Natural antisense transcripts as versatile regulators of gene expression.
Journal
Nature reviews. Genetics
ISSN: 1471-0064
Titre abrégé: Nat Rev Genet
Pays: England
ID NLM: 100962779
Informations de publication
Date de publication:
17 Apr 2024
17 Apr 2024
Historique:
accepted:
07
03
2024
medline:
18
4
2024
pubmed:
18
4
2024
entrez:
17
4
2024
Statut:
aheadofprint
Résumé
Long non-coding RNAs (lncRNAs) are emerging as a major class of gene products that have central roles in cell and developmental biology. Natural antisense transcripts (NATs) are an important subset of lncRNAs that are expressed from the opposite strand of protein-coding and non-coding genes and are a genome-wide phenomenon in both eukaryotes and prokaryotes. In eukaryotes, a myriad of NATs participate in regulatory pathways that affect expression of their cognate sense genes. Recent developments in the study of NATs and lncRNAs and large-scale sequencing and bioinformatics projects suggest that whether NATs regulate expression, splicing, stability or translation of the sense transcript is influenced by the pattern and degrees of overlap between the sense-antisense pair. Moreover, epigenetic gene regulatory mechanisms prevail in somatic cells whereas mechanisms dependent on the formation of double-stranded RNA intermediates are prevalent in germ cells. The modulating effects of NATs on sense transcript expression make NATs rational targets for therapeutic interventions.
Identifiants
pubmed: 38632496
doi: 10.1038/s41576-024-00723-z
pii: 10.1038/s41576-024-00723-z
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. Springer Nature Limited.
Références
Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).
pubmed: 36596869
doi: 10.1038/s41580-022-00566-8
Nordström, K., Wagner, E. G. H., Persson, C., Blomberg, P. & Öhman, M. Translational control by antisense RNA in control of plasmid replication. Gene 72, 237–240 (1988).
pubmed: 2468562
doi: 10.1016/0378-1119(88)90148-5
Lipman, D. J. Making (anti)sense of non-coding sequence conservation. Nucleic Acids Res. 25, 3580–3583 (1997).
pubmed: 9278476
pmcid: 146938
doi: 10.1093/nar/25.18.3580
Fahey, M. E., Moore, T. F. & Higgins, D. G. Overlapping antisense transcription in the human genome. Comp. Funct. Genomics 3, 244–253 (2002).
pubmed: 18628857
pmcid: 2447278
doi: 10.1002/cfg.173
Shendure, J. & Church, G. M. Computational discovery of sense-antisense transcription in the human and mouse genomes. Genome Biol. 3, RESEARCH0044 (2002).
pubmed: 12225583
pmcid: 126869
doi: 10.1186/gb-2002-3-9-research0044
Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).
pubmed: 16141073
doi: 10.1126/science.1112009
Kiyosawa, H., Yamanaka, I., Osato, N., Kondo, S. & Hayashizaki, Y. Antisense transcripts with FANTOM2 clone set and their implications for gene regulation. Genome Res. 13, 1324–1334 (2003).
pubmed: 12819130
pmcid: 403655
doi: 10.1101/gr.982903
Pillay, S., Takahashi, H., Carninci, P. & Kanhere, A. Antisense RNAs during early vertebrate development are divided in groups with distinct features. Genome Res. 31, 995–1010 (2021).
pubmed: 33795334
pmcid: 8168585
doi: 10.1101/gr.262964.120
Arnold, M. & Stengel, K. R. Emerging insights into enhancer biology and function. Transcription 14, 68–87 (2023).
pubmed: 37312570
doi: 10.1080/21541264.2023.2222032
Barral, A. & Déjardin, J. The chromatin signatures of enhancers and their dynamic regulation. Nucleus 14, 2160551 (2023).
pubmed: 36602897
pmcid: 9828845
doi: 10.1080/19491034.2022.2160551
Yamanaka, Y. et al. Antisense RNA controls LRP1 sense transcript expression through interaction with a chromatin-associated protein, HMGB2. Cell Rep. 11, 967–976 (2015).
pubmed: 25937287
pmcid: 4431949
doi: 10.1016/j.celrep.2015.04.011
Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).
pubmed: 14980218
doi: 10.1016/S0092-8674(04)00127-8
Burd, C. E. et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 6, e1001233 (2010).
pubmed: 21151960
pmcid: 2996334
doi: 10.1371/journal.pgen.1001233
Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).
pubmed: 21964070
pmcid: 3230379
doi: 10.1038/emboj.2011.359
Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).
pubmed: 23446348
doi: 10.1038/nature11928
Ma, J. et al. An antisense circular RNA circSCRIB enhances cancer progression by suppressing parental gene splicing and translation. Mol. Ther. 29, 2754–2768 (2021).
pubmed: 34365033
pmcid: 8417507
doi: 10.1016/j.ymthe.2021.08.002
Zhang, H. et al. An antisense circular RNA regulates expression of RuBisCO small subunit genes in Arabidopsis. Front. Plant Sci. 12, 665014 (2021).
pubmed: 34108983
pmcid: 8181130
doi: 10.3389/fpls.2021.665014
Wight, M. & Werner, A. The functions of natural antisense transcripts. Essays Biochem. 54, 91–101 (2013).
pubmed: 23829529
pmcid: 4284957
doi: 10.1042/bse0540091
Vangoor, V. R., Gomes-Duarte, A. & Pasterkamp, R. J. Long non-coding RNAs in motor neuron development and disease. J. Neurochem. 156, 777–801 (2021).
pubmed: 32970857
doi: 10.1111/jnc.15198
Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7, e30733 (2012).
pubmed: 22319583
pmcid: 3270023
doi: 10.1371/journal.pone.0030733
Gonzàlez-Porta, M., Frankish, A., Rung, J., Harrow, J. & Brazma, A. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol. 14, R70 (2013).
pubmed: 23815980
pmcid: 4053754
doi: 10.1186/gb-2013-14-7-r70
Tung, K.-F., Pan, C.-Y., Chen, C.-H. & Lin, W.-C. Top-ranked expressed gene transcripts of human protein-coding genes investigated with GTEx dataset. Sci. Rep. 10, 16245 (2020).
pubmed: 33004865
pmcid: 7530651
doi: 10.1038/s41598-020-73081-5
Gendrel, A. V. & Heard, E. Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation. Annu. Rev. Cell Dev. Biol. 30, 561–580 (2014).
pubmed: 25000994
doi: 10.1146/annurev-cellbio-101512-122415
Hawkins, P. G. & Morris, K. V. Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription 1, 165–175 (2010).
pubmed: 21151833
pmcid: 2999937
doi: 10.4161/trns.1.3.13332
Georg, J. & Hess, W. R. Widespread antisense transcription in Prokaryotes. Microbiol. Spect. 6, https://doi.org/10.1128/microbiolspec.RWR-0029-2018 (2018).
Gunasekera, A. M. et al. Widespread distribution of antisense transcripts in the Plasmodium falciparum genome. Mol. Biochem. Parasitol. 136, 35–42 (2004).
pubmed: 15138065
doi: 10.1016/j.molbiopara.2004.02.007
Reis, R. S. & Poirier, Y. Making sense of the natural antisense transcript puzzle. Trends Plant. Sci. 26, 1104–1115 (2021).
pubmed: 34303604
doi: 10.1016/j.tplants.2021.07.004
Sun, M., Hurst, L. D., Carmichael, G. G. & Chen, J. Evidence for variation in abundance of antisense transcripts between multicellular animals but no relationship between antisense transcription and organismic complexity. Genome Res. 16, 922–933 (2006).
pubmed: 16769979
pmcid: 1484459
doi: 10.1101/gr.5210006
Balbin, O. A. et al. The landscape of antisense gene expression in human cancers. Genome Res. 25, 1068–1079 (2015).
pubmed: 26063736
pmcid: 4484389
doi: 10.1101/gr.180596.114
Frankish, A. et al. GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Res. 51, D942–D949 (2023).
pubmed: 36420896
doi: 10.1093/nar/gkac1071
Amaral, P. et al. The status of the human gene catalogue. Nature 622, 41–47 (2023).
pubmed: 37794265
pmcid: 10575709
doi: 10.1038/s41586-023-06490-x
Engström, P. G. et al. Complex loci in human and mouse genomes. PLoS Genet. 2, e47 (2006).
pubmed: 16683030
pmcid: 1449890
doi: 10.1371/journal.pgen.0020047
He, Y., Vogelstein, B., Velculescu, V. E., Papadopoulos, N. & Kinzler, K. W. The antisense transcriptomes of human cells. Science 322, 1855–1857 (2008).
pubmed: 19056939
pmcid: 2824178
doi: 10.1126/science.1163853
Ozsolak, F. et al. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 143, 1018–1029 (2010).
pubmed: 21145465
pmcid: 3022516
doi: 10.1016/j.cell.2010.11.020
Chen, J. et al. Over 20% of human transcripts might form sense-antisense pairs. Nucleic Acids Res. 32, 4812–4820 (2004).
pubmed: 15356298
pmcid: 519112
doi: 10.1093/nar/gkh818
Kiyosawa, H. & Abe, K. Speculations on the role of natural antisense transcripts in mammalian X chromosome evolution. Cytogenet. Genome Res. 99, 151–156 (2002).
pubmed: 12900558
doi: 10.1159/000071587
Piatek, M. J., Henderson, V., Zynad, H. S. & Werner, A. Natural antisense transcription from a comparative perspective. Genomics 108, 56–63 (2016).
pubmed: 27241791
doi: 10.1016/j.ygeno.2016.05.004
Zhang, Y., Liu, X. S., Liu, Q. R. & Wei, L. Genome-wide in silico identification and analysis of cis natural antisense transcripts (cis-NATs) in ten species. Nucleic Acids Res. 34, 3465–3475 (2006).
pubmed: 16849434
pmcid: 1524920
doi: 10.1093/nar/gkl473
Werner, A., Carlile, M. & Swan, D. What do natural antisense transcripts regulate? RNA Biol. 6, 43–48 (2009).
pubmed: 19098462
doi: 10.4161/rna.6.1.7568
Kim, D. S. & Hahn, Y. Human-specific antisense transcripts induced by the insertion of transposable element. Int. J. Mol. Med. 26, 151–157 (2010).
pubmed: 20514435
Faulkner, G. J. et al. The regulated retrotransposon transcriptome of mammalian cells. Nat. Genet. 41, 563–571 (2009).
pubmed: 19377475
doi: 10.1038/ng.368
Honda, T. et al. Effects of activation of the LINE-1 antisense promoter on the growth of cultured cells. Sci. Rep. 10, 22136 (2020).
pubmed: 33335226
pmcid: 7746726
doi: 10.1038/s41598-020-79197-y
Fan, J., Martinez-Arguelles, D. B. & Papadopoulos, V. Genome-wide expression analysis of a new class of lncRNAs driven by SINE B2. Gene 768, 145332 (2021).
pubmed: 33278552
doi: 10.1016/j.gene.2020.145332
Kapusta, A. et al. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet. 9, e1003470 (2013).
pubmed: 23637635
pmcid: 3636048
doi: 10.1371/journal.pgen.1003470
Veeramachaneni, V., Makalowski, W., Galdzicki, M., Sood, R. & Makalowska, I. Mammalian overlapping genes: the comparative perspective. Genome Res. 14, 280–286 (2004).
pubmed: 14762064
pmcid: 327103
doi: 10.1101/gr.1590904
Ho, M.-R., Tsai, K.-W. & Lin, W.-C. A unified framework of overlapping genes: towards the origination and endogenic regulation. Genomics 100, 231–239 (2012).
pubmed: 22766524
doi: 10.1016/j.ygeno.2012.06.011
Wood, E. J., Chin-Inmanu, K., Jia, H. & Lipovich, L. Sense-antisense gene pairs: sequence, transcription, and structure are not conserved between human and mouse. Front. Genet. 4, 183 (2013).
pubmed: 24133500
pmcid: 3783845
doi: 10.3389/fgene.2013.00183
Hezroni, H. et al. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep. 11, 1110–1122 (2015).
pubmed: 25959816
pmcid: 4576741
doi: 10.1016/j.celrep.2015.04.023
Ling, M. H. T., Ban, Y., Wen, H., Wang, S. M. & Ge, S. X. Conserved expression of natural antisense transcripts in mammals. BMC Genomics 14, 243 (2013).
pubmed: 23577827
pmcid: 3635984
doi: 10.1186/1471-2164-14-243
Jung, J. et al. Bioinformatic analysis of regulation of natural antisense transcripts by transposable elements in human mRNA. Genomics 111, 159–166 (2019).
pubmed: 29366860
doi: 10.1016/j.ygeno.2018.01.011
Gebrie, A. Transposable elements as essential elements in the control of gene expression. Mob. DNA 14, 9 (2023).
pubmed: 37596675
pmcid: 10439571
doi: 10.1186/s13100-023-00297-3
Pheasant, M. & Mattick, J. S. Raising the estimate of functional human sequences. Genome Res. 17, 1245–1253 (2007).
pubmed: 17690206
doi: 10.1101/gr.6406307
Liu, B. et al. The regulatory role of antisense lncRNAs in cancer. Cancer Cell Int. 21, 459 (2021).
pubmed: 34461912
pmcid: 8404292
doi: 10.1186/s12935-021-02168-4
Ouyang, J. et al. Long non-coding RNAs are involved in alternative splicing and promote cancer progression. Br. J. Cancer 126, 1113–1124 (2022).
pubmed: 34750493
doi: 10.1038/s41416-021-01600-w
Beiter, T., Reich, E., Williams, R. W. & Simon, P. Antisense transcription: a critical look in both directions. Cell Mol. Life Sci. 66, 94–112 (2009).
pubmed: 18791843
doi: 10.1007/s00018-008-8381-y
Pelechano, V. & Steinmetz, L. M. Gene regulation by antisense transcription. Nat. Rev. Genet. 14, 880–893 (2013).
pubmed: 24217315
doi: 10.1038/nrg3594
Goyal, A. et al. A cautionary tale of sense-antisense gene pairs: independent regulation despite inverse correlation of expression. Nucleic Acids Res. 45, 12496–12508 (2017).
pubmed: 29059299
pmcid: 5716207
doi: 10.1093/nar/gkx952
Tomikawa, J. et al. Single-stranded noncoding RNAs mediate local epigenetic alterations at gene promoters in rat cell lines. J. Biol. Chem. 286, 34788–34799 (2011).
pubmed: 21844201
pmcid: 3186369
doi: 10.1074/jbc.M111.275750
Uesaka, M. et al. Bidirectional promoters are the major source of gene activation-associated non-coding RNAs in mammals. BMC Genomics 15, 35 (2014).
pubmed: 24438357
pmcid: 3898825
doi: 10.1186/1471-2164-15-35
Prescott, E. M. & Proudfoot, N. J. Transcriptional collision between convergent genes in budding yeast. Proc. Natl Acad. Sci. USA 99, 8796–8801 (2002).
pubmed: 12077310
pmcid: 124378
doi: 10.1073/pnas.132270899
Callen, B. P., Shearwin, K. E. & Egan, J. B. Transcriptional interference between convergent promoters caused by elongation over the promoter. Mol. Cell 14, 647–656 (2004).
pubmed: 15175159
doi: 10.1016/j.molcel.2004.05.010
Johnsson, P. et al. Transcriptional kinetics and molecular functions of long noncoding RNAs. Nat. Genet. 54, 306–317 (2022).
pubmed: 35241826
pmcid: 8920890
doi: 10.1038/s41588-022-01014-1
Patel, H. P. et al. DNA supercoiling restricts the transcriptional bursting of neighboring eukaryotic genes. Mol. Cell 83, 1573–1587 (2023).
pubmed: 37207624
pmcid: 10205079
doi: 10.1016/j.molcel.2023.04.015
Hao, N., Donnelly, A. J., Dodd, I. B. & Shearwin, K. E. When push comes to shove — RNA polymerase and DNA-bound protein roadblocks. Biophys. Rev. 15, 355–366 (2023).
pubmed: 37396453
pmcid: 10310618
doi: 10.1007/s12551-023-01064-7
Shearwin, K. E., Callen, B. P. & Egan, J. B. Transcriptional interference — a crash course. Trends Genet. 21, 339–345 (2005).
pubmed: 15922833
pmcid: 2941638
doi: 10.1016/j.tig.2005.04.009
Millán-Zambrano, G., Burton, A., Bannister, A. J. & Schneider, R. Histone post-translational modifications — cause and consequence of genome function. Nat. Rev. Genet. 23, 563–580 (2022).
pubmed: 35338361
doi: 10.1038/s41576-022-00468-7
Su, W.-Y., Xiong, H. & Fang, J.-Y. Natural antisense transcripts regulate gene expression in an epigenetic manner. Biochem. Biophys. Res. Commun. 396, 177–181 (2010).
pubmed: 20438699
doi: 10.1016/j.bbrc.2010.04.147
Liu, Y. et al. The CTCF/LncRNA-PACERR complex recruits E1A binding protein p300 to induce pro-tumour macrophages in pancreatic ductal adenocarcinoma via directly regulating PTGS2 expression. Clin. Transl. Med. 12, e654 (2022).
pubmed: 35184402
pmcid: 8858628
doi: 10.1002/ctm2.654
Dong, Z. et al. Aberrant hypermethylation-mediated downregulation of antisense lncRNA ZNF667-AS1 and its sense gene ZNF667 correlate with progression and prognosis of esophageal squamous cell carcinoma. Cell Death Dis. 10, 930 (2019).
pubmed: 31804468
pmcid: 6895126
doi: 10.1038/s41419-019-2171-3
Kanduri, C. Functional insights into long antisense noncoding RNA Kcnq1ot1 mediated bidirectional silencing. RNA Biol. 5, 208–211 (2008).
pubmed: 18971626
doi: 10.4161/rna.7113
Rose, N. R. & Klose, R. J. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim. Biophys. Acta 1839, 1362–1372 (2014).
pubmed: 24560929
doi: 10.1016/j.bbagrm.2014.02.007
Zinad, H. S. et al. Interdependent transcription of a natural sense/antisense transcripts pair (SLC34A1/PFN3). Noncoding RNA 8, 19 (2022).
pubmed: 35202092
pmcid: 8877773
Tufarelli, C. et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat. Genet. 34, 157–165 (2003).
pubmed: 12730694
doi: 10.1038/ng1157
Heilmann, K. et al. Genome-wide screen for differentially methylated long noncoding RNAs identifies Esrp2 and lncRNA Esrp2-as regulated by enhancer DNA methylation with prognostic relevance for human breast cancer. Oncogene 36, 6446–6461 (2017).
pubmed: 28759043
pmcid: 5701091
doi: 10.1038/onc.2017.246
Guéant, J. L. et al. Epimutation in inherited metabolic disorders: the influence of aberrant transcription in adjacent genes. Hum. Genet. 141, 1309–1325 (2022).
pubmed: 35190856
doi: 10.1007/s00439-021-02414-9
Di Ruscio, A. et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 503, 371–376 (2013).
pubmed: 24107992
pmcid: 3870304
doi: 10.1038/nature12598
Ou, M., Li, X., Zhao, S., Cui, S. & Tu, J. Long non-coding RNA CDKN2B-AS1 contributes to atherosclerotic plaque formation by forming RNA-DNA triplex in the CDKN2B promoter. eBioMed 55, 102694 (2020). article.
doi: 10.1016/j.ebiom.2020.102694
Angrand, P. O., Vennin, C., Le Bourhis, X. & Adriaenssens, E. The role of long non-coding RNAs in genome formatting and expression. Front. Genet. 6, 165 (2015).
pubmed: 25972893
pmcid: 4413816
doi: 10.3389/fgene.2015.00165
Yap, K. L. et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 38, 662–674 (2010).
pubmed: 20541999
pmcid: 2886305
doi: 10.1016/j.molcel.2010.03.021
Grote, P. & Herrmann, B. G. The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol. 10, 1579–1585 (2013).
pubmed: 24036695
pmcid: 3866236
doi: 10.4161/rna.26165
Postepska-Igielska, A. et al. LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure. Mol. Cell 60, 626–636 (2015).
pubmed: 26590717
doi: 10.1016/j.molcel.2015.10.001
Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39, 1235–1244 (2007).
pubmed: 17873876
doi: 10.1038/ng2117
Zhou, Y., Xu, S., Zhang, M. & Wu, Q. Systematic functional characterization of antisense eRNA of protocadherin α composite enhancer. Genes Dev. 35, 1383–1394 (2021).
pubmed: 34531317
pmcid: 8494205
doi: 10.1101/gad.348621.121
Ling, K. H. et al. Spatiotemporal regulation of multiple overlapping sense and novel natural antisense transcripts at the Nrgn and Camk2n1 gene loci during mouse cerebral corticogenesis. Cereb. Cortex 21, 683–697 (2011).
pubmed: 20693275
doi: 10.1093/cercor/bhq141
Michael, D. R. et al. The human hyaluronan synthase 2 (HAS2) gene and its natural antisense RNA exhibit coordinated expression in the renal proximal tubular epithelial cell. J. Biol. Chem. 286, 19523–19532 (2011).
pubmed: 21357421
pmcid: 3103331
doi: 10.1074/jbc.M111.233916
Portal, M. M., Pavet, V., Erb, C. & Gronemeyer, H. Human cells contain natural double-stranded RNAs with potential regulatory functions. Nat. Struct. Mol. Biol. 22, 89–97 (2015).
pubmed: 25504323
doi: 10.1038/nsmb.2934
Li, D. et al. LncRNA ELF3-AS1 inhibits gastric cancer by forming a negative feedback loop with SNAI2 and regulates ELF3 mRNA stability via interacting with ILF2/ILF3 complex. J. Exp. Clin. Cancer Res. 41, 332 (2022).
pubmed: 36457025
pmcid: 9716751
doi: 10.1186/s13046-022-02541-9
Eisenberg, E. & Levanon, E. Y. A-to-I RNA editing — immune protector and transcriptome diversifier. Nat. Rev. Genet. 19, 473–490 (2018).
pubmed: 29692414
doi: 10.1038/s41576-018-0006-1
Li, Q. et al. RNA editing underlies genetic risk of common inflammatory diseases. Nature 608, 569–577 (2022).
pubmed: 35922514
pmcid: 9790998
doi: 10.1038/s41586-022-05052-x
Cui, L. et al. RNA modifications: importance in immune cell biology and related diseases. Sign. Transd. Targ. Ther. 7, 334 (2022).
Sadeq, S., Al-Hashimi, S., Cusack, C. M. & Werner, A. Endogenous double-stranded RNA. Noncoding RNA 7, 15 (2021).
pubmed: 33669629
pmcid: 7930956
Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008).
pubmed: 18404147
pmcid: 2981145
doi: 10.1038/nature06904
Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 1732–1743 (2006).
pubmed: 16766679
pmcid: 1522070
doi: 10.1101/gad.1425706
Werner, A. et al. Contribution of natural antisense transcription to an endogenous siRNA signature in human cells. BMC Genomics 15, 19 (2014).
pubmed: 24410956
pmcid: 3898206
doi: 10.1186/1471-2164-15-19
Napoli, S., Piccinelli, V., Mapelli, S. N., Pisignano, G. & Catapano, C. V. Natural antisense transcripts drive a regulatory cascade controlling c-MYC transcription. RNA Biol. 14, 1742–1755 (2017).
pubmed: 28805496
pmcid: 5731802
doi: 10.1080/15476286.2017.1356564
Lim, J. W. et al. DICER/AGO-dependent epigenetic silencing of D4Z4 repeats enhanced by exogenous siRNA suggests mechanisms and therapies for FSHD. Hum. Mol. Genet. 24, 4817–4828 (2015).
pubmed: 26041815
pmcid: 4527486
doi: 10.1093/hmg/ddv206
Song, R. et al. Male germ cells express abundant endogenous siRNAs. Proc. Natl Acad. Sci. USA 108, 13159–13164 (2011).
pubmed: 21788498
pmcid: 3156200
doi: 10.1073/pnas.1108567108
Werner, A. et al. Widespread formation of double-stranded RNAs in testis. Genome Res. 31, 1174–1186 (2021).
pubmed: 34158368
pmcid: 8256860
doi: 10.1101/gr.265603.120
Morrissy, A. S., Griffith, M. & Marra, M. A. Extensive relationship between antisense transcription and alternative splicing in the human genome. Genome Res. 21, 1203–1212 (2011).
pubmed: 21719572
pmcid: 3149488
doi: 10.1101/gr.113431.110
Munroe, S. H. & Lazar, M. A. Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA. J. Biol. Chem. 266, 22083–22086 (1991).
pubmed: 1657988
doi: 10.1016/S0021-9258(18)54535-X
Niehus, S. E. et al. Myc/Max dependent intronic long antisense noncoding RNA, EVA1A-AS, suppresses the expression of Myc/Max dependent anti-proliferating gene EVA1A in a U2 dependent manner. Sci. Rep. 9, 17319 (2019).
pubmed: 31754186
pmcid: 6872820
doi: 10.1038/s41598-019-53944-2
Su, Z., Liu, G., Zhang, B., Lin, Z. & Huang, D. Natural antisense transcript PEBP1P3 regulates the RNA expression, DNA methylation and histone modification of CD45 gene. Genes 12, 759 (2021).
pubmed: 34067766
pmcid: 8156488
doi: 10.3390/genes12050759
Huang, G. W., Zhang, Y. L., Liao, L. D., Li, E. M. & Xu, L. Y. Natural antisense transcript TPM1-AS regulates the alternative splicing of tropomyosin I through an interaction with RNA-binding motif protein 4. Int. J. Biochem. Cell Biol. 90, 59–67 (2017).
pubmed: 28754317
doi: 10.1016/j.biocel.2017.07.017
Havens, M. A. & Hastings, M. L. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res. 44, 6549–6563 (2016).
pubmed: 27288447
pmcid: 5001604
doi: 10.1093/nar/gkw533
Gonzalez, I. et al. A lncRNA regulates alternative splicing via establishment of a splicing-specific chromatin signature. Nat. Struct. Mol. Biol. 22, 370–376 (2015).
pubmed: 25849144
pmcid: 6322542
doi: 10.1038/nsmb.3005
Shen, T. et al. Antisense transcription regulates the expression of sense gene via alternative polyadenylation. Protein Cell 9, 540–552 (2018).
pubmed: 29273853
doi: 10.1007/s13238-017-0497-0
Li, W. et al. Alternative cleavage and polyadenylation in spermatogenesis connects chromatin regulation with post-transcriptional control. BMC Biol. 14, 6 (2016).
pubmed: 26801249
pmcid: 4724118
doi: 10.1186/s12915-016-0229-6
Culbertson, B. et al. A sense-antisense RNA interaction promotes breast cancer metastasis via regulation of NQO1 expression. Nat. Cancer 4, 682–698 (2023).
pubmed: 37169843
pmcid: 10212767
doi: 10.1038/s43018-023-00554-7
Boulias, K. & Greer, E. L. Biological roles of adenine methylation in RNA. Nat. Rev. Genet. 24, 143–160 (2023).
pubmed: 36261710
doi: 10.1038/s41576-022-00534-0
Akhtar, J., Lugoboni, M. & Junion, G. m
pubmed: 35380917
doi: 10.1080/21541264.2022.2057177
Zhang, S. et al. m
pubmed: 28344040
pmcid: 5427719
doi: 10.1016/j.ccell.2017.02.013
Zhou, L. et al. Hypoxia-induced lncRNA STEAP3-AS1 activates Wnt/β-catenin signaling to promote colorectal cancer progression by preventing m
pubmed: 35986274
pmcid: 9392287
doi: 10.1186/s12943-022-01638-1
Zhang, Y. et al. The m
pubmed: 36056355
pmcid: 9438157
doi: 10.1186/s12943-022-01647-0
Mahmoudi, S. et al. Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol. Cell 33, 462–471 (2009).
pubmed: 19250907
doi: 10.1016/j.molcel.2009.01.028
Jadaliha, M. et al. A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability. PLoS Genet. 14, e1007802 (2018).
pubmed: 30496290
pmcid: 6289468
doi: 10.1371/journal.pgen.1007802
Chen, Y. G. & Hur, S. Cellular origins of dsRNA, their recognition and consequences. Nat. Rev. Mol. Cell Biol. 23, 286–301 (2022).
pubmed: 34815573
doi: 10.1038/s41580-021-00430-1
Cottrell, K. A., Andrews, R. J. & Bass, B. L. The competitive landscape of the dsRNA world. Mol. Cell 84, 107–119 (2024).
pubmed: 38118451
doi: 10.1016/j.molcel.2023.11.033
Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016).
pubmed: 27180905
pmcid: 5029792
doi: 10.1016/j.cell.2016.04.028
Faghihi, M. A. et al. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β-secretase. Nat. Med. 14, 723–730 (2008).
pubmed: 18587408
pmcid: 2826895
doi: 10.1038/nm1784
Faghihi, M. A. et al. Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol. 11, R56 (2010).
pubmed: 20507594
pmcid: 2898074
doi: 10.1186/gb-2010-11-5-r56
Denzler, R., Agarwal, V., Stefano, J., Bartel, D. P. & Stoffel, M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54, 766–776 (2014).
pubmed: 24793693
pmcid: 4267251
doi: 10.1016/j.molcel.2014.03.045
Thomson, D. W. & Dinger, M. E. Endogenous microRNA sponges: evidence and controversy. Nat. Rev. Genet. 17, 272–283 (2016).
pubmed: 27040487
doi: 10.1038/nrg.2016.20
Santos, F., Capela, A. M., Mateus, F., Nóbrega-Pereira, S. & de Jesus, B. B. Non-coding antisense transcripts: fine regulation of gene expression in cancer. Comput. Struct. Biotech. J. 20, 5652–5660 (2022).
doi: 10.1016/j.csbj.2022.10.009
Maquat, L. E. Short interspersed nuclear element (SINE)-mediated post-transcriptional effects on human and mouse gene expression: SINE-UP for active duty. Philos. Trans. R. Soc. Lond. B 375, 20190344 (2020).
doi: 10.1098/rstb.2019.0344
Zucchelli, S. et al. SINEUPs: a new class of natural and synthetic antisense long non-coding RNAs that activate translation. RNA Biol. 12, 771–779 (2015).
pubmed: 26259533
pmcid: 4615742
doi: 10.1080/15476286.2015.1060395
Schein, A., Zucchelli, S., Kauppinen, S., Gustincich, S. & Carninci, P. Identification of antisense long noncoding RNAs that function as SINEUPs in human cells. Sci. Rep. 6, 33605 (2016).
pubmed: 27646849
pmcid: 5028707
doi: 10.1038/srep33605
Espinoza, S. et al. SINEUPs: a novel toolbox for RNA therapeutics. Essays Biochem. 65, 775–789 (2021).
pubmed: 34623427
pmcid: 8564737
doi: 10.1042/EBC20200114
Carrieri, C. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491, 454–457 (2012).
pubmed: 23064229
doi: 10.1038/nature11508
Pierattini, B. et al. SINEUP non-coding RNA activity depends on specific N6-methyladenosine nucleotides. Mol. Ther. 32, 402–414 (2023).
Simone, R. et al. MIR-NATs repress MAPT translation and aid proteostasis in neurodegeneration. Nature 594, 117–123 (2021).
pubmed: 34012113
pmcid: 7610982
doi: 10.1038/s41586-021-03556-6
Chan, W. Y. et al. The complexity of antisense transcription revealed by the study of developing male germ cells. Genomics 87, 681–692 (2006).
pubmed: 16458478
doi: 10.1016/j.ygeno.2005.12.006
Werner, A., Schmutzler, G., Carlile, M., Miles, C. G. & Peters, H. Expression profiling of antisense transcripts on DNA arrays. Physiol. Genomics 28, 294–300 (2007).
pubmed: 17105753
doi: 10.1152/physiolgenomics.00127.2006
Soumillon, M. et al. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep. 3, 2179–2190 (2013).
pubmed: 23791531
doi: 10.1016/j.celrep.2013.05.031
García-Rodríguez, A., Gosálvez, J., Agarwal, A., Roy, R. & Johnston, S. DNA damage and repair in human reproductive cells. Int. J. Mol. Sci. 20, 31 (2019).
doi: 10.3390/ijms20010031
Shami, A. N. et al. Single-cell RNA sequencing of human, macaque, and mouse testes uncovers conserved and divergent features of mammalian spermatogenesis. Dev. Cell 54, 529–547 (2020).
pubmed: 32504559
pmcid: 7879256
doi: 10.1016/j.devcel.2020.05.010
Geisinger, A., Rodríguez-Casuriaga, R. & Benavente, R. Transcriptomics of meiosis in the male mouse. Front. Cell Dev. Biol. 9, 626020 (2021).
pubmed: 33748111
pmcid: 7973102
doi: 10.3389/fcell.2021.626020
Braun, R. E. Packaging paternal chromosomes with protamine. Nat. Genet. 28, 10–12 (2001).
pubmed: 11326265
doi: 10.1038/ng0501-10
Murat, F. et al. The molecular evolution of spermatogenesis across mammals. Nature 613, 308–316 (2023).
pubmed: 36544022
doi: 10.1038/s41586-022-05547-7
Wright, C. J., Smith, C. W. J. & Jiggins, C. D. Alternative splicing as a source of phenotypic diversity. Nat. Rev. Genet. 23, 697–710 (2022).
pubmed: 35821097
doi: 10.1038/s41576-022-00514-4
Gallicchio, L., Olivares, G. H., Berry, C. W. & Fuller, M. T. Regulation and function of alternative polyadenylation in development and differentiation. RNA Biol. 20, 908–925 (2023).
pubmed: 37906624
pmcid: 10730144
doi: 10.1080/15476286.2023.2275109
Gan, H. et al. Integrative proteomic and transcriptomic analyses reveal multiple post-transcriptional regulatory mechanisms of mouse spermatogenesis. Mol. Cell Proteom. 12, 1144–1157 (2013).
doi: 10.1074/mcp.M112.020123
Lin, X. et al. Expression dynamics, relationships, and transcriptional regulations of diverse transcripts in mouse spermatogenic cells. RNA Biol. 13, 1011–1024 (2016).
pubmed: 27560004
pmcid: 5056783
doi: 10.1080/15476286.2016.1218588
Werner, A., Piatek, M. J. & Mattick, J. S. Transpositional shuffling and quality control in male germ cells to enhance evolution of complex organisms. Ann. N. Y. Acad. Sci. 1341, 156–163 (2015).
pubmed: 25557795
doi: 10.1111/nyas.12608
Werner, A. & Swan, D. What are natural antisense transcripts good for? Biochem. Soc. Trans. 38, 1144–1149 (2010).
pubmed: 20659019
pmcid: 4284956
doi: 10.1042/BST0381144
Xia, B. et al. Widespread transcriptional scanning in the testis modulates gene evolution rates. Cell 180, 248–262.e21 (2020).
pubmed: 31978344
pmcid: 7891839
doi: 10.1016/j.cell.2019.12.015
Wahlestedt, C. Natural antisense and noncoding RNA transcripts as potential drug targets. Drug Discov. Today 11, 503–508 (2006).
pubmed: 16713901
doi: 10.1016/j.drudis.2006.04.013
Wahlestedt, C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat. Rev. Drug Discov. 12, 433–446 (2013).
pubmed: 23722346
doi: 10.1038/nrd4018
Khorkova, O. et al. Natural antisense transcripts as drug targets. Front. Mol. Biosci. 9, 978375 (2022).
pubmed: 36250017
pmcid: 9563854
doi: 10.3389/fmolb.2022.978375
Khorkova, O., Stahl, J., Joji, A., Volmar, C.-H. & Wahlestedt, C. Amplifying gene expression with RNA-targeted therapeutics. Nat. Rev. Drug Discov. 22, 539–561 (2023).
pubmed: 37253858
doi: 10.1038/s41573-023-00704-7
Srinivas, T., Mathias, C., Oliveira-Mateos, C. & Guil, S. Roles of lncRNAs in brain development and pathogenesis: emerging therapeutic opportunities. Mol. Ther. 31, 1550–1561 (2023).
pubmed: 36793211
doi: 10.1016/j.ymthe.2023.02.008
Padmakumar, S. et al. Minimally invasive nasal depot (MIND) technique for direct BDNF AntagoNAT delivery to the brain. J. Control. Release 331, 176–186 (2021).
pubmed: 33484777
pmcid: 7946770
doi: 10.1016/j.jconrel.2021.01.027
Hsiao, J. et al. Upregulation of haploinsufficient gene expression in the brain by targeting a long non-coding RNA improves seizure phenotype in a model of Dravet syndrome. eBioMed 9, 257–277 (2016).
doi: 10.1016/j.ebiom.2016.05.011
Valentini, P. et al. Towards SINEUP-based therapeutics: design of an in vitro synthesized SINEUP RNA. Mol. Ther. 27, 1092–1102 (2022).
Espinoza, S. et al. SINEUP non-coding RNA targeting GDNF rescues motor deficits and neurodegeneration in a mouse model of Parkinson’s disease. Mol. Ther. 28, 642–652 (2020).
pubmed: 31495777
doi: 10.1016/j.ymthe.2019.08.005
Bon, C. et al. SINEUP non-coding RNAs rescue defective frataxin expression and activity in a cellular model of Friedreich’s Ataxia. Nucleic Acids Res. 47, 10728–10743 (2019).
pubmed: 31584077
pmcid: 6847766
doi: 10.1093/nar/gkz798
Hoseinpoor, R., Kazemi, B., Rajabibazl, M. & Rahimpour, A. Improving the expression of anti-IL-2Rα monoclonal antibody in the CHO cells through optimization of the expression vector and translation efficiency. J. Biotech. 324, 112–120 (2020).
doi: 10.1016/j.jbiotec.2020.09.006
Carninci, P. et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet. 38, 626–635 (2006).
pubmed: 16645617
doi: 10.1038/ng1789
Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).
pubmed: 33353982
doi: 10.1038/s41580-020-00315-9
Canzio, D. et al. Antisense lncRNA transcription mediates DNA demethylation to drive stochastic protocadherin α promoter choice. Cell 177, 639–653 (2019).
pubmed: 30955885
pmcid: 6823843
doi: 10.1016/j.cell.2019.03.008
Novačić, A. et al. Antisense non-coding transcription represses the PHO5 model gene at the level of promoter chromatin structure. PLoS Genet. 18, e1010432 (2022).
pubmed: 36215302
pmcid: 9584416
doi: 10.1371/journal.pgen.1010432
Subhash, S. et al. H3K4me2 and WDR5 enriched chromatin interacting long non-coding RNAs maintain transcriptionally competent chromatin at divergent transcriptional units. Nucleic Acids Res. 46, 9384–9400 (2018).
pubmed: 30010961
pmcid: 6182144
doi: 10.1093/nar/gky635
Somasundaram, K., Gupta, B., Jain, N. & Jana, S. LncRNAs divide and rule: the master regulators of phase separation. Front. Genet. 13, 930792 (2022).
pubmed: 36035193
pmcid: 9399341
doi: 10.3389/fgene.2022.930792
Mattick, J. S. Enhancers are genes that express organizational RNAs. Front. RNA Res. 1, 1194526 (2023).
doi: 10.3389/frnar.2023.1194526
Nevers, A. et al. Antisense transcriptional interference mediates condition-specific gene repression in budding yeast. Nucleic Acids Res. 46, 6009–6025 (2018).
pubmed: 29788449
pmcid: 6158615
doi: 10.1093/nar/gky342
Xu, Z. et al. Antisense expression increases gene expression variability and locus interdependency. Mol. Syst. Biol. 7, 468 (2011).
pubmed: 21326235
pmcid: 3063692
doi: 10.1038/msb.2011.1
Li, X. & Fu, X.-D. Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat. Rev. Genet. 20, 503–519 (2019).
pubmed: 31160792
pmcid: 7684979
doi: 10.1038/s41576-019-0135-1
Brennan, C. M. & Steitz, J. A. HuR and mRNA stability. Cell. Mol. Life Sci. 58, 266–277 (2001).
pubmed: 11289308
doi: 10.1007/PL00000854
Zhang, L., Chen, J.-G. & Zhao, Q. Regulatory roles of Alu transcript on gene expression. Exp. Cell Res. 338, 113–118 (2015).
pubmed: 26210645
doi: 10.1016/j.yexcr.2015.07.019
Weingarten-Gabbay, S. et al. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science 351, aad4939 (2016).
pubmed: 26816383
doi: 10.1126/science.aad4939
Gan, H. et al. Dynamics of 5-hydroxymethylcytosine during mouse spermatogenesis. Nat. Commun. 4, 1995 (2013).
pubmed: 23759713
doi: 10.1038/ncomms2995
No authors listed. Papers presented at the EMBO/INSERM workshop on Regulation of gene expression by RNA structure and anti-messengers. Les Arcs, Savoie (France), 28 February-4 March 1988. Gene 72, 1–376 (1988).
Inouye, M. Antisense RNA: its functions and applications in gene regulation — a review. Gene 72, 25–34 (1988).
pubmed: 2468565
doi: 10.1016/0378-1119(88)90124-2
Rosenberg, U. B., Preiss, A., Seifert, E., Jäckle, H. & Knipple, D. C. Production of phenocopies by Krüppel antisense RNA injection into Drosophila embryos. Nature 313, 703–706 (1985).
pubmed: 2579337
doi: 10.1038/313703a0
McGarry, T. J. & Lindquist, S. Inhibition of heat shock protein synthesis by heat-inducible antisense RNA. Proc. Natl Acad. Sci. USA 83, 399–403 (1986).
pubmed: 2417242
pmcid: 322866
doi: 10.1073/pnas.83.2.399
Rothstein, S. J., Dimaio, J., Strand, M. & Rice, D. Stable and heritable inhibition of the expression of nopaline synthase in tobacco expressing antisense RNA. Proc. Natl Acad. Sci. USA 84, 8439–8443 (1987).
pubmed: 16593903
pmcid: 299559
doi: 10.1073/pnas.84.23.8439
Constância, M., Pickard, B., Kelsey, G. & Reik, W. Imprinting mechanisms. Genome Res. 8, 881–900 (1998).
pubmed: 9750189
doi: 10.1101/gr.8.9.881
Bedford, M., Arman, E., Orr-Urtreger, A. & Lonai, P. Analysis of the Hoxd-3 gene: structure and localization of its sense and natural antisense transcripts. DNA Cell Biol. 14, 295–304 (1995).
pubmed: 7710686
doi: 10.1089/dna.1995.14.295
Farrell, C. M. & Lukens, L. N. Naturally occurring antisense transcripts are present in chick embryo chondrocytes simultaneously with the down-regulation of the α1(I) collagen gene. J. Biol. Chem. 270, 3400–3408 (1995).
pubmed: 7852426
doi: 10.1074/jbc.270.7.3400
Khochbin, S. & Lawrence, J. J. An antisense RNA involved in p53 mRNA maturation in murine erythroleukemia cells induced to differentiate. EMBO J. 8, 4107–4114 (1989).
pubmed: 2480234
pmcid: 401592
doi: 10.1002/j.1460-2075.1989.tb08595.x
Adams, M. D. et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656 (1991).
pubmed: 2047873
doi: 10.1126/science.2047873
Ni, T. et al. The prevalence and regulation of antisense transcripts in Schizosaccharomyces pombe. PLoS One 5, e15271 (2010).
pubmed: 21187966
pmcid: 3004915
doi: 10.1371/journal.pone.0015271
Yassour, M. et al. Strand-specific RNA sequencing reveals extensive regulated long antisense transcripts that are conserved across yeast species. Genome Biol. 11, R87 (2010).
pubmed: 20796282
pmcid: 2945789
doi: 10.1186/gb-2010-11-8-r87
van Dijk, E. L. et al. XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475, 114–117 (2011).
pubmed: 21697827
doi: 10.1038/nature10118
Xu, Z. et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037 (2009).
pubmed: 19169243
pmcid: 2766638
doi: 10.1038/nature07728
Neil, H. et al. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457, 1038–1042 (2009).
pubmed: 19169244
doi: 10.1038/nature07747
Candelli, T. et al. High-resolution transcription maps reveal the widespread impact of roadblock termination in yeast. EMBO J. 37, e97490 (2018).
pubmed: 29351914
pmcid: 5813251
doi: 10.15252/embj.201797490
Roy, K., Gabunilas, J., Gillespie, A., Ngo, D. & Chanfreau, G. F. Common genomic elements promote transcriptional and DNA replication roadblocks. Genome Res. 26, 1363–1375 (2016).
pubmed: 27540088
pmcid: 5052057
doi: 10.1101/gr.204776.116
Wery, M. et al. Native elongating transcript sequencing reveals global anti-correlation between sense and antisense nascent transcription in fission yeast. RNA 24, 196–208 (2018).
pubmed: 29114019
pmcid: 5769747
doi: 10.1261/rna.063446.117
Akay, A. et al. Identification of functional long non-coding RNAs in C. elegans. BMC Biol. 17, 14 (2019).
pubmed: 30777050
pmcid: 6378714
doi: 10.1186/s12915-019-0635-7
Nam, J. W. & Bartel, D. P. Long noncoding RNAs in C. elegans. Genome Res. 22, 2529–2540 (2012).
pubmed: 22707570
pmcid: 3514682
doi: 10.1101/gr.140475.112
Ashe, A. et al. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150, 88–99 (2012).
pubmed: 22738725
pmcid: 3464430
doi: 10.1016/j.cell.2012.06.018
Shirayama, M. et al. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150, 65–77 (2012).
pubmed: 22738726
pmcid: 3597741
doi: 10.1016/j.cell.2012.06.015
Makeyeva, Y. V., Shirayama, M. & Mello, C. C. Cues from mRNA splicing prevent default Argonaute silencing in C. elegans. Dev. Cell 56, 2636–2648 (2021).
pubmed: 34547227
pmcid: 8693449
doi: 10.1016/j.devcel.2021.08.022
Ohhata, T. et al. CCIVR facilitates comprehensive identification of cis-natural antisense transcripts with their structural characteristics and expression profiles. Sci. Rep. 12, 15525 (2022).
pubmed: 36109624
pmcid: 9477841
doi: 10.1038/s41598-022-19782-5
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).
pubmed: 9486653
doi: 10.1038/35888