Carbon footprint of synthetic nitrogen under staple crops: A first cradle-to-grave analysis.
GHG emissions
food supply chain
global warming
nitrogen agronomic efficiency
soil and plant systems
synthetic nitrogen
Journal
Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746
Informations de publication
Date de publication:
Apr 2024
Apr 2024
Historique:
revised:
24
03
2024
received:
14
01
2024
accepted:
27
03
2024
medline:
18
4
2024
pubmed:
18
4
2024
entrez:
18
4
2024
Statut:
ppublish
Résumé
More than half of the world's population is nourished by crops fertilized with synthetic nitrogen (N) fertilizers. However, N fertilization is a major source of anthropogenic emissions, augmenting the carbon footprint (CF). To date, no global quantification of the CF induced by N fertilization of the main grain crops has been performed, and quantifications at the national scale have neglected the CO
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e17277Subventions
Organisme : Guangdong Laboratory for Lingnan Modern Agriculture
ID : NT2021010
Organisme : Key-Area Research and Development Program of Guangdong Province of China
ID : 2021B0202030002
Organisme : Science and Technology Planning Project of Guangdong Province of China
ID : 2019B030301007
Organisme : RUDN University Strategic Academic Leadership Program
Organisme : Special Fund for the Cultivation of Guangdong College Students' Scientific and Technological Innovation
ID : pdjh2020b0092
Informations de copyright
© 2024 John Wiley & Sons Ltd.
Références
Abdo, A. I., Shi, D., Li, J., Yang, T., Wang, X., Li, H., Abdel‐Hamed, E. M., Merwad, A. M., & Wang, L. (2021). Ammonia emission from staple crops in China as response to mitigation strategies and agronomic conditions: Meta‐analytic study. Journal of Cleaner Production, 279, 123835. https://doi.org/10.1016/j.jclepro.2020.123835
Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: The 2012 revision. FAO.
Amenumey, S. E., & Capel, P. D. (2013). Fertilizer consumption and energy input for 16 crops in the United States. Natural Resources Research, 23(3), 299–309. https://doi.org/10.1007/s11053‐013‐9226‐4
Austin, K. G., Jones, J. P. H., & Clark, C. M. (2022). A review of domestic land use change attributable to U.S. biofuel policy. Renewable and Sustainable Energy Reviews, 159, 112181. https://doi.org/10.1016/j.rser.2022.112181
Banger, K., Tian, H. Q., & Lu, C. Q. (2012). Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Global Change Biology, 18(10), 3259–3267. https://doi.org/10.1111/j.1365‐2486.2012.02762.x
Bodirsky, B. L., Rolinski, S., Biewald, A., Weindl, I., Popp, A., & Lotze‐Campen, H. (2015). Global food demand scenarios for the 21st century. PLoS One, 10(11), e0139201. https://doi.org/10.1371/journal.pone.0139201
Chai, R., Ye, X., Ma, C., Wang, Q., Tu, R., Zhang, L., & Gao, H. (2019). Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China. Carbon Balance and Management, 14(1), 20. https://doi.org/10.1186/s13021‐019‐0133‐9
Chen, J., Feng, M., Cui, Y., & Liu, G. (2021). The impacts of nitrogen addition on upland soil methane uptake: A global meta‐analysis. Science of the Total Environment, 795, 148863. https://doi.org/10.1016/j.scitotenv.2021.148863
Chen, X., Cui, Z., Fan, M., Vitousek, P., Zhao, M., Ma, W., Wang, Z., Zhang, W., Yan, X., Yang, J., & Zhang, F. (2014). Producing more grain with lower environmental costs. Nature, 514(7523), 486–489. https://doi.org/10.1038/nature13609
Chojnacka, K., Kowalski, Z., Kulczycka, J., Dmytryk, A., Gorecki, H., Ligas, B., & Gramza, M. (2019). Carbon footprint of fertilizer technologies. Journal of Environmental Management, 231, 962–967. https://doi.org/10.1016/j.jenvman.2018.09.108
Crippa, M., Guizzardi, D., Banja, M., Solazzo, E., Muntean, M., Schaaf, E., Pagani, F., Monforti‐Ferrario, F., Olivier, J., Quadrelli, R., Risquez Martin, A., Taghavi‐Moharamli, P., Grassi, G., Rossi, S., Jacome Felix Oom, D., Branco, A., San‐Miguel‐Ayanz, J., & Vignati, E. (2022). CO2 emissions of all world countries. JRC/IEA/PBL 2022 Report, EUR 31182 EN, Publications Office of the European Union, Luxembourg, JRC130363. https://doi.org/10.2760/730164
Crippa, M., Solazzo, E., Guizzardi, D., Monforti‐Ferrario, F., Tubiello, F. N., & Leip, A. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2(3), 198–209. https://doi.org/10.1038/s43016‐021‐00225‐9
Cui, X. Q., Zhou, F., Ciais, P., Davidson, E. A., Tubiello, F. N., Niu, X. Y., Ju, X., Canadell, J. G., Bouwman, A. F., Jackson, R. B., Mueller, N. D., Zheng, X., Kanter, D. R., Tian, H., Adalibieke, W., Bo, Y., Wang, Q., Zhan, X., & Zhu, D. Q. (2021). Global mapping of crop‐specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food, 2(11), 886. https://doi.org/10.1038/s43016‐021‐00384‐9
Day, L. (2013). Proteins from land plants – Potential resources for human nutrition and food security. Trends in Food Science & Technology, 32(1), 25–42. https://doi.org/10.1016/j.tifs.2013.05.005
de Vries, W., Kros, J., Kroeze, C., & Seitzinger, S. P. (2013). Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Current Opinion in Environmental Sustainability, 5(3–4), 392–402. https://doi.org/10.1016/j.cosust.2013.07.004
Dubey, A., & Lal, R. (2009). Carbon footprint and sustainability of agricultural production Systems in Punjab, India, and Ohio, USA. Journal of Crop Improvement, 23(4), 332–350. https://doi.org/10.1080/15427520902969906
EPA (US Environmental Protection Agency). (2009). Identifying opportunities for methane recovery at U.S. coal mines. www.epa.gov/cmop/docs/profiles_2008_final.pdf
Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., & Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nature Geoscience, 1(10), 636–639. https://doi.org/10.1038/ngeo325
Errickson, F., Kuruc, K., & McFadden, J. (2021). Animal‐based foods have high social and climate costs. Nature Food, 2(4), 274–281. https://doi.org/10.1038/s43016‐021‐00265‐1
FAO. (2019). Food and Agriculture Organization of the United Nations. http://faostat.fao.org/
FAOSTAT. (2023). Food and Agriculture Organization corporate statistical database. https://www.fao.org/faostat/en/#data/EI
Forum, I. T. (2017). Goods transport. https://doi.org/10.1787/g2g5557d‐en. https://www.oecd‐ilibrary.org/content/data/g2g5557d‐en
Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., & Cosby, B. J. (2003). The nitrogen cascade. BioScience, 53(4), 341–356. https://doi.org/10.1641/0006‐3568(2003)053[0341:Tnc]2.0.Co;2
Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320(5878), 889–892. https://doi.org/10.1126/science.1136674
Gao, Y., & Cabrera Serrenho, A. (2023). Greenhouse gas emissions from nitrogen fertilizers could be reduced by up to one‐fifth of current levels by 2050 with combined interventions. Nature Food, 4(2), 170–178. https://doi.org/10.1038/s43016‐023‐00698‐w
Geisseler, D., & Scow, K. M. (2014). Long‐term effects of mineral fertilizers on soil microorganisms – A review. Soil Biology and Biochemistry, 75, 54–63. https://doi.org/10.1016/j.soilbio.2014.03.023
Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling climate change through livestock a global assessment of emissions and mitigation opportunities. FAO.
Grassini, P., & Cassman, K. G. (2012). High‐yield maize with large net energy yield and small global warming intensity. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 1074–1079. https://doi.org/10.1073/pnas.1116364109
Green, R., Milner, J., Dangour, A. D., Haines, A., Chalabi, Z., Markandya, A., Joseph, S., & Wilkinson, P. (2015). The potential to reduce greenhouse gas emissions in the UK through healthy and realistic dietary change. Climatic Change, 129, 253–265.
Gunnar, K. (1998). Energy consumption and greenhouse gas emissions in fertilizer production. Paper presented at the IFA Technical Conference. Marrakech, Morocco.
Guo, C., Liu, X., & He, X. (2022). A global meta‐analysis of crop yield and agricultural greenhouse gas emissions under nitrogen fertilizer application. Science of the Total Environment, 831, 154982. https://doi.org/10.1016/j.scitotenv.2022.154982
Hoxha, A., & Christensen, B. (2019). The carbon footprint of fertiliser production: Regional reference values. Paper presented at the Proceedings‐International Fertiliser Society.
IEA. (2021). CO2 emissions from international shipping in the Net Zero Scenario, 2000‐2030. Paris: IEA. https://www.iea.org/data‐and‐statistics/charts/co2‐emissions‐from‐international‐shipping‐in‐the‐net‐zero‐scenario‐2000‐2030‐3
IFA. (2017). Assessment of fertilizer use by crop at the global level. https://www.ifastat.org/consumption/fertilizer‐use‐by‐crop; https://www.ifastat.org/supply/Nitrogen%20Products/Ammonia
IFA (International Fertilizer Association). (2009). Fertilizers, climate change and enhancing agricultural productivity sustainably. http://www.fertilizer.org
IPCC. (2006a). Guidelines for national greenhouse gas inventories. IGES.
IPCC. (2006b). Guidelines for national greenhouse gas inventories (chapter 3) (Vol. 2). IGES.
IPCC. (2007). Climate change 2007: The physical science basis. Agenda, 6(7), 333.
ISO. (2000). Environmental management—Life cycle assessment—Life cycle impact assessment (Vol. 14042). ISO.
Ivanovich, C. C., Sun, T., Gordon, D. R., & Ocko, I. B. (2023). Future warming from global food consumption. Nature Climate Change, 13(3), 297–302. https://doi.org/10.1038/s41558‐023‐01605‐8
Jeevan Kumar, S. P., Sampath Kumar, N. S., & Chintagunta, A. D. (2020). Bioethanol production from cereal crops and lignocelluloses rich agro‐residues: Prospects and challenges. SN Applied Sciences, 2(10), 1673. https://doi.org/10.1007/s42452‐020‐03471‐x
Jian, S. Y., Li, J. W., Chen, J., Wang, G. S., Mayes, M. A., Dzantor, K. E., Hui, D., & Luo, Y. Q. (2016). Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta‐analysis. Soil Biology & Biochemistry, 101, 32–43. https://doi.org/10.1016/j.soilbio.2016.07.003
Jiang, Z., Zhong, Y., Yang, J., Wu, Y., Li, H., & Zheng, L. (2019). Effect of nitrogen fertilizer rates on carbon footprint and ecosystem service of carbon sequestration in rice production. Science of the Total Environment, 670, 210–217. https://doi.org/10.1016/j.scitotenv.2019.03.188
Kayatz, P., Tonder, C., Hillier, J., Lesschen, J., & Dicks, L. (2020). Cool farm tool documentation. https://app.coolfarmtool.org/
Lai, R. (2004). Carbon emission from farm operations. Environmental International, 30(7), 981–990. https://doi.org/10.1016/j.envint.2004.03.005
Lal, R. (2000). Global climate change and pedogenic carbonates. Lewis Publishers.
Lenzen, M., Geschke, A., Abd Rahman, M. D., Xiao, Y., Fry, J., Reyes, R., Dietzenbacher, E., Inomata, S., Kanemoto, K., Los, B., Moran, D., Schulte in den Bäumen, H., Tukker, A., Walmsley, T., Wiedmann, T., Wood, R., & Yamano, N. (2017). The global MRIO lab – Charting the world economy. Economic Systems Research, 29(2), 158–186. https://doi.org/10.1080/09535314.2017.1301887
Li, M., Jia, N., Lenzen, M., Malik, A., Wei, L., Jin, Y., & Raubenheimer, D. (2022). Global food‐miles account for nearly 20% of total food‐systems emissions. Nature Food, 3(6), 445–453. https://doi.org/10.1038/s43016‐022‐00531‐w
Liu, W., Zhang, G., Wang, X., Lu, F., & Ouyang, Z. (2018). Carbon footprint of main crop production in China: Magnitude, spatial‐temporal pattern and attribution. Science of the Total Environment, 645, 1296–1308. https://doi.org/10.1016/j.scitotenv.2018.07.104
Lu, C. Q., Yu, Z., Tian, H. Q., Hennessy, D. A., Feng, H. L., Al‐Kaisi, M., Zhou, Y., Sauer, T., & Arritt, R. (2018). Increasing carbon footprint of grain crop production in the US Western Corn Belt. Environmental Research Letters, 13(12), 124007. https://doi.org/10.1088/1748‐9326/aae9fe
Mekonnen, M. M., Romanelli, T. L., Ray, C., Hoekstra, A. Y., Liska, A. J., & Neale, C. M. U. (2018). Water, energy, and carbon footprints of bioethanol from the U.S. and Brazil. Environmental Science & Technology, 52(24), 14508–14518. https://doi.org/10.1021/acs.est.8b03359
Menegat, S., Ledo, A., & Tirado, R. (2022). Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Scientific Reports, 12(1), 14490. https://doi.org/10.1038/s41598‐022‐18773‐w
Mottet, A., de Haan, C., Falcucci, A., Tempio, G., Opio, C., & Gerber, P. (2017). Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Security, 14, 1–8. https://doi.org/10.1016/j.gfs.2017.01.001
Mueller, N. D., Lassaletta, L., Runck, B. C., Billen, G., Garnier, J., & Gerber, J. S. (2017). Declining spatial efficiency of global cropland nitrogen allocation. Global Biogeochemical Cycles, 31(2), 245–257. https://doi.org/10.1002/2016gb005515
Poore, J., & Nemecek, T. (2018). Reducing food's environmental impacts through producers and consumers. Science, 360(6392), 987–992. https://doi.org/10.1126/science.aaq0216
Porter, S. D., Reay, D. S., Higgins, P., & Bomberg, E. (2016). A half‐century of production‐phase greenhouse gas emissions from food loss and waste in the global food supply chain. Science of the Total Environment, 571, 721–729. https://doi.org/10.1016/j.scitotenv.2016.07.041
Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F., & Crutzen, P. J. (2012). Global agriculture and nitrous oxide emissions. Nature Climate Change, 2(6), 410–416. https://doi.org/10.1038/Nclimate1458
Rey, A. (2015). Mind the gap: Non‐biological processes contributing to soil CO2 efflux. Global Change Biology, 21(5), 1752–1761. https://doi.org/10.1111/gcb.12821
Roberts, D., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., & Rama, B. (2022). Climate change 2022: Impacts, adaptation and vulnerability. Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
Searchinger, T., Hanson, C., Ranganathan, J., Lipinski, B., Waite, R., Winterbottom, R., Dinshaw, A., Heimlich, R., Boval, M., & Chemineau, P. (2014). Creating a sustainable food future. A menu of solutions to sustainably feed more than 9 billion people by 2050. World resources report 2013–14: Interim findings. World Resources Institute.
Shcherbak, I., Millar, N., & Robertson, G. P. (2014). Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 111(25), 9199–9204. https://doi.org/10.1073/pnas.1322434111
Steffen, W., Richardson, K., Rockstrom, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., de Vries, W., de Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., & Sorlin, S. (2015). Sustainability. Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855. https://doi.org/10.1126/science.1259855
Tennekes, M. (2018). tmap: Thematic maps in R. Journal of Statistical Software, 84(6), 1–39. https://doi.org/10.18637/jss.v084.i06
Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, R. B., Janssens‐Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan, S., Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., … Yao, Y. (2020). A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 586(7828), 248–256. https://doi.org/10.1038/s41586‐020‐2780‐0
Tian, H. Q., Lu, C. Q., Melillo, J., Ren, W., Huang, Y., Xu, X. F., Liu, M., Zhang, C., Chen, G., Pan, S., & Reilly, J. (2012). Food benefit and climate warming potential of nitrogen fertilizer uses in China. Environmental Research Letters, 7(4), 044020. https://doi.org/10.1088/1748‐9326/7/4/044020
Tian, H. Q., Yang, J., Xu, R. T., Lu, C. Q., Canadell, J. G., Davidson, E. A., Jackson, R. B., Arneth, A., Chang, J., Ciais, P., Gerber, S., Ito, A., Joos, F., Lienert, S., Messina, P., Olin, S., Pan, S., Peng, C., Saikawa, E., … Zhang, B. W. (2019). Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Global Change Biology, 25(2), 640–659. https://doi.org/10.1111/gcb.14514
Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20260–20264. https://doi.org/10.1073/pnas.1116437108
UN. (2019). World population prospects 2019. Methodology of the United Nations population estimates and projections. https://population.un.org/wpp/Download/Standard/Population/
Uwizeye, A., de Boer, I. J. M., Opio, C. I., Schulte, R. P. O., Falcucci, A., Tempio, G., Teillard, F., Casu, F., Rulli, M., Galloway, J. N., Leip, A., Erisman, J. W., Robinson, T. P., Steinfeld, H., & Gerber, P. J. (2020). Nitrogen emissions along global livestock supply chains. Nature Food, 1(7), 437–446. https://doi.org/10.1038/s43016‐020‐0113‐y
van Grinsven, H. J. M., Ebanyat, P., Glendining, M., Gu, B., Hijbeek, R., Lam, S. K., Lassaletta, L., Mueller, N. D., Pacheco, F. S., Quemada, M., Bruulsema, T. W., Jacobsen, B. H., & ten Berge, H. F. M. (2022). Publisher correction: Establishing long‐term nitrogen response of global cereals to assess sustainable fertilizer rates. Nature Food, 3(2), 180. https://doi.org/10.1038/s43016‐022‐00475‐1
Walling, E., & Vaneeckhaute, C. (2020). Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. Journal of Environmental Management, 276, 111211. https://doi.org/10.1016/j.jenvman.2020.111211
Wang, X., Wang, J., Xu, M., Zhang, W., Fan, T., & Zhang, J. (2015). Carbon accumulation in arid croplands of northwest China: Pedogenic carbonate exceeding organic carbon. Scientific Reports, 5(1), 11439. https://doi.org/10.1038/srep11439
Wang, Y., Li, Y., Ye, X., Chu, Y., & Wang, X. (2010). Profile storage of organic/inorganic carbon in soil: From forest to desert. Science of the Total Environment, 408(8), 1925–1931. https://doi.org/10.1016/j.scitotenv.2010.01.015
Wang, Y., Ying, H., Yin, Y., Zheng, H., & Cui, Z. (2019). Estimating soil nitrate leaching of nitrogen fertilizer from global meta‐analysis. Science of the Total Environment, 657, 96–102. https://doi.org/10.1016/j.scitotenv.2018.12.029
Winiwarter, W., Hoglund‐Isaksson, L., Klimont, Z., Schoopp, W., & Amann, M. (2018). Technical opportunities to reduce global anthropogenic emissions of nitrous oxide. Environmental Research Letters, 13(1), 014011. https://doi.org/10.1088/1748‐9326/aa9ec9
Wu, L., Zhang, W., Wei, W., He, Z., Kuzyakov, Y., Bol, R., & Hu, R. (2019). Soil organic matter priming and carbon balance after straw addition is regulated by long‐term fertilization. Soil Biology and Biochemistry, 135, 383–391. https://doi.org/10.1016/j.soilbio.2019.06.003
Yara. (2010). The carbon footprint of fertilizers. http://yara.com/doc/29413_Yara_carbon_life_cycle.pdf
Yin, W., Chai, Q., Fan, Z., Hu, F., Fan, H., Guo, Y., Zhao, C., & Yu, A. (2022). Energy budgeting, carbon budgeting, and carbon footprints of straw and plastic film management for environmentally clean of wheat‐maize intercropping system in northwestern China. Science of the Total Environment, 826, 154220. https://doi.org/10.1016/j.scitotenv.2022.154220
Zamanian, K., Pustovoytov, K., & Kuzyakov, Y. (2016). Pedogenic carbonates: Forms and formation processes. Earth‐Science Reviews, 157, 1–17. https://doi.org/10.1016/j.earscirev.2016.03.003
Zamanian, K., Zarebanadkouki, M., & Kuzyakov, Y. (2018). Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment. Global Change Biology, 24(7), 2810–2817. https://doi.org/10.1111/gcb.14148
Zang, H., Wang, J., & Kuzyakov, Y. (2016). N fertilization decreases soil organic matter decomposition in the rhizosphere. Applied Soil Ecology, 108, 47–53. https://doi.org/10.1016/j.apsoil.2016.07.021
Zhan, X., Adalibieke, W., Cui, X., Winiwarter, W., Reis, S., Zhang, L., Bai, Z., Wang, Q., Huang, W., & Zhou, F. (2021). Improved estimates of ammonia emissions from global croplands. Environmental Science & Technology, 55(2), 1329–1338. https://doi.org/10.1021/acs.est.0c05149
Zhang, G., Wang, X. K., Sun, B. F., Zhao, H., Lu, F., & Zhang, L. (2016). Status of mineral nitrogen fertilization and net mitigation potential of the state fertilization recommendation in Chinese cropland. Agricultural Systems, 146, 1–10. https://doi.org/10.1016/j.agsy.2016.03.012
Zhang, G., Wang, X. K., Zhang, L., Xiong, K. N., Zheng, C. Y., Lu, F., Zhao, H., Zheng, H., & Ouyang, Z. Y. (2018). Carbon and water footprints of major cereal crops production in China. Journal of Cleaner Production, 194, 613–623. https://doi.org/10.1016/j.jclepro.2018.05.024
Zhang, W. F., Dou, Z. X., He, P., Ju, X. T., Powlson, D., Chadwick, D., Norse, D., Lu, Y. L., Zhang, Y., Wu, L., Chen, X. P., Cassman, K. G., & Zhang, F. S. (2013). New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences of the United States of America, 110(21), 8375–8380. https://doi.org/10.1073/pnas.1210447110
Zhang, X., Davidson, E. A., Mauzerall, D. L., Searchinger, T. D., Dumas, P., & Shen, Y. (2015). Managing nitrogen for sustainable development. Nature, 528(7580), 51–59. https://doi.org/10.1038/nature15743
Zhou, L. Y., Zhou, X. H., Zhang, B. C., Lu, M., Luo, Y. Q., Liu, L. L., & Li, B. (2014). Different responses of soil respiration and its components to nitrogen addition among biomes: A meta‐analysis. Global Change Biology, 20(7), 2332–2343. https://doi.org/10.1111/gcb.12490
Zhou, M. H., & Butterbach‐Bahl, K. (2014). Assessment of nitrate leaching loss on a yield‐scaled basis from maize and wheat cropping systems. Plant and Soil, 374(1–2), 977–991. https://doi.org/10.1007/s11104‐013‐1876‐9