The selective prolyl hydroxylase inhibitor IOX5 stabilizes HIF-1α and compromises development and progression of acute myeloid leukemia.


Journal

Nature cancer
ISSN: 2662-1347
Titre abrégé: Nat Cancer
Pays: England
ID NLM: 101761119

Informations de publication

Date de publication:
18 Apr 2024
Historique:
received: 31 03 2023
accepted: 15 03 2024
medline: 19 4 2024
pubmed: 19 4 2024
entrez: 18 4 2024
Statut: aheadofprint

Résumé

Acute myeloid leukemia (AML) is a largely incurable disease, for which new treatments are urgently needed. While leukemogenesis occurs in the hypoxic bone marrow, the therapeutic tractability of the hypoxia-inducible factor (HIF) system remains undefined. Given that inactivation of HIF-1α/HIF-2α promotes AML, a possible clinical strategy is to target the HIF-prolyl hydroxylases (PHDs), which promote HIF-1α/HIF-2α degradation. Here, we reveal that genetic inactivation of Phd1/Phd2 hinders AML initiation and progression, without impacting normal hematopoiesis. We investigated clinically used PHD inhibitors and a new selective PHD inhibitor (IOX5), to stabilize HIF-α in AML cells. PHD inhibition compromises AML in a HIF-1α-dependent manner to disable pro-leukemogenic pathways, re-program metabolism and induce apoptosis, in part via upregulation of BNIP3. Notably, concurrent inhibition of BCL-2 by venetoclax potentiates the anti-leukemic effect of PHD inhibition. Thus, PHD inhibition, with consequent HIF-1α stabilization, is a promising nontoxic strategy for AML, including in combination with venetoclax.

Identifiants

pubmed: 38637657
doi: 10.1038/s43018-024-00761-w
pii: 10.1038/s43018-024-00761-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Trumpp, A. & Haas, S. Cancer stem cells: the adventurous journey from hematopoietic to leukemic stem cells. Cell 185, 1266–1270 (2022).
pubmed: 35385684 doi: 10.1016/j.cell.2022.03.025
Papaemmanuil, E. et al. Genomic classification and prognosis in acute myeloid leukemia. New Engl. J. Med. 374, 2209–2221 (2016).
pubmed: 27276561 doi: 10.1056/NEJMoa1516192
Rouault-Pierre, K. et al. HIF-2α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress. Cell Stem Cell 13, 549–563 (2013).
pubmed: 24095676 doi: 10.1016/j.stem.2013.08.011
Wang, Y., Liu, Y., Sami, Zheng, P. & Liu, Y. Targeting HIF1α eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8, 399–411 (2011).
pubmed: 21474104 pmcid: 3084595 doi: 10.1016/j.stem.2011.02.006
Velasco-Hernandez, T., Hyrenius-Wittsten, A., Rehn, M., Bryder, D. & Cammenga, J. HIF-1α can act as a tumor suppressor gene in murine acute myeloid leukemia. Blood 124, 3597–3607 (2014).
pubmed: 25267197 doi: 10.1182/blood-2014-04-567065
Vukovic, M. et al. Hif-1α and Hif-2α synergize to suppress AML development but are dispensable for disease maintenance. J. Exp. Med. 212, 2223–2234 (2015).
pubmed: 26642852 pmcid: 4689165 doi: 10.1084/jem.20150452
Islam, M. S., Leissing, T. M., Chowdhury, R., Hopkinson, R. J. & Schofield, C. J. 2-Oxoglutarate-dependent oxygenases. Annu. Rev. Biochem. 87, 585–620 (2018).
pubmed: 29494239 doi: 10.1146/annurev-biochem-061516-044724
Semenza, G. L. Regulation of erythropoiesis by the hypoxia-inducible factor pathway: effects of genetic and pharmacological perturbations. Annu. Rev. Med. 74, 307–319 (2023).
pubmed: 35773226 doi: 10.1146/annurev-med-042921-102602
Schofield, C. J. & Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 5, 343–354 (2004).
pubmed: 15122348 doi: 10.1038/nrm1366
Cockman, M. E. et al. Lack of activity of recombinant HIF prolyl hydroxylases (PHDs) on reported non-HIF substrates. eLife 8, e46490 (2019).
pubmed: 31500697 pmcid: 6739866 doi: 10.7554/eLife.46490
Mole, D. R. et al. Genome-wide association of hypoxia-inducible factor (HIF)-1α and HIF-2α DNA binding with expression profiling of hypoxia-inducible transcripts. J. Biol. Chem. 284, 16767–16775 (2009).
pubmed: 19386601 pmcid: 2719312 doi: 10.1074/jbc.M901790200
Schödel, J., Mole, D. R. & Ratcliffe, P. J. Pan-genomic binding of hypoxia-inducible transcription factors. Biol. Chem. 394, 507–517 (2013).
pubmed: 23324384 doi: 10.1515/hsz-2012-0351
Schödel, J. et al. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117, e207–e217 (2011).
pubmed: 21447827 pmcid: 3374576 doi: 10.1182/blood-2010-10-314427
Ariazi, J. L. et al. Discovery and preclinical characterization of GSK1278863 (Daprodustat), a small molecule hypoxia inducible factor–prolyl hydroxylase inhibitor for anemia. J. Pharmacol. Exp. Ther. 363, 336–347 (2017).
pubmed: 28928122 doi: 10.1124/jpet.117.242503
Yeh, T.-L. et al. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chem. Sci. 8, 7651–7668 (2017).
pubmed: 29435217 pmcid: 5802278 doi: 10.1039/C7SC02103H
McDonough, M. A. et al. Cellular oxygen sensing: crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proc. Natl Acad. Sci. USA 103, 9814–9819 (2006).
pubmed: 16782814 pmcid: 1502536 doi: 10.1073/pnas.0601283103
Figg, W. D. et al. Structural basis of prolyl hydroxylase domain inhibition by molidustat. ChemMedChem 16, 2082–2088 (2021).
pubmed: 33792169 pmcid: 8359944 doi: 10.1002/cmdc.202100133
Nagashima, R., Ishikawa, H., Kuno, Y., Kohda, C. & Iyoda, M. HIF-PHD inhibitor regulates the function of group2 innate lymphoid cells and polarization of M2 macrophages. Sci. Rep. 13, 1867 (2023).
pubmed: 36725898 pmcid: 9892566 doi: 10.1038/s41598-023-29161-3
Nishide, S. et al. Controlling the phenotype of tumor-infiltrating macrophages via the PHD–HIF axis inhibits tumor growth in a mouse model. iScience 19, 940–954 (2019).
pubmed: 31518902 pmcid: 6742914 doi: 10.1016/j.isci.2019.08.033
Okumura, C. Y. M. et al. A new pharmacological agent (AKB-4924) stabilizes hypoxia inducible factor-1 (HIF-1) and increases skin innate defenses against bacterial infection. J. Mol. Med. 90, 1079–1089 (2012).
pubmed: 22371073 doi: 10.1007/s00109-012-0882-3
Marks, E. et al. Oral delivery of prolyl hydroxylase inhibitor: AKB-4924 promotes localized mucosal healing in a mouse model of colitis. Inflamm. Bowel Dis. 21, 267–275 (2014).
doi: 10.1097/MIB.0000000000000277
Rose, N. R., McDonough, M. A., King, O. N. F., Kawamura, A. & Schofield, C. J. Inhibition of 2-oxoglutarate dependent oxygenases. Chem. Soc. Rev. 40, 4364 (2011).
pubmed: 21390379 doi: 10.1039/c0cs00203h
Crifo, B. et al. Hydroxylase inhibition selectively induces cell death in monocytes. J. Immunol. 202, 1521–1530 (2019).
pubmed: 30700584 doi: 10.4049/jimmunol.1800912
Samra, B., Konopleva, M., Isidori, A., Daver, N. & DiNardo, C. Venetoclax-based combinations in acute myeloid leukemia: current evidence and future directions. Front. Oncol. 10, 562558 (2020).
pubmed: 33251134 pmcid: 7675064 doi: 10.3389/fonc.2020.562558
Collins, C. T. & Hess, J. L. Deregulation of the HOXA9/MEIS1 axis in acute leukemia. Curr. Opin. Hematol. 23, 354–361 (2016).
pubmed: 27258906 pmcid: 5653247 doi: 10.1097/MOH.0000000000000245
Lawrence, H. et al. Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias. Leukemia 13, 1993–1999 (1999).
pubmed: 10602420 doi: 10.1038/sj.leu.2401578
Uckelmann, H. J. et al. Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. Science 367, 586–590 (2020).
pubmed: 32001657 pmcid: 7754791 doi: 10.1126/science.aax5863
Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136, 839–851 (2009).
pubmed: 19217150 pmcid: 4037868 doi: 10.1016/j.cell.2009.01.020
Yamamoto, A. et al. Systemic silencing of PHD2 causes reversible immune regulatory dysfunction. J. Clin. Invest. 129, 3640–3656 (2019).
pubmed: 31162141 pmcid: 6715380 doi: 10.1172/JCI124099
Stavropoulou, V. et al. MLL-AF9 expression in hematopoietic stem cells drives a highly invasive AML expressing EMT-related genes linked to poor outcome. Cancer Cell 30, 43–58 (2016).
pubmed: 27344946 doi: 10.1016/j.ccell.2016.05.011
Somervaille, T. C. P. & Cleary, M. L. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 10, 257–268 (2006).
pubmed: 17045204 doi: 10.1016/j.ccr.2006.08.020
Trempenau, M. L. et al. The histone demethylase KDM5C functions as a tumor suppressor in AML by repression of bivalently marked immature genes. Leukemia 37, 593–605 (2023).
pubmed: 36631623 pmcid: 9991918 doi: 10.1038/s41375-023-01810-6
Ren, Z. et al. A PRC2-Kdm5b axis sustains tumorigenicity of acute myeloid leukemia. Proc. Natl Acad. Sci. USA 119, e2122940119 (2022).
pubmed: 35217626 pmcid: 8892512 doi: 10.1073/pnas.2122940119
Walport, L. J. et al. Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Nat. Commun. 7, 11974 (2016).
pubmed: 27337104 pmcid: 4931022 doi: 10.1038/ncomms11974
Lando, D. et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16, 1466–1471 (2002).
pubmed: 12080085 pmcid: 186346 doi: 10.1101/gad.991402
Chan, M. C. et al. Tuning the transcriptional response to hypoxia by inhibiting Hypoxia-inducible Factor (HIF) prolyl and asparaginyl hydroxylases. J. Biol. Chem. 291, 20661–20673 (2016).
pubmed: 27502280 pmcid: 5034057 doi: 10.1074/jbc.M116.749291
Holt‐Martyn, J. P. et al. Structure‐activity relationship and crystallographic studies on 4‐hydroxypyrimidine HIF prolyl hydroxylase domain inhibitors. ChemMedChem 15, 270–273 (2020).
pubmed: 31751494 doi: 10.1002/cmdc.201900557
Islam, M. S. et al. Inhibition of JMJD6 by 2‐oxoglutarate mimics. ChemMedChem 17, e202100398 (2022).
pubmed: 34581506 doi: 10.1002/cmdc.202100398
Ginouvès, A., Ilc, K., Macías, N., Pouysségur, J. & Berra, E. PHDs overactivation during chronic hypoxia ‘desensitizes’ HIFα and protects cells from necrosis. Proc. Natl Acad. Sci. USA 105, 4745–4750 (2008).
pubmed: 18347341 pmcid: 2290777 doi: 10.1073/pnas.0705680105
Wiesener, M. S. et al. Induction of endothelial pas domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1α. Blood 92, 2260–2268 (1998).
pubmed: 9746763 doi: 10.1182/blood.V92.7.2260
Kshitiz et al. Lactate-dependent chaperone-mediated autophagy induces oscillatory HIF-1α activity promoting proliferation of hypoxic cells. Cell Syst. 13, 1048–1064 (2022).
pubmed: 36462504 pmcid: 10012408 doi: 10.1016/j.cels.2022.11.003
Burrows, N. et al. Dynamic regulation of hypoxia-inducible factor-1α activity is essential for normal B cell development. Nat. Immunol. 21, 1408–1420 (2020).
pubmed: 32868930 pmcid: 7613233 doi: 10.1038/s41590-020-0772-8
Akef, A., McGraw, K., Cappell, S. D. & Larson, D. R. Ribosome biogenesis is a downstream effector of the oncogenic U2AF1-S34F mutation. PLoS Biol. 18, e3000920 (2020).
pubmed: 33137094 pmcid: 7660540 doi: 10.1371/journal.pbio.3000920
Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).
pubmed: 28802037 pmcid: 5726441 doi: 10.1016/j.cell.2017.07.029
Boudhraa, Z., Carmona, E., Provencher, D. & Mes-Masson, A. M. Ran GTPase: a key player in tumor progression and metastasis. Front. Cell Dev. Biol. 8, 345 (2020).
pubmed: 32528950 pmcid: 7264121 doi: 10.3389/fcell.2020.00345
Kuntz, E. M. et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat. Med. 23, 1234–1240 (2017).
pubmed: 28920959 pmcid: 5657469 doi: 10.1038/nm.4399
Guitart, A. V. et al. Fumarate hydratase is a critical metabolic regulator of hematopoietic stem cell functions. J. Exp. Med. 214, 719–735 (2017).
pubmed: 28202494 pmcid: 5339674 doi: 10.1084/jem.20161087
Mughal, M. K. et al. Acute myeloid leukaemia: expression of MYC protein and its association with cytogenetic risk profile and overall survival. Hematol. Oncol. 35, 350–356 (2017).
pubmed: 26856970 doi: 10.1002/hon.2279
Segeren, H. A. et al. Excessive E2F transcription in single cancer cells precludes transient cell-cycle exit after DNA damage. Cell Rep. 33, 108449 (2020).
pubmed: 33264622 doi: 10.1016/j.celrep.2020.108449
Moore, M. A. S. et al. NUP98 dysregulation in myeloid leukemogenesis. Ann. NY Acad. Sci. 1106, 114–142 (2007).
pubmed: 17442773 doi: 10.1196/annals.1392.019
Wang, T. et al. Inhibition of KPNB1 inhibits proliferation and promotes apoptosis of chronic myeloid leukemia cells through regulation of E2F1. Onco. Targets Ther. 12, 10455–10467 (2019).
pubmed: 31819526 pmcid: 6896920 doi: 10.2147/OTT.S210048
Li, J. & Ge, Z. High HSPA8 expression predicts adverse outcomes of acute myeloid leukemia. BMC Cancer 21, 475 (2021).
pubmed: 33926391 pmcid: 8086305 doi: 10.1186/s12885-021-08193-w
Yang, Y., Wang, S., Zhang, Y. & Zhu, X. Biological effects of decreasing RBM15 on chronic myelogenous leukemia cells. Leuk. Lymphoma 53, 2237–2244 (2012).
pubmed: 22497198 doi: 10.3109/10428194.2012.684350
Corner, T. P. et al. Structure-guided optimisation of N-hydroxythiazole-derived inhibitors of factor inhibiting hypoxia-inducible factor-α. Chem. Sci. 14, 12098–12120 (2023).
pubmed: 37969593 pmcid: 10631261 doi: 10.1039/D3SC04253G
McDonough, M. A. et al. Selective inhibition of factor inhibiting hypoxia-inducible factor. J. Am. Chem. Soc. 127, 7680–7681 (2005).
pubmed: 15913349 doi: 10.1021/ja050841b
Leite de Oliveira, R. et al. Gene-targeting of Phd2 improves tumor response to chemotherapy and prevents side-toxicity. Cancer Cell 22, 263–277 (2012).
pubmed: 22897855 doi: 10.1016/j.ccr.2012.06.028
Forristal, C. E. et al. Pharmacologic stabilization of HIF-1α increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation. Blood 121, 759–769 (2013).
pubmed: 23243286 doi: 10.1182/blood-2012-02-408419
Lawson, H. et al. JMJD6 promotes self-renewal and regenerative capacity of hematopoietic stem cells. Blood Adv. 5, 889–899 (2021).
pubmed: 33560400 pmcid: 7876897 doi: 10.1182/bloodadvances.2020002702
Chowdhury, R. et al. Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases. Nat. Commun. 7, 12673 (2016).
pubmed: 27561929 pmcid: 5007464 doi: 10.1038/ncomms12673
Sowter, H. M., Ratcliffe, P. J., Watson, P., Greenberg, A. H. & Harris, A. L. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res. 61, 6669–6673 (2001).
pubmed: 11559532
Kanzawa, T. et al. Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 24, 980–991 (2005).
pubmed: 15592527 doi: 10.1038/sj.onc.1208095
Kubli, D. A., Ycaza, J. E. & Gustafsson, A. B. Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak. Biochem. J. 405, 407–415 (2007).
pubmed: 17447897 pmcid: 2267317 doi: 10.1042/BJ20070319
De Boer, J. et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur. J. Immunol. 33, 314–325 (2003).
pubmed: 12548562 doi: 10.1002/immu.200310005
McIntosh, B. E. et al. Nonirradiated NOD,B6.SCID Il2rγ
doi: 10.1016/j.stemcr.2014.12.005
Guitart, A. V. et al. Hif-2α is not essential for cell-autonomous hematopoietic stem cell maintenance. Blood 122, 1741–1745 (2013).
pubmed: 23894152 doi: 10.1182/blood-2013-02-484923
Kranc, K. R. et al. Cited2 is an essential regulator of adult hematopoietic stem cells. Cell Stem Cell 5, 659–665 (2009).
pubmed: 19951693 pmcid: 2828538 doi: 10.1016/j.stem.2009.11.001
Lawson, H. et al. CITED2 coordinates key hematopoietic regulatory pathways to maintain the HSC pool in both steady-state hematopoiesis and transplantation. Stem Cell Rep. 16, 2784–2797 (2021).
doi: 10.1016/j.stemcr.2021.10.001
Paris, J. et al. Targeting the RNA m6A Reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell 25, 137–148 (2019).
pubmed: 31031138 pmcid: 6617387 doi: 10.1016/j.stem.2019.03.021
Kwok, C., Zeisig, B. B., Qiu, J., Dong, S. & So, C. W. Transforming activity of AML1-ETO is independent of CBFβ and ETO interaction but requires formation of homo-oligomeric complexes. Proc. Natl Acad. Sci. USA 106, 2853–2858 (2009).
pubmed: 19202074 pmcid: 2650355 doi: 10.1073/pnas.0810558106
Hu, Y. & Smyth, G. K. ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70–78 (2009).
pubmed: 19567251 doi: 10.1016/j.jim.2009.06.008
Tóth, A. et al. Daprodustat accelerates high phosphate-induced calcification through the activation of HIF-1 signaling. Front. Pharmacol. 13, 798053 (2022).
pubmed: 35222025 pmcid: 8867606 doi: 10.3389/fphar.2022.798053
Wing, P. A. C. et al. Hypoxic and pharmacological activation of HIF inhibits SARS-CoV-2 infection of lung epithelial cells. Cell Rep. 35, 109020 (2021).
pubmed: 33852916 pmcid: 8020087 doi: 10.1016/j.celrep.2021.109020
Feng, R. et al. Activation of γ-globin expression by hypoxia-inducible factor 1α. Nature 610, 783–790 (2022).
pubmed: 36224385 pmcid: 9773321 doi: 10.1038/s41586-022-05312-w
Nowak, R. P. et al. First-in-class inhibitors of the ribosomal oxygenase MINA53. J. Med. Chem. 64, 17031–17050 (2021).
pubmed: 34843649 pmcid: 8667043 doi: 10.1021/acs.jmedchem.1c00605
Hewitson, K. S. et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem. 277, 26351–26355 (2002).
pubmed: 12042299 doi: 10.1074/jbc.C200273200
Islam, M. S. et al. Biochemical and structural investigations clarify the substrate selectivity of the 2-oxoglutarate oxygenase JMJD6. J. Biol. Chem. 294, 11637–11652 (2019).
pubmed: 31147442 pmcid: 6663879 doi: 10.1074/jbc.RA119.008693
Ng, S. S. et al. Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature 448, 87–91 (2007).
pubmed: 17589501 doi: 10.1038/nature05971
Johansson, C. et al. Structural analysis of human KDM5B guides histone demethylase inhibitor development. Nat. Chem. Biol. 12, 539–545 (2016).
pubmed: 27214403 doi: 10.1038/nchembio.2087
Rose, N. R. et al. Plant growth regulator daminozide is a selective inhibitor of human KDM2/7 histone demethylases. J. Med. Chem. 55, 6639–6643 (2012).
pubmed: 22724510 pmcid: 4673902 doi: 10.1021/jm300677j
Cockman, M. E. et al. Widespread hydroxylation of unstructured lysine-rich protein domains by JMJD6. Proc. Natl Acad. Sci. USA 119, e2201483119 (2022).
pubmed: 35930668 pmcid: 9371714 doi: 10.1073/pnas.2201483119
Hutchinson, S. E. et al. Enabling lead discovery for histone lysine demethylases by high-throughput RapidFire mass spectrometry. J. Biomol. Screen. 17, 39–48 (2012).
pubmed: 21859681 doi: 10.1177/1087057111416660
Rose, N. R. et al. Inhibitor scaffolds for 2-oxoglutarate-dependent histone lysine demethylases. J. Med. Chem. 51, 7053–7056 (2008).
pubmed: 18942826 doi: 10.1021/jm800936s
Tumber, A. et al. Potent and selective KDM5 inhibitor stops cellular demethylation of H3K4me3 at transcription start sites and proliferation of MM1S myeloma cells. Cell Chem. Biol. 24, 371–380 (2017).
pubmed: 28262558 pmcid: 5361737 doi: 10.1016/j.chembiol.2017.02.006
Kruidenier, L. et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488, 404–408 (2012).
pubmed: 22842901 pmcid: 4691848 doi: 10.1038/nature11262
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
pubmed: 25751142 pmcid: 4655817 doi: 10.1038/nmeth.3317
Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E. & Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 38, 2943–2945 (2022).
pubmed: 35561197 pmcid: 9113351 doi: 10.1093/bioinformatics/btac166
Brewitz, L. et al. 5-Substituted pyridine-2,4-dicarboxylate derivatives have potential for selective inhibition of human jumonji-C domain-containing protein 5. J. Med. Chem. 66, 10849–10865 (2023).
pubmed: 37527664 pmcid: 10424186 doi: 10.1021/acs.jmedchem.3c01114
Hopkinson, R. J. et al. 5-Carboxy-8-hydroxyquinoline is a broad spectrum 2-oxoglutarate oxygenase inhibitor which causes iron translocation. Chem. Sci. 4, 3110–3117 (2013).
pubmed: 26682036 doi: 10.1039/c3sc51122g

Auteurs

Hannah Lawson (H)

The Institute of Cancer Research, London, UK.
Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.

James P Holt-Martyn (JP)

Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK.

Vilma Dembitz (V)

Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
Department of Physiology and Immunology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.

Yuka Kabayama (Y)

Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.

Lydia M Wang (LM)

The Institute of Cancer Research, London, UK.
Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.

Aarushi Bellani (A)

The Institute of Cancer Research, London, UK.
Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.

Samanpreet Atwal (S)

Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK.

Nadia Saffoon (N)

Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK.

Jozef Durko (J)

Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.

Louie N van de Lagemaat (LN)

Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.

Azzura L De Pace (AL)

Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.

Anthony Tumber (A)

Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK.

Thomas Corner (T)

Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK.

Eidarus Salah (E)

Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK.

Christine Arndt (C)

Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK.

Lennart Brewitz (L)

Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK.

Matthew Bowen (M)

Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK.

Louis Dubusse (L)

The Institute of Cancer Research, London, UK.
Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.

Derek George (D)

The Institute of Cancer Research, London, UK.
Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.

Lewis Allen (L)

The Institute of Cancer Research, London, UK.
Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.

Amelie V Guitart (AV)

Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.
Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale INSERM U1035, Bordeaux, France.

Tsz Kan Fung (TK)

Leukemia and Stem Cell Biology Group, Comprehensive Cancer Centre, King's College London, London, UK.
Department of Haematological Medicine, King's College Hospital, King's College London, London, UK.

Chi Wai Eric So (CWE)

Leukemia and Stem Cell Biology Group, Comprehensive Cancer Centre, King's College London, London, UK.
Department of Haematological Medicine, King's College Hospital, King's College London, London, UK.

Juerg Schwaller (J)

University Children's Hospital Basel (UKBB), Department of Biomedicine, University of Basel, Basel, Switzerland.

Paolo Gallipoli (P)

Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.

Donal O'Carroll (D)

Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.

Christopher J Schofield (CJ)

Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK. christopher.schofield@chem.ox.ac.uk.

Kamil R Kranc (KR)

The Institute of Cancer Research, London, UK. kamil.kranc@icr.ac.uk.
Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK. kamil.kranc@icr.ac.uk.

Classifications MeSH