qf13@cumc.columbia.edu.

Classifications MeSH