Natural antisense transcripts as versatile regulators of gene expression.


Journal

Nature reviews. Genetics
ISSN: 1471-0064
Titre abrégé: Nat Rev Genet
Pays: England
ID NLM: 100962779

Informations de publication

Date de publication:
17 Apr 2024
Historique:
accepted: 07 03 2024
medline: 18 4 2024
pubmed: 18 4 2024
entrez: 17 4 2024
Statut: aheadofprint

Résumé

Long non-coding RNAs (lncRNAs) are emerging as a major class of gene products that have central roles in cell and developmental biology. Natural antisense transcripts (NATs) are an important subset of lncRNAs that are expressed from the opposite strand of protein-coding and non-coding genes and are a genome-wide phenomenon in both eukaryotes and prokaryotes. In eukaryotes, a myriad of NATs participate in regulatory pathways that affect expression of their cognate sense genes. Recent developments in the study of NATs and lncRNAs and large-scale sequencing and bioinformatics projects suggest that whether NATs regulate expression, splicing, stability or translation of the sense transcript is influenced by the pattern and degrees of overlap between the sense-antisense pair. Moreover, epigenetic gene regulatory mechanisms prevail in somatic cells whereas mechanisms dependent on the formation of double-stranded RNA intermediates are prevalent in germ cells. The modulating effects of NATs on sense transcript expression make NATs rational targets for therapeutic interventions.

Identifiants

pubmed: 38632496
doi: 10.1038/s41576-024-00723-z
pii: 10.1038/s41576-024-00723-z
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. Springer Nature Limited.

Références

Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).
pubmed: 36596869 doi: 10.1038/s41580-022-00566-8
Nordström, K., Wagner, E. G. H., Persson, C., Blomberg, P. & Öhman, M. Translational control by antisense RNA in control of plasmid replication. Gene 72, 237–240 (1988).
pubmed: 2468562 doi: 10.1016/0378-1119(88)90148-5
Lipman, D. J. Making (anti)sense of non-coding sequence conservation. Nucleic Acids Res. 25, 3580–3583 (1997).
pubmed: 9278476 pmcid: 146938 doi: 10.1093/nar/25.18.3580
Fahey, M. E., Moore, T. F. & Higgins, D. G. Overlapping antisense transcription in the human genome. Comp. Funct. Genomics 3, 244–253 (2002).
pubmed: 18628857 pmcid: 2447278 doi: 10.1002/cfg.173
Shendure, J. & Church, G. M. Computational discovery of sense-antisense transcription in the human and mouse genomes. Genome Biol. 3, RESEARCH0044 (2002).
pubmed: 12225583 pmcid: 126869 doi: 10.1186/gb-2002-3-9-research0044
Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).
pubmed: 16141073 doi: 10.1126/science.1112009
Kiyosawa, H., Yamanaka, I., Osato, N., Kondo, S. & Hayashizaki, Y. Antisense transcripts with FANTOM2 clone set and their implications for gene regulation. Genome Res. 13, 1324–1334 (2003).
pubmed: 12819130 pmcid: 403655 doi: 10.1101/gr.982903
Pillay, S., Takahashi, H., Carninci, P. & Kanhere, A. Antisense RNAs during early vertebrate development are divided in groups with distinct features. Genome Res. 31, 995–1010 (2021).
pubmed: 33795334 pmcid: 8168585 doi: 10.1101/gr.262964.120
Arnold, M. & Stengel, K. R. Emerging insights into enhancer biology and function. Transcription 14, 68–87 (2023).
pubmed: 37312570 doi: 10.1080/21541264.2023.2222032
Barral, A. & Déjardin, J. The chromatin signatures of enhancers and their dynamic regulation. Nucleus 14, 2160551 (2023).
pubmed: 36602897 pmcid: 9828845 doi: 10.1080/19491034.2022.2160551
Yamanaka, Y. et al. Antisense RNA controls LRP1 sense transcript expression through interaction with a chromatin-associated protein, HMGB2. Cell Rep. 11, 967–976 (2015).
pubmed: 25937287 pmcid: 4431949 doi: 10.1016/j.celrep.2015.04.011
Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).
pubmed: 14980218 doi: 10.1016/S0092-8674(04)00127-8
Burd, C. E. et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 6, e1001233 (2010).
pubmed: 21151960 pmcid: 2996334 doi: 10.1371/journal.pgen.1001233
Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).
pubmed: 21964070 pmcid: 3230379 doi: 10.1038/emboj.2011.359
Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).
pubmed: 23446348 doi: 10.1038/nature11928
Ma, J. et al. An antisense circular RNA circSCRIB enhances cancer progression by suppressing parental gene splicing and translation. Mol. Ther. 29, 2754–2768 (2021).
pubmed: 34365033 pmcid: 8417507 doi: 10.1016/j.ymthe.2021.08.002
Zhang, H. et al. An antisense circular RNA regulates expression of RuBisCO small subunit genes in Arabidopsis. Front. Plant Sci. 12, 665014 (2021).
pubmed: 34108983 pmcid: 8181130 doi: 10.3389/fpls.2021.665014
Wight, M. & Werner, A. The functions of natural antisense transcripts. Essays Biochem. 54, 91–101 (2013).
pubmed: 23829529 pmcid: 4284957 doi: 10.1042/bse0540091
Vangoor, V. R., Gomes-Duarte, A. & Pasterkamp, R. J. Long non-coding RNAs in motor neuron development and disease. J. Neurochem. 156, 777–801 (2021).
pubmed: 32970857 doi: 10.1111/jnc.15198
Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7, e30733 (2012).
pubmed: 22319583 pmcid: 3270023 doi: 10.1371/journal.pone.0030733
Gonzàlez-Porta, M., Frankish, A., Rung, J., Harrow, J. & Brazma, A. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol. 14, R70 (2013).
pubmed: 23815980 pmcid: 4053754 doi: 10.1186/gb-2013-14-7-r70
Tung, K.-F., Pan, C.-Y., Chen, C.-H. & Lin, W.-C. Top-ranked expressed gene transcripts of human protein-coding genes investigated with GTEx dataset. Sci. Rep. 10, 16245 (2020).
pubmed: 33004865 pmcid: 7530651 doi: 10.1038/s41598-020-73081-5
Gendrel, A. V. & Heard, E. Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation. Annu. Rev. Cell Dev. Biol. 30, 561–580 (2014).
pubmed: 25000994 doi: 10.1146/annurev-cellbio-101512-122415
Hawkins, P. G. & Morris, K. V. Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription 1, 165–175 (2010).
pubmed: 21151833 pmcid: 2999937 doi: 10.4161/trns.1.3.13332
Georg, J. & Hess, W. R. Widespread antisense transcription in Prokaryotes. Microbiol. Spect. 6, https://doi.org/10.1128/microbiolspec.RWR-0029-2018 (2018).
Gunasekera, A. M. et al. Widespread distribution of antisense transcripts in the Plasmodium falciparum genome. Mol. Biochem. Parasitol. 136, 35–42 (2004).
pubmed: 15138065 doi: 10.1016/j.molbiopara.2004.02.007
Reis, R. S. & Poirier, Y. Making sense of the natural antisense transcript puzzle. Trends Plant. Sci. 26, 1104–1115 (2021).
pubmed: 34303604 doi: 10.1016/j.tplants.2021.07.004
Sun, M., Hurst, L. D., Carmichael, G. G. & Chen, J. Evidence for variation in abundance of antisense transcripts between multicellular animals but no relationship between antisense transcription and organismic complexity. Genome Res. 16, 922–933 (2006).
pubmed: 16769979 pmcid: 1484459 doi: 10.1101/gr.5210006
Balbin, O. A. et al. The landscape of antisense gene expression in human cancers. Genome Res. 25, 1068–1079 (2015).
pubmed: 26063736 pmcid: 4484389 doi: 10.1101/gr.180596.114
Frankish, A. et al. GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Res. 51, D942–D949 (2023).
pubmed: 36420896 doi: 10.1093/nar/gkac1071
Amaral, P. et al. The status of the human gene catalogue. Nature 622, 41–47 (2023).
pubmed: 37794265 pmcid: 10575709 doi: 10.1038/s41586-023-06490-x
Engström, P. G. et al. Complex loci in human and mouse genomes. PLoS Genet. 2, e47 (2006).
pubmed: 16683030 pmcid: 1449890 doi: 10.1371/journal.pgen.0020047
He, Y., Vogelstein, B., Velculescu, V. E., Papadopoulos, N. & Kinzler, K. W. The antisense transcriptomes of human cells. Science 322, 1855–1857 (2008).
pubmed: 19056939 pmcid: 2824178 doi: 10.1126/science.1163853
Ozsolak, F. et al. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 143, 1018–1029 (2010).
pubmed: 21145465 pmcid: 3022516 doi: 10.1016/j.cell.2010.11.020
Chen, J. et al. Over 20% of human transcripts might form sense-antisense pairs. Nucleic Acids Res. 32, 4812–4820 (2004).
pubmed: 15356298 pmcid: 519112 doi: 10.1093/nar/gkh818
Kiyosawa, H. & Abe, K. Speculations on the role of natural antisense transcripts in mammalian X chromosome evolution. Cytogenet. Genome Res. 99, 151–156 (2002).
pubmed: 12900558 doi: 10.1159/000071587
Piatek, M. J., Henderson, V., Zynad, H. S. & Werner, A. Natural antisense transcription from a comparative perspective. Genomics 108, 56–63 (2016).
pubmed: 27241791 doi: 10.1016/j.ygeno.2016.05.004
Zhang, Y., Liu, X. S., Liu, Q. R. & Wei, L. Genome-wide in silico identification and analysis of cis natural antisense transcripts (cis-NATs) in ten species. Nucleic Acids Res. 34, 3465–3475 (2006).
pubmed: 16849434 pmcid: 1524920 doi: 10.1093/nar/gkl473
Werner, A., Carlile, M. & Swan, D. What do natural antisense transcripts regulate? RNA Biol. 6, 43–48 (2009).
pubmed: 19098462 doi: 10.4161/rna.6.1.7568
Kim, D. S. & Hahn, Y. Human-specific antisense transcripts induced by the insertion of transposable element. Int. J. Mol. Med. 26, 151–157 (2010).
pubmed: 20514435
Faulkner, G. J. et al. The regulated retrotransposon transcriptome of mammalian cells. Nat. Genet. 41, 563–571 (2009).
pubmed: 19377475 doi: 10.1038/ng.368
Honda, T. et al. Effects of activation of the LINE-1 antisense promoter on the growth of cultured cells. Sci. Rep. 10, 22136 (2020).
pubmed: 33335226 pmcid: 7746726 doi: 10.1038/s41598-020-79197-y
Fan, J., Martinez-Arguelles, D. B. & Papadopoulos, V. Genome-wide expression analysis of a new class of lncRNAs driven by SINE B2. Gene 768, 145332 (2021).
pubmed: 33278552 doi: 10.1016/j.gene.2020.145332
Kapusta, A. et al. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet. 9, e1003470 (2013).
pubmed: 23637635 pmcid: 3636048 doi: 10.1371/journal.pgen.1003470
Veeramachaneni, V., Makalowski, W., Galdzicki, M., Sood, R. & Makalowska, I. Mammalian overlapping genes: the comparative perspective. Genome Res. 14, 280–286 (2004).
pubmed: 14762064 pmcid: 327103 doi: 10.1101/gr.1590904
Ho, M.-R., Tsai, K.-W. & Lin, W.-C. A unified framework of overlapping genes: towards the origination and endogenic regulation. Genomics 100, 231–239 (2012).
pubmed: 22766524 doi: 10.1016/j.ygeno.2012.06.011
Wood, E. J., Chin-Inmanu, K., Jia, H. & Lipovich, L. Sense-antisense gene pairs: sequence, transcription, and structure are not conserved between human and mouse. Front. Genet. 4, 183 (2013).
pubmed: 24133500 pmcid: 3783845 doi: 10.3389/fgene.2013.00183
Hezroni, H. et al. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep. 11, 1110–1122 (2015).
pubmed: 25959816 pmcid: 4576741 doi: 10.1016/j.celrep.2015.04.023
Ling, M. H. T., Ban, Y., Wen, H., Wang, S. M. & Ge, S. X. Conserved expression of natural antisense transcripts in mammals. BMC Genomics 14, 243 (2013).
pubmed: 23577827 pmcid: 3635984 doi: 10.1186/1471-2164-14-243
Jung, J. et al. Bioinformatic analysis of regulation of natural antisense transcripts by transposable elements in human mRNA. Genomics 111, 159–166 (2019).
pubmed: 29366860 doi: 10.1016/j.ygeno.2018.01.011
Gebrie, A. Transposable elements as essential elements in the control of gene expression. Mob. DNA 14, 9 (2023).
pubmed: 37596675 pmcid: 10439571 doi: 10.1186/s13100-023-00297-3
Pheasant, M. & Mattick, J. S. Raising the estimate of functional human sequences. Genome Res. 17, 1245–1253 (2007).
pubmed: 17690206 doi: 10.1101/gr.6406307
Liu, B. et al. The regulatory role of antisense lncRNAs in cancer. Cancer Cell Int. 21, 459 (2021).
pubmed: 34461912 pmcid: 8404292 doi: 10.1186/s12935-021-02168-4
Ouyang, J. et al. Long non-coding RNAs are involved in alternative splicing and promote cancer progression. Br. J. Cancer 126, 1113–1124 (2022).
pubmed: 34750493 doi: 10.1038/s41416-021-01600-w
Beiter, T., Reich, E., Williams, R. W. & Simon, P. Antisense transcription: a critical look in both directions. Cell Mol. Life Sci. 66, 94–112 (2009).
pubmed: 18791843 doi: 10.1007/s00018-008-8381-y
Pelechano, V. & Steinmetz, L. M. Gene regulation by antisense transcription. Nat. Rev. Genet. 14, 880–893 (2013).
pubmed: 24217315 doi: 10.1038/nrg3594
Goyal, A. et al. A cautionary tale of sense-antisense gene pairs: independent regulation despite inverse correlation of expression. Nucleic Acids Res. 45, 12496–12508 (2017).
pubmed: 29059299 pmcid: 5716207 doi: 10.1093/nar/gkx952
Tomikawa, J. et al. Single-stranded noncoding RNAs mediate local epigenetic alterations at gene promoters in rat cell lines. J. Biol. Chem. 286, 34788–34799 (2011).
pubmed: 21844201 pmcid: 3186369 doi: 10.1074/jbc.M111.275750
Uesaka, M. et al. Bidirectional promoters are the major source of gene activation-associated non-coding RNAs in mammals. BMC Genomics 15, 35 (2014).
pubmed: 24438357 pmcid: 3898825 doi: 10.1186/1471-2164-15-35
Prescott, E. M. & Proudfoot, N. J. Transcriptional collision between convergent genes in budding yeast. Proc. Natl Acad. Sci. USA 99, 8796–8801 (2002).
pubmed: 12077310 pmcid: 124378 doi: 10.1073/pnas.132270899
Callen, B. P., Shearwin, K. E. & Egan, J. B. Transcriptional interference between convergent promoters caused by elongation over the promoter. Mol. Cell 14, 647–656 (2004).
pubmed: 15175159 doi: 10.1016/j.molcel.2004.05.010
Johnsson, P. et al. Transcriptional kinetics and molecular functions of long noncoding RNAs. Nat. Genet. 54, 306–317 (2022).
pubmed: 35241826 pmcid: 8920890 doi: 10.1038/s41588-022-01014-1
Patel, H. P. et al. DNA supercoiling restricts the transcriptional bursting of neighboring eukaryotic genes. Mol. Cell 83, 1573–1587 (2023).
pubmed: 37207624 pmcid: 10205079 doi: 10.1016/j.molcel.2023.04.015
Hao, N., Donnelly, A. J., Dodd, I. B. & Shearwin, K. E. When push comes to shove — RNA polymerase and DNA-bound protein roadblocks. Biophys. Rev. 15, 355–366 (2023).
pubmed: 37396453 pmcid: 10310618 doi: 10.1007/s12551-023-01064-7
Shearwin, K. E., Callen, B. P. & Egan, J. B. Transcriptional interference — a crash course. Trends Genet. 21, 339–345 (2005).
pubmed: 15922833 pmcid: 2941638 doi: 10.1016/j.tig.2005.04.009
Millán-Zambrano, G., Burton, A., Bannister, A. J. & Schneider, R. Histone post-translational modifications — cause and consequence of genome function. Nat. Rev. Genet. 23, 563–580 (2022).
pubmed: 35338361 doi: 10.1038/s41576-022-00468-7
Su, W.-Y., Xiong, H. & Fang, J.-Y. Natural antisense transcripts regulate gene expression in an epigenetic manner. Biochem. Biophys. Res. Commun. 396, 177–181 (2010).
pubmed: 20438699 doi: 10.1016/j.bbrc.2010.04.147
Liu, Y. et al. The CTCF/LncRNA-PACERR complex recruits E1A binding protein p300 to induce pro-tumour macrophages in pancreatic ductal adenocarcinoma via directly regulating PTGS2 expression. Clin. Transl. Med. 12, e654 (2022).
pubmed: 35184402 pmcid: 8858628 doi: 10.1002/ctm2.654
Dong, Z. et al. Aberrant hypermethylation-mediated downregulation of antisense lncRNA ZNF667-AS1 and its sense gene ZNF667 correlate with progression and prognosis of esophageal squamous cell carcinoma. Cell Death Dis. 10, 930 (2019).
pubmed: 31804468 pmcid: 6895126 doi: 10.1038/s41419-019-2171-3
Kanduri, C. Functional insights into long antisense noncoding RNA Kcnq1ot1 mediated bidirectional silencing. RNA Biol. 5, 208–211 (2008).
pubmed: 18971626 doi: 10.4161/rna.7113
Rose, N. R. & Klose, R. J. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim. Biophys. Acta 1839, 1362–1372 (2014).
pubmed: 24560929 doi: 10.1016/j.bbagrm.2014.02.007
Zinad, H. S. et al. Interdependent transcription of a natural sense/antisense transcripts pair (SLC34A1/PFN3). Noncoding RNA 8, 19 (2022).
pubmed: 35202092 pmcid: 8877773
Tufarelli, C. et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat. Genet. 34, 157–165 (2003).
pubmed: 12730694 doi: 10.1038/ng1157
Heilmann, K. et al. Genome-wide screen for differentially methylated long noncoding RNAs identifies Esrp2 and lncRNA Esrp2-as regulated by enhancer DNA methylation with prognostic relevance for human breast cancer. Oncogene 36, 6446–6461 (2017).
pubmed: 28759043 pmcid: 5701091 doi: 10.1038/onc.2017.246
Guéant, J. L. et al. Epimutation in inherited metabolic disorders: the influence of aberrant transcription in adjacent genes. Hum. Genet. 141, 1309–1325 (2022).
pubmed: 35190856 doi: 10.1007/s00439-021-02414-9
Di Ruscio, A. et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 503, 371–376 (2013).
pubmed: 24107992 pmcid: 3870304 doi: 10.1038/nature12598
Ou, M., Li, X., Zhao, S., Cui, S. & Tu, J. Long non-coding RNA CDKN2B-AS1 contributes to atherosclerotic plaque formation by forming RNA-DNA triplex in the CDKN2B promoter. eBioMed 55, 102694 (2020). article.
doi: 10.1016/j.ebiom.2020.102694
Angrand, P. O., Vennin, C., Le Bourhis, X. & Adriaenssens, E. The role of long non-coding RNAs in genome formatting and expression. Front. Genet. 6, 165 (2015).
pubmed: 25972893 pmcid: 4413816 doi: 10.3389/fgene.2015.00165
Yap, K. L. et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 38, 662–674 (2010).
pubmed: 20541999 pmcid: 2886305 doi: 10.1016/j.molcel.2010.03.021
Grote, P. & Herrmann, B. G. The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol. 10, 1579–1585 (2013).
pubmed: 24036695 pmcid: 3866236 doi: 10.4161/rna.26165
Postepska-Igielska, A. et al. LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure. Mol. Cell 60, 626–636 (2015).
pubmed: 26590717 doi: 10.1016/j.molcel.2015.10.001
Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39, 1235–1244 (2007).
pubmed: 17873876 doi: 10.1038/ng2117
Zhou, Y., Xu, S., Zhang, M. & Wu, Q. Systematic functional characterization of antisense eRNA of protocadherin α composite enhancer. Genes Dev. 35, 1383–1394 (2021).
pubmed: 34531317 pmcid: 8494205 doi: 10.1101/gad.348621.121
Ling, K. H. et al. Spatiotemporal regulation of multiple overlapping sense and novel natural antisense transcripts at the Nrgn and Camk2n1 gene loci during mouse cerebral corticogenesis. Cereb. Cortex 21, 683–697 (2011).
pubmed: 20693275 doi: 10.1093/cercor/bhq141
Michael, D. R. et al. The human hyaluronan synthase 2 (HAS2) gene and its natural antisense RNA exhibit coordinated expression in the renal proximal tubular epithelial cell. J. Biol. Chem. 286, 19523–19532 (2011).
pubmed: 21357421 pmcid: 3103331 doi: 10.1074/jbc.M111.233916
Portal, M. M., Pavet, V., Erb, C. & Gronemeyer, H. Human cells contain natural double-stranded RNAs with potential regulatory functions. Nat. Struct. Mol. Biol. 22, 89–97 (2015).
pubmed: 25504323 doi: 10.1038/nsmb.2934
Li, D. et al. LncRNA ELF3-AS1 inhibits gastric cancer by forming a negative feedback loop with SNAI2 and regulates ELF3 mRNA stability via interacting with ILF2/ILF3 complex. J. Exp. Clin. Cancer Res. 41, 332 (2022).
pubmed: 36457025 pmcid: 9716751 doi: 10.1186/s13046-022-02541-9
Eisenberg, E. & Levanon, E. Y. A-to-I RNA editing — immune protector and transcriptome diversifier. Nat. Rev. Genet. 19, 473–490 (2018).
pubmed: 29692414 doi: 10.1038/s41576-018-0006-1
Li, Q. et al. RNA editing underlies genetic risk of common inflammatory diseases. Nature 608, 569–577 (2022).
pubmed: 35922514 pmcid: 9790998 doi: 10.1038/s41586-022-05052-x
Cui, L. et al. RNA modifications: importance in immune cell biology and related diseases. Sign. Transd. Targ. Ther. 7, 334 (2022).
Sadeq, S., Al-Hashimi, S., Cusack, C. M. & Werner, A. Endogenous double-stranded RNA. Noncoding RNA 7, 15 (2021).
pubmed: 33669629 pmcid: 7930956
Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008).
pubmed: 18404147 pmcid: 2981145 doi: 10.1038/nature06904
Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 1732–1743 (2006).
pubmed: 16766679 pmcid: 1522070 doi: 10.1101/gad.1425706
Werner, A. et al. Contribution of natural antisense transcription to an endogenous siRNA signature in human cells. BMC Genomics 15, 19 (2014).
pubmed: 24410956 pmcid: 3898206 doi: 10.1186/1471-2164-15-19
Napoli, S., Piccinelli, V., Mapelli, S. N., Pisignano, G. & Catapano, C. V. Natural antisense transcripts drive a regulatory cascade controlling c-MYC transcription. RNA Biol. 14, 1742–1755 (2017).
pubmed: 28805496 pmcid: 5731802 doi: 10.1080/15476286.2017.1356564
Lim, J. W. et al. DICER/AGO-dependent epigenetic silencing of D4Z4 repeats enhanced by exogenous siRNA suggests mechanisms and therapies for FSHD. Hum. Mol. Genet. 24, 4817–4828 (2015).
pubmed: 26041815 pmcid: 4527486 doi: 10.1093/hmg/ddv206
Song, R. et al. Male germ cells express abundant endogenous siRNAs. Proc. Natl Acad. Sci. USA 108, 13159–13164 (2011).
pubmed: 21788498 pmcid: 3156200 doi: 10.1073/pnas.1108567108
Werner, A. et al. Widespread formation of double-stranded RNAs in testis. Genome Res. 31, 1174–1186 (2021).
pubmed: 34158368 pmcid: 8256860 doi: 10.1101/gr.265603.120
Morrissy, A. S., Griffith, M. & Marra, M. A. Extensive relationship between antisense transcription and alternative splicing in the human genome. Genome Res. 21, 1203–1212 (2011).
pubmed: 21719572 pmcid: 3149488 doi: 10.1101/gr.113431.110
Munroe, S. H. & Lazar, M. A. Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA. J. Biol. Chem. 266, 22083–22086 (1991).
pubmed: 1657988 doi: 10.1016/S0021-9258(18)54535-X
Niehus, S. E. et al. Myc/Max dependent intronic long antisense noncoding RNA, EVA1A-AS, suppresses the expression of Myc/Max dependent anti-proliferating gene EVA1A in a U2 dependent manner. Sci. Rep. 9, 17319 (2019).
pubmed: 31754186 pmcid: 6872820 doi: 10.1038/s41598-019-53944-2
Su, Z., Liu, G., Zhang, B., Lin, Z. & Huang, D. Natural antisense transcript PEBP1P3 regulates the RNA expression, DNA methylation and histone modification of CD45 gene. Genes 12, 759 (2021).
pubmed: 34067766 pmcid: 8156488 doi: 10.3390/genes12050759
Huang, G. W., Zhang, Y. L., Liao, L. D., Li, E. M. & Xu, L. Y. Natural antisense transcript TPM1-AS regulates the alternative splicing of tropomyosin I through an interaction with RNA-binding motif protein 4. Int. J. Biochem. Cell Biol. 90, 59–67 (2017).
pubmed: 28754317 doi: 10.1016/j.biocel.2017.07.017
Havens, M. A. & Hastings, M. L. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res. 44, 6549–6563 (2016).
pubmed: 27288447 pmcid: 5001604 doi: 10.1093/nar/gkw533
Gonzalez, I. et al. A lncRNA regulates alternative splicing via establishment of a splicing-specific chromatin signature. Nat. Struct. Mol. Biol. 22, 370–376 (2015).
pubmed: 25849144 pmcid: 6322542 doi: 10.1038/nsmb.3005
Shen, T. et al. Antisense transcription regulates the expression of sense gene via alternative polyadenylation. Protein Cell 9, 540–552 (2018).
pubmed: 29273853 doi: 10.1007/s13238-017-0497-0
Li, W. et al. Alternative cleavage and polyadenylation in spermatogenesis connects chromatin regulation with post-transcriptional control. BMC Biol. 14, 6 (2016).
pubmed: 26801249 pmcid: 4724118 doi: 10.1186/s12915-016-0229-6
Culbertson, B. et al. A sense-antisense RNA interaction promotes breast cancer metastasis via regulation of NQO1 expression. Nat. Cancer 4, 682–698 (2023).
pubmed: 37169843 pmcid: 10212767 doi: 10.1038/s43018-023-00554-7
Boulias, K. & Greer, E. L. Biological roles of adenine methylation in RNA. Nat. Rev. Genet. 24, 143–160 (2023).
pubmed: 36261710 doi: 10.1038/s41576-022-00534-0
Akhtar, J., Lugoboni, M. & Junion, G. m
pubmed: 35380917 doi: 10.1080/21541264.2022.2057177
Zhang, S. et al. m
pubmed: 28344040 pmcid: 5427719 doi: 10.1016/j.ccell.2017.02.013
Zhou, L. et al. Hypoxia-induced lncRNA STEAP3-AS1 activates Wnt/β-catenin signaling to promote colorectal cancer progression by preventing m
pubmed: 35986274 pmcid: 9392287 doi: 10.1186/s12943-022-01638-1
Zhang, Y. et al. The m
pubmed: 36056355 pmcid: 9438157 doi: 10.1186/s12943-022-01647-0
Mahmoudi, S. et al. Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol. Cell 33, 462–471 (2009).
pubmed: 19250907 doi: 10.1016/j.molcel.2009.01.028
Jadaliha, M. et al. A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability. PLoS Genet. 14, e1007802 (2018).
pubmed: 30496290 pmcid: 6289468 doi: 10.1371/journal.pgen.1007802
Chen, Y. G. & Hur, S. Cellular origins of dsRNA, their recognition and consequences. Nat. Rev. Mol. Cell Biol. 23, 286–301 (2022).
pubmed: 34815573 doi: 10.1038/s41580-021-00430-1
Cottrell, K. A., Andrews, R. J. & Bass, B. L. The competitive landscape of the dsRNA world. Mol. Cell 84, 107–119 (2024).
pubmed: 38118451 doi: 10.1016/j.molcel.2023.11.033
Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016).
pubmed: 27180905 pmcid: 5029792 doi: 10.1016/j.cell.2016.04.028
Faghihi, M. A. et al. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β-secretase. Nat. Med. 14, 723–730 (2008).
pubmed: 18587408 pmcid: 2826895 doi: 10.1038/nm1784
Faghihi, M. A. et al. Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol. 11, R56 (2010).
pubmed: 20507594 pmcid: 2898074 doi: 10.1186/gb-2010-11-5-r56
Denzler, R., Agarwal, V., Stefano, J., Bartel, D. P. & Stoffel, M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54, 766–776 (2014).
pubmed: 24793693 pmcid: 4267251 doi: 10.1016/j.molcel.2014.03.045
Thomson, D. W. & Dinger, M. E. Endogenous microRNA sponges: evidence and controversy. Nat. Rev. Genet. 17, 272–283 (2016).
pubmed: 27040487 doi: 10.1038/nrg.2016.20
Santos, F., Capela, A. M., Mateus, F., Nóbrega-Pereira, S. & de Jesus, B. B. Non-coding antisense transcripts: fine regulation of gene expression in cancer. Comput. Struct. Biotech. J. 20, 5652–5660 (2022).
doi: 10.1016/j.csbj.2022.10.009
Maquat, L. E. Short interspersed nuclear element (SINE)-mediated post-transcriptional effects on human and mouse gene expression: SINE-UP for active duty. Philos. Trans. R. Soc. Lond. B 375, 20190344 (2020).
doi: 10.1098/rstb.2019.0344
Zucchelli, S. et al. SINEUPs: a new class of natural and synthetic antisense long non-coding RNAs that activate translation. RNA Biol. 12, 771–779 (2015).
pubmed: 26259533 pmcid: 4615742 doi: 10.1080/15476286.2015.1060395
Schein, A., Zucchelli, S., Kauppinen, S., Gustincich, S. & Carninci, P. Identification of antisense long noncoding RNAs that function as SINEUPs in human cells. Sci. Rep. 6, 33605 (2016).
pubmed: 27646849 pmcid: 5028707 doi: 10.1038/srep33605
Espinoza, S. et al. SINEUPs: a novel toolbox for RNA therapeutics. Essays Biochem. 65, 775–789 (2021).
pubmed: 34623427 pmcid: 8564737 doi: 10.1042/EBC20200114
Carrieri, C. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491, 454–457 (2012).
pubmed: 23064229 doi: 10.1038/nature11508
Pierattini, B. et al. SINEUP non-coding RNA activity depends on specific N6-methyladenosine nucleotides. Mol. Ther. 32, 402–414 (2023).
Simone, R. et al. MIR-NATs repress MAPT translation and aid proteostasis in neurodegeneration. Nature 594, 117–123 (2021).
pubmed: 34012113 pmcid: 7610982 doi: 10.1038/s41586-021-03556-6
Chan, W. Y. et al. The complexity of antisense transcription revealed by the study of developing male germ cells. Genomics 87, 681–692 (2006).
pubmed: 16458478 doi: 10.1016/j.ygeno.2005.12.006
Werner, A., Schmutzler, G., Carlile, M., Miles, C. G. & Peters, H. Expression profiling of antisense transcripts on DNA arrays. Physiol. Genomics 28, 294–300 (2007).
pubmed: 17105753 doi: 10.1152/physiolgenomics.00127.2006
Soumillon, M. et al. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep. 3, 2179–2190 (2013).
pubmed: 23791531 doi: 10.1016/j.celrep.2013.05.031
García-Rodríguez, A., Gosálvez, J., Agarwal, A., Roy, R. & Johnston, S. DNA damage and repair in human reproductive cells. Int. J. Mol. Sci. 20, 31 (2019).
doi: 10.3390/ijms20010031
Shami, A. N. et al. Single-cell RNA sequencing of human, macaque, and mouse testes uncovers conserved and divergent features of mammalian spermatogenesis. Dev. Cell 54, 529–547 (2020).
pubmed: 32504559 pmcid: 7879256 doi: 10.1016/j.devcel.2020.05.010
Geisinger, A., Rodríguez-Casuriaga, R. & Benavente, R. Transcriptomics of meiosis in the male mouse. Front. Cell Dev. Biol. 9, 626020 (2021).
pubmed: 33748111 pmcid: 7973102 doi: 10.3389/fcell.2021.626020
Braun, R. E. Packaging paternal chromosomes with protamine. Nat. Genet. 28, 10–12 (2001).
pubmed: 11326265 doi: 10.1038/ng0501-10
Murat, F. et al. The molecular evolution of spermatogenesis across mammals. Nature 613, 308–316 (2023).
pubmed: 36544022 doi: 10.1038/s41586-022-05547-7
Wright, C. J., Smith, C. W. J. & Jiggins, C. D. Alternative splicing as a source of phenotypic diversity. Nat. Rev. Genet. 23, 697–710 (2022).
pubmed: 35821097 doi: 10.1038/s41576-022-00514-4
Gallicchio, L., Olivares, G. H., Berry, C. W. & Fuller, M. T. Regulation and function of alternative polyadenylation in development and differentiation. RNA Biol. 20, 908–925 (2023).
pubmed: 37906624 pmcid: 10730144 doi: 10.1080/15476286.2023.2275109
Gan, H. et al. Integrative proteomic and transcriptomic analyses reveal multiple post-transcriptional regulatory mechanisms of mouse spermatogenesis. Mol. Cell Proteom. 12, 1144–1157 (2013).
doi: 10.1074/mcp.M112.020123
Lin, X. et al. Expression dynamics, relationships, and transcriptional regulations of diverse transcripts in mouse spermatogenic cells. RNA Biol. 13, 1011–1024 (2016).
pubmed: 27560004 pmcid: 5056783 doi: 10.1080/15476286.2016.1218588
Werner, A., Piatek, M. J. & Mattick, J. S. Transpositional shuffling and quality control in male germ cells to enhance evolution of complex organisms. Ann. N. Y. Acad. Sci. 1341, 156–163 (2015).
pubmed: 25557795 doi: 10.1111/nyas.12608
Werner, A. & Swan, D. What are natural antisense transcripts good for? Biochem. Soc. Trans. 38, 1144–1149 (2010).
pubmed: 20659019 pmcid: 4284956 doi: 10.1042/BST0381144
Xia, B. et al. Widespread transcriptional scanning in the testis modulates gene evolution rates. Cell 180, 248–262.e21 (2020).
pubmed: 31978344 pmcid: 7891839 doi: 10.1016/j.cell.2019.12.015
Wahlestedt, C. Natural antisense and noncoding RNA transcripts as potential drug targets. Drug Discov. Today 11, 503–508 (2006).
pubmed: 16713901 doi: 10.1016/j.drudis.2006.04.013
Wahlestedt, C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat. Rev. Drug Discov. 12, 433–446 (2013).
pubmed: 23722346 doi: 10.1038/nrd4018
Khorkova, O. et al. Natural antisense transcripts as drug targets. Front. Mol. Biosci. 9, 978375 (2022).
pubmed: 36250017 pmcid: 9563854 doi: 10.3389/fmolb.2022.978375
Khorkova, O., Stahl, J., Joji, A., Volmar, C.-H. & Wahlestedt, C. Amplifying gene expression with RNA-targeted therapeutics. Nat. Rev. Drug Discov. 22, 539–561 (2023).
pubmed: 37253858 doi: 10.1038/s41573-023-00704-7
Srinivas, T., Mathias, C., Oliveira-Mateos, C. & Guil, S. Roles of lncRNAs in brain development and pathogenesis: emerging therapeutic opportunities. Mol. Ther. 31, 1550–1561 (2023).
pubmed: 36793211 doi: 10.1016/j.ymthe.2023.02.008
Padmakumar, S. et al. Minimally invasive nasal depot (MIND) technique for direct BDNF AntagoNAT delivery to the brain. J. Control. Release 331, 176–186 (2021).
pubmed: 33484777 pmcid: 7946770 doi: 10.1016/j.jconrel.2021.01.027
Hsiao, J. et al. Upregulation of haploinsufficient gene expression in the brain by targeting a long non-coding RNA improves seizure phenotype in a model of Dravet syndrome. eBioMed 9, 257–277 (2016).
doi: 10.1016/j.ebiom.2016.05.011
Valentini, P. et al. Towards SINEUP-based therapeutics: design of an in vitro synthesized SINEUP RNA. Mol. Ther. 27, 1092–1102 (2022).
Espinoza, S. et al. SINEUP non-coding RNA targeting GDNF rescues motor deficits and neurodegeneration in a mouse model of Parkinson’s disease. Mol. Ther. 28, 642–652 (2020).
pubmed: 31495777 doi: 10.1016/j.ymthe.2019.08.005
Bon, C. et al. SINEUP non-coding RNAs rescue defective frataxin expression and activity in a cellular model of Friedreich’s Ataxia. Nucleic Acids Res. 47, 10728–10743 (2019).
pubmed: 31584077 pmcid: 6847766 doi: 10.1093/nar/gkz798
Hoseinpoor, R., Kazemi, B., Rajabibazl, M. & Rahimpour, A. Improving the expression of anti-IL-2Rα monoclonal antibody in the CHO cells through optimization of the expression vector and translation efficiency. J. Biotech. 324, 112–120 (2020).
doi: 10.1016/j.jbiotec.2020.09.006
Carninci, P. et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet. 38, 626–635 (2006).
pubmed: 16645617 doi: 10.1038/ng1789
Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).
pubmed: 33353982 doi: 10.1038/s41580-020-00315-9
Canzio, D. et al. Antisense lncRNA transcription mediates DNA demethylation to drive stochastic protocadherin α promoter choice. Cell 177, 639–653 (2019).
pubmed: 30955885 pmcid: 6823843 doi: 10.1016/j.cell.2019.03.008
Novačić, A. et al. Antisense non-coding transcription represses the PHO5 model gene at the level of promoter chromatin structure. PLoS Genet. 18, e1010432 (2022).
pubmed: 36215302 pmcid: 9584416 doi: 10.1371/journal.pgen.1010432
Subhash, S. et al. H3K4me2 and WDR5 enriched chromatin interacting long non-coding RNAs maintain transcriptionally competent chromatin at divergent transcriptional units. Nucleic Acids Res. 46, 9384–9400 (2018).
pubmed: 30010961 pmcid: 6182144 doi: 10.1093/nar/gky635
Somasundaram, K., Gupta, B., Jain, N. & Jana, S. LncRNAs divide and rule: the master regulators of phase separation. Front. Genet. 13, 930792 (2022).
pubmed: 36035193 pmcid: 9399341 doi: 10.3389/fgene.2022.930792
Mattick, J. S. Enhancers are genes that express organizational RNAs. Front. RNA Res. 1, 1194526 (2023).
doi: 10.3389/frnar.2023.1194526
Nevers, A. et al. Antisense transcriptional interference mediates condition-specific gene repression in budding yeast. Nucleic Acids Res. 46, 6009–6025 (2018).
pubmed: 29788449 pmcid: 6158615 doi: 10.1093/nar/gky342
Xu, Z. et al. Antisense expression increases gene expression variability and locus interdependency. Mol. Syst. Biol. 7, 468 (2011).
pubmed: 21326235 pmcid: 3063692 doi: 10.1038/msb.2011.1
Li, X. & Fu, X.-D. Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat. Rev. Genet. 20, 503–519 (2019).
pubmed: 31160792 pmcid: 7684979 doi: 10.1038/s41576-019-0135-1
Brennan, C. M. & Steitz, J. A. HuR and mRNA stability. Cell. Mol. Life Sci. 58, 266–277 (2001).
pubmed: 11289308 doi: 10.1007/PL00000854
Zhang, L., Chen, J.-G. & Zhao, Q. Regulatory roles of Alu transcript on gene expression. Exp. Cell Res. 338, 113–118 (2015).
pubmed: 26210645 doi: 10.1016/j.yexcr.2015.07.019
Weingarten-Gabbay, S. et al. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science 351, aad4939 (2016).
pubmed: 26816383 doi: 10.1126/science.aad4939
Gan, H. et al. Dynamics of 5-hydroxymethylcytosine during mouse spermatogenesis. Nat. Commun. 4, 1995 (2013).
pubmed: 23759713 doi: 10.1038/ncomms2995
No authors listed. Papers presented at the EMBO/INSERM workshop on Regulation of gene expression by RNA structure and anti-messengers. Les Arcs, Savoie (France), 28 February-4 March 1988. Gene 72, 1–376 (1988).
Inouye, M. Antisense RNA: its functions and applications in gene regulation — a review. Gene 72, 25–34 (1988).
pubmed: 2468565 doi: 10.1016/0378-1119(88)90124-2
Rosenberg, U. B., Preiss, A., Seifert, E., Jäckle, H. & Knipple, D. C. Production of phenocopies by Krüppel antisense RNA injection into Drosophila embryos. Nature 313, 703–706 (1985).
pubmed: 2579337 doi: 10.1038/313703a0
McGarry, T. J. & Lindquist, S. Inhibition of heat shock protein synthesis by heat-inducible antisense RNA. Proc. Natl Acad. Sci. USA 83, 399–403 (1986).
pubmed: 2417242 pmcid: 322866 doi: 10.1073/pnas.83.2.399
Rothstein, S. J., Dimaio, J., Strand, M. & Rice, D. Stable and heritable inhibition of the expression of nopaline synthase in tobacco expressing antisense RNA. Proc. Natl Acad. Sci. USA 84, 8439–8443 (1987).
pubmed: 16593903 pmcid: 299559 doi: 10.1073/pnas.84.23.8439
Constância, M., Pickard, B., Kelsey, G. & Reik, W. Imprinting mechanisms. Genome Res. 8, 881–900 (1998).
pubmed: 9750189 doi: 10.1101/gr.8.9.881
Bedford, M., Arman, E., Orr-Urtreger, A. & Lonai, P. Analysis of the Hoxd-3 gene: structure and localization of its sense and natural antisense transcripts. DNA Cell Biol. 14, 295–304 (1995).
pubmed: 7710686 doi: 10.1089/dna.1995.14.295
Farrell, C. M. & Lukens, L. N. Naturally occurring antisense transcripts are present in chick embryo chondrocytes simultaneously with the down-regulation of the α1(I) collagen gene. J. Biol. Chem. 270, 3400–3408 (1995).
pubmed: 7852426 doi: 10.1074/jbc.270.7.3400
Khochbin, S. & Lawrence, J. J. An antisense RNA involved in p53 mRNA maturation in murine erythroleukemia cells induced to differentiate. EMBO J. 8, 4107–4114 (1989).
pubmed: 2480234 pmcid: 401592 doi: 10.1002/j.1460-2075.1989.tb08595.x
Adams, M. D. et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656 (1991).
pubmed: 2047873 doi: 10.1126/science.2047873
Ni, T. et al. The prevalence and regulation of antisense transcripts in Schizosaccharomyces pombe. PLoS One 5, e15271 (2010).
pubmed: 21187966 pmcid: 3004915 doi: 10.1371/journal.pone.0015271
Yassour, M. et al. Strand-specific RNA sequencing reveals extensive regulated long antisense transcripts that are conserved across yeast species. Genome Biol. 11, R87 (2010).
pubmed: 20796282 pmcid: 2945789 doi: 10.1186/gb-2010-11-8-r87
van Dijk, E. L. et al. XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475, 114–117 (2011).
pubmed: 21697827 doi: 10.1038/nature10118
Xu, Z. et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037 (2009).
pubmed: 19169243 pmcid: 2766638 doi: 10.1038/nature07728
Neil, H. et al. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457, 1038–1042 (2009).
pubmed: 19169244 doi: 10.1038/nature07747
Candelli, T. et al. High-resolution transcription maps reveal the widespread impact of roadblock termination in yeast. EMBO J. 37, e97490 (2018).
pubmed: 29351914 pmcid: 5813251 doi: 10.15252/embj.201797490
Roy, K., Gabunilas, J., Gillespie, A., Ngo, D. & Chanfreau, G. F. Common genomic elements promote transcriptional and DNA replication roadblocks. Genome Res. 26, 1363–1375 (2016).
pubmed: 27540088 pmcid: 5052057 doi: 10.1101/gr.204776.116
Wery, M. et al. Native elongating transcript sequencing reveals global anti-correlation between sense and antisense nascent transcription in fission yeast. RNA 24, 196–208 (2018).
pubmed: 29114019 pmcid: 5769747 doi: 10.1261/rna.063446.117
Akay, A. et al. Identification of functional long non-coding RNAs in C. elegans. BMC Biol. 17, 14 (2019).
pubmed: 30777050 pmcid: 6378714 doi: 10.1186/s12915-019-0635-7
Nam, J. W. & Bartel, D. P. Long noncoding RNAs in C. elegans. Genome Res. 22, 2529–2540 (2012).
pubmed: 22707570 pmcid: 3514682 doi: 10.1101/gr.140475.112
Ashe, A. et al. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150, 88–99 (2012).
pubmed: 22738725 pmcid: 3464430 doi: 10.1016/j.cell.2012.06.018
Shirayama, M. et al. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150, 65–77 (2012).
pubmed: 22738726 pmcid: 3597741 doi: 10.1016/j.cell.2012.06.015
Makeyeva, Y. V., Shirayama, M. & Mello, C. C. Cues from mRNA splicing prevent default Argonaute silencing in C. elegans. Dev. Cell 56, 2636–2648 (2021).
pubmed: 34547227 pmcid: 8693449 doi: 10.1016/j.devcel.2021.08.022
Ohhata, T. et al. CCIVR facilitates comprehensive identification of cis-natural antisense transcripts with their structural characteristics and expression profiles. Sci. Rep. 12, 15525 (2022).
pubmed: 36109624 pmcid: 9477841 doi: 10.1038/s41598-022-19782-5
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).
pubmed: 9486653 doi: 10.1038/35888

Auteurs

Andreas Werner (A)

Newcastle University, Newcastle, UK. andreas.werner@ncl.ac.uk.

Aditi Kanhere (A)

University of Liverpool, Liverpool, UK.

Claes Wahlestedt (C)

University of Miami Miller School of Medicine, Miami, FL, USA.

John S Mattick (JS)

University of New South Wales, Sydney, New South Wales, Australia.

Classifications MeSH