The selective prolyl hydroxylase inhibitor IOX5 stabilizes HIF-1α and compromises development and progression of acute myeloid leukemia.
Journal
Nature cancer
ISSN: 2662-1347
Titre abrégé: Nat Cancer
Pays: England
ID NLM: 101761119
Informations de publication
Date de publication:
18 Apr 2024
18 Apr 2024
Historique:
received:
31
03
2023
accepted:
15
03
2024
medline:
19
4
2024
pubmed:
19
4
2024
entrez:
18
4
2024
Statut:
aheadofprint
Résumé
Acute myeloid leukemia (AML) is a largely incurable disease, for which new treatments are urgently needed. While leukemogenesis occurs in the hypoxic bone marrow, the therapeutic tractability of the hypoxia-inducible factor (HIF) system remains undefined. Given that inactivation of HIF-1α/HIF-2α promotes AML, a possible clinical strategy is to target the HIF-prolyl hydroxylases (PHDs), which promote HIF-1α/HIF-2α degradation. Here, we reveal that genetic inactivation of Phd1/Phd2 hinders AML initiation and progression, without impacting normal hematopoiesis. We investigated clinically used PHD inhibitors and a new selective PHD inhibitor (IOX5), to stabilize HIF-α in AML cells. PHD inhibition compromises AML in a HIF-1α-dependent manner to disable pro-leukemogenic pathways, re-program metabolism and induce apoptosis, in part via upregulation of BNIP3. Notably, concurrent inhibition of BCL-2 by venetoclax potentiates the anti-leukemic effect of PHD inhibition. Thus, PHD inhibition, with consequent HIF-1α stabilization, is a promising nontoxic strategy for AML, including in combination with venetoclax.
Identifiants
pubmed: 38637657
doi: 10.1038/s43018-024-00761-w
pii: 10.1038/s43018-024-00761-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Trumpp, A. & Haas, S. Cancer stem cells: the adventurous journey from hematopoietic to leukemic stem cells. Cell 185, 1266–1270 (2022).
pubmed: 35385684
doi: 10.1016/j.cell.2022.03.025
Papaemmanuil, E. et al. Genomic classification and prognosis in acute myeloid leukemia. New Engl. J. Med. 374, 2209–2221 (2016).
pubmed: 27276561
doi: 10.1056/NEJMoa1516192
Rouault-Pierre, K. et al. HIF-2α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress. Cell Stem Cell 13, 549–563 (2013).
pubmed: 24095676
doi: 10.1016/j.stem.2013.08.011
Wang, Y., Liu, Y., Sami, Zheng, P. & Liu, Y. Targeting HIF1α eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8, 399–411 (2011).
pubmed: 21474104
pmcid: 3084595
doi: 10.1016/j.stem.2011.02.006
Velasco-Hernandez, T., Hyrenius-Wittsten, A., Rehn, M., Bryder, D. & Cammenga, J. HIF-1α can act as a tumor suppressor gene in murine acute myeloid leukemia. Blood 124, 3597–3607 (2014).
pubmed: 25267197
doi: 10.1182/blood-2014-04-567065
Vukovic, M. et al. Hif-1α and Hif-2α synergize to suppress AML development but are dispensable for disease maintenance. J. Exp. Med. 212, 2223–2234 (2015).
pubmed: 26642852
pmcid: 4689165
doi: 10.1084/jem.20150452
Islam, M. S., Leissing, T. M., Chowdhury, R., Hopkinson, R. J. & Schofield, C. J. 2-Oxoglutarate-dependent oxygenases. Annu. Rev. Biochem. 87, 585–620 (2018).
pubmed: 29494239
doi: 10.1146/annurev-biochem-061516-044724
Semenza, G. L. Regulation of erythropoiesis by the hypoxia-inducible factor pathway: effects of genetic and pharmacological perturbations. Annu. Rev. Med. 74, 307–319 (2023).
pubmed: 35773226
doi: 10.1146/annurev-med-042921-102602
Schofield, C. J. & Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 5, 343–354 (2004).
pubmed: 15122348
doi: 10.1038/nrm1366
Cockman, M. E. et al. Lack of activity of recombinant HIF prolyl hydroxylases (PHDs) on reported non-HIF substrates. eLife 8, e46490 (2019).
pubmed: 31500697
pmcid: 6739866
doi: 10.7554/eLife.46490
Mole, D. R. et al. Genome-wide association of hypoxia-inducible factor (HIF)-1α and HIF-2α DNA binding with expression profiling of hypoxia-inducible transcripts. J. Biol. Chem. 284, 16767–16775 (2009).
pubmed: 19386601
pmcid: 2719312
doi: 10.1074/jbc.M901790200
Schödel, J., Mole, D. R. & Ratcliffe, P. J. Pan-genomic binding of hypoxia-inducible transcription factors. Biol. Chem. 394, 507–517 (2013).
pubmed: 23324384
doi: 10.1515/hsz-2012-0351
Schödel, J. et al. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117, e207–e217 (2011).
pubmed: 21447827
pmcid: 3374576
doi: 10.1182/blood-2010-10-314427
Ariazi, J. L. et al. Discovery and preclinical characterization of GSK1278863 (Daprodustat), a small molecule hypoxia inducible factor–prolyl hydroxylase inhibitor for anemia. J. Pharmacol. Exp. Ther. 363, 336–347 (2017).
pubmed: 28928122
doi: 10.1124/jpet.117.242503
Yeh, T.-L. et al. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chem. Sci. 8, 7651–7668 (2017).
pubmed: 29435217
pmcid: 5802278
doi: 10.1039/C7SC02103H
McDonough, M. A. et al. Cellular oxygen sensing: crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proc. Natl Acad. Sci. USA 103, 9814–9819 (2006).
pubmed: 16782814
pmcid: 1502536
doi: 10.1073/pnas.0601283103
Figg, W. D. et al. Structural basis of prolyl hydroxylase domain inhibition by molidustat. ChemMedChem 16, 2082–2088 (2021).
pubmed: 33792169
pmcid: 8359944
doi: 10.1002/cmdc.202100133
Nagashima, R., Ishikawa, H., Kuno, Y., Kohda, C. & Iyoda, M. HIF-PHD inhibitor regulates the function of group2 innate lymphoid cells and polarization of M2 macrophages. Sci. Rep. 13, 1867 (2023).
pubmed: 36725898
pmcid: 9892566
doi: 10.1038/s41598-023-29161-3
Nishide, S. et al. Controlling the phenotype of tumor-infiltrating macrophages via the PHD–HIF axis inhibits tumor growth in a mouse model. iScience 19, 940–954 (2019).
pubmed: 31518902
pmcid: 6742914
doi: 10.1016/j.isci.2019.08.033
Okumura, C. Y. M. et al. A new pharmacological agent (AKB-4924) stabilizes hypoxia inducible factor-1 (HIF-1) and increases skin innate defenses against bacterial infection. J. Mol. Med. 90, 1079–1089 (2012).
pubmed: 22371073
doi: 10.1007/s00109-012-0882-3
Marks, E. et al. Oral delivery of prolyl hydroxylase inhibitor: AKB-4924 promotes localized mucosal healing in a mouse model of colitis. Inflamm. Bowel Dis. 21, 267–275 (2014).
doi: 10.1097/MIB.0000000000000277
Rose, N. R., McDonough, M. A., King, O. N. F., Kawamura, A. & Schofield, C. J. Inhibition of 2-oxoglutarate dependent oxygenases. Chem. Soc. Rev. 40, 4364 (2011).
pubmed: 21390379
doi: 10.1039/c0cs00203h
Crifo, B. et al. Hydroxylase inhibition selectively induces cell death in monocytes. J. Immunol. 202, 1521–1530 (2019).
pubmed: 30700584
doi: 10.4049/jimmunol.1800912
Samra, B., Konopleva, M., Isidori, A., Daver, N. & DiNardo, C. Venetoclax-based combinations in acute myeloid leukemia: current evidence and future directions. Front. Oncol. 10, 562558 (2020).
pubmed: 33251134
pmcid: 7675064
doi: 10.3389/fonc.2020.562558
Collins, C. T. & Hess, J. L. Deregulation of the HOXA9/MEIS1 axis in acute leukemia. Curr. Opin. Hematol. 23, 354–361 (2016).
pubmed: 27258906
pmcid: 5653247
doi: 10.1097/MOH.0000000000000245
Lawrence, H. et al. Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias. Leukemia 13, 1993–1999 (1999).
pubmed: 10602420
doi: 10.1038/sj.leu.2401578
Uckelmann, H. J. et al. Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. Science 367, 586–590 (2020).
pubmed: 32001657
pmcid: 7754791
doi: 10.1126/science.aax5863
Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136, 839–851 (2009).
pubmed: 19217150
pmcid: 4037868
doi: 10.1016/j.cell.2009.01.020
Yamamoto, A. et al. Systemic silencing of PHD2 causes reversible immune regulatory dysfunction. J. Clin. Invest. 129, 3640–3656 (2019).
pubmed: 31162141
pmcid: 6715380
doi: 10.1172/JCI124099
Stavropoulou, V. et al. MLL-AF9 expression in hematopoietic stem cells drives a highly invasive AML expressing EMT-related genes linked to poor outcome. Cancer Cell 30, 43–58 (2016).
pubmed: 27344946
doi: 10.1016/j.ccell.2016.05.011
Somervaille, T. C. P. & Cleary, M. L. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 10, 257–268 (2006).
pubmed: 17045204
doi: 10.1016/j.ccr.2006.08.020
Trempenau, M. L. et al. The histone demethylase KDM5C functions as a tumor suppressor in AML by repression of bivalently marked immature genes. Leukemia 37, 593–605 (2023).
pubmed: 36631623
pmcid: 9991918
doi: 10.1038/s41375-023-01810-6
Ren, Z. et al. A PRC2-Kdm5b axis sustains tumorigenicity of acute myeloid leukemia. Proc. Natl Acad. Sci. USA 119, e2122940119 (2022).
pubmed: 35217626
pmcid: 8892512
doi: 10.1073/pnas.2122940119
Walport, L. J. et al. Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Nat. Commun. 7, 11974 (2016).
pubmed: 27337104
pmcid: 4931022
doi: 10.1038/ncomms11974
Lando, D. et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16, 1466–1471 (2002).
pubmed: 12080085
pmcid: 186346
doi: 10.1101/gad.991402
Chan, M. C. et al. Tuning the transcriptional response to hypoxia by inhibiting Hypoxia-inducible Factor (HIF) prolyl and asparaginyl hydroxylases. J. Biol. Chem. 291, 20661–20673 (2016).
pubmed: 27502280
pmcid: 5034057
doi: 10.1074/jbc.M116.749291
Holt‐Martyn, J. P. et al. Structure‐activity relationship and crystallographic studies on 4‐hydroxypyrimidine HIF prolyl hydroxylase domain inhibitors. ChemMedChem 15, 270–273 (2020).
pubmed: 31751494
doi: 10.1002/cmdc.201900557
Islam, M. S. et al. Inhibition of JMJD6 by 2‐oxoglutarate mimics. ChemMedChem 17, e202100398 (2022).
pubmed: 34581506
doi: 10.1002/cmdc.202100398
Ginouvès, A., Ilc, K., Macías, N., Pouysségur, J. & Berra, E. PHDs overactivation during chronic hypoxia ‘desensitizes’ HIFα and protects cells from necrosis. Proc. Natl Acad. Sci. USA 105, 4745–4750 (2008).
pubmed: 18347341
pmcid: 2290777
doi: 10.1073/pnas.0705680105
Wiesener, M. S. et al. Induction of endothelial pas domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1α. Blood 92, 2260–2268 (1998).
pubmed: 9746763
doi: 10.1182/blood.V92.7.2260
Kshitiz et al. Lactate-dependent chaperone-mediated autophagy induces oscillatory HIF-1α activity promoting proliferation of hypoxic cells. Cell Syst. 13, 1048–1064 (2022).
pubmed: 36462504
pmcid: 10012408
doi: 10.1016/j.cels.2022.11.003
Burrows, N. et al. Dynamic regulation of hypoxia-inducible factor-1α activity is essential for normal B cell development. Nat. Immunol. 21, 1408–1420 (2020).
pubmed: 32868930
pmcid: 7613233
doi: 10.1038/s41590-020-0772-8
Akef, A., McGraw, K., Cappell, S. D. & Larson, D. R. Ribosome biogenesis is a downstream effector of the oncogenic U2AF1-S34F mutation. PLoS Biol. 18, e3000920 (2020).
pubmed: 33137094
pmcid: 7660540
doi: 10.1371/journal.pbio.3000920
Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).
pubmed: 28802037
pmcid: 5726441
doi: 10.1016/j.cell.2017.07.029
Boudhraa, Z., Carmona, E., Provencher, D. & Mes-Masson, A. M. Ran GTPase: a key player in tumor progression and metastasis. Front. Cell Dev. Biol. 8, 345 (2020).
pubmed: 32528950
pmcid: 7264121
doi: 10.3389/fcell.2020.00345
Kuntz, E. M. et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat. Med. 23, 1234–1240 (2017).
pubmed: 28920959
pmcid: 5657469
doi: 10.1038/nm.4399
Guitart, A. V. et al. Fumarate hydratase is a critical metabolic regulator of hematopoietic stem cell functions. J. Exp. Med. 214, 719–735 (2017).
pubmed: 28202494
pmcid: 5339674
doi: 10.1084/jem.20161087
Mughal, M. K. et al. Acute myeloid leukaemia: expression of MYC protein and its association with cytogenetic risk profile and overall survival. Hematol. Oncol. 35, 350–356 (2017).
pubmed: 26856970
doi: 10.1002/hon.2279
Segeren, H. A. et al. Excessive E2F transcription in single cancer cells precludes transient cell-cycle exit after DNA damage. Cell Rep. 33, 108449 (2020).
pubmed: 33264622
doi: 10.1016/j.celrep.2020.108449
Moore, M. A. S. et al. NUP98 dysregulation in myeloid leukemogenesis. Ann. NY Acad. Sci. 1106, 114–142 (2007).
pubmed: 17442773
doi: 10.1196/annals.1392.019
Wang, T. et al. Inhibition of KPNB1 inhibits proliferation and promotes apoptosis of chronic myeloid leukemia cells through regulation of E2F1. Onco. Targets Ther. 12, 10455–10467 (2019).
pubmed: 31819526
pmcid: 6896920
doi: 10.2147/OTT.S210048
Li, J. & Ge, Z. High HSPA8 expression predicts adverse outcomes of acute myeloid leukemia. BMC Cancer 21, 475 (2021).
pubmed: 33926391
pmcid: 8086305
doi: 10.1186/s12885-021-08193-w
Yang, Y., Wang, S., Zhang, Y. & Zhu, X. Biological effects of decreasing RBM15 on chronic myelogenous leukemia cells. Leuk. Lymphoma 53, 2237–2244 (2012).
pubmed: 22497198
doi: 10.3109/10428194.2012.684350
Corner, T. P. et al. Structure-guided optimisation of N-hydroxythiazole-derived inhibitors of factor inhibiting hypoxia-inducible factor-α. Chem. Sci. 14, 12098–12120 (2023).
pubmed: 37969593
pmcid: 10631261
doi: 10.1039/D3SC04253G
McDonough, M. A. et al. Selective inhibition of factor inhibiting hypoxia-inducible factor. J. Am. Chem. Soc. 127, 7680–7681 (2005).
pubmed: 15913349
doi: 10.1021/ja050841b
Leite de Oliveira, R. et al. Gene-targeting of Phd2 improves tumor response to chemotherapy and prevents side-toxicity. Cancer Cell 22, 263–277 (2012).
pubmed: 22897855
doi: 10.1016/j.ccr.2012.06.028
Forristal, C. E. et al. Pharmacologic stabilization of HIF-1α increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation. Blood 121, 759–769 (2013).
pubmed: 23243286
doi: 10.1182/blood-2012-02-408419
Lawson, H. et al. JMJD6 promotes self-renewal and regenerative capacity of hematopoietic stem cells. Blood Adv. 5, 889–899 (2021).
pubmed: 33560400
pmcid: 7876897
doi: 10.1182/bloodadvances.2020002702
Chowdhury, R. et al. Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases. Nat. Commun. 7, 12673 (2016).
pubmed: 27561929
pmcid: 5007464
doi: 10.1038/ncomms12673
Sowter, H. M., Ratcliffe, P. J., Watson, P., Greenberg, A. H. & Harris, A. L. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res. 61, 6669–6673 (2001).
pubmed: 11559532
Kanzawa, T. et al. Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 24, 980–991 (2005).
pubmed: 15592527
doi: 10.1038/sj.onc.1208095
Kubli, D. A., Ycaza, J. E. & Gustafsson, A. B. Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak. Biochem. J. 405, 407–415 (2007).
pubmed: 17447897
pmcid: 2267317
doi: 10.1042/BJ20070319
De Boer, J. et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur. J. Immunol. 33, 314–325 (2003).
pubmed: 12548562
doi: 10.1002/immu.200310005
McIntosh, B. E. et al. Nonirradiated NOD,B6.SCID Il2rγ
doi: 10.1016/j.stemcr.2014.12.005
Guitart, A. V. et al. Hif-2α is not essential for cell-autonomous hematopoietic stem cell maintenance. Blood 122, 1741–1745 (2013).
pubmed: 23894152
doi: 10.1182/blood-2013-02-484923
Kranc, K. R. et al. Cited2 is an essential regulator of adult hematopoietic stem cells. Cell Stem Cell 5, 659–665 (2009).
pubmed: 19951693
pmcid: 2828538
doi: 10.1016/j.stem.2009.11.001
Lawson, H. et al. CITED2 coordinates key hematopoietic regulatory pathways to maintain the HSC pool in both steady-state hematopoiesis and transplantation. Stem Cell Rep. 16, 2784–2797 (2021).
doi: 10.1016/j.stemcr.2021.10.001
Paris, J. et al. Targeting the RNA m6A Reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell 25, 137–148 (2019).
pubmed: 31031138
pmcid: 6617387
doi: 10.1016/j.stem.2019.03.021
Kwok, C., Zeisig, B. B., Qiu, J., Dong, S. & So, C. W. Transforming activity of AML1-ETO is independent of CBFβ and ETO interaction but requires formation of homo-oligomeric complexes. Proc. Natl Acad. Sci. USA 106, 2853–2858 (2009).
pubmed: 19202074
pmcid: 2650355
doi: 10.1073/pnas.0810558106
Hu, Y. & Smyth, G. K. ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70–78 (2009).
pubmed: 19567251
doi: 10.1016/j.jim.2009.06.008
Tóth, A. et al. Daprodustat accelerates high phosphate-induced calcification through the activation of HIF-1 signaling. Front. Pharmacol. 13, 798053 (2022).
pubmed: 35222025
pmcid: 8867606
doi: 10.3389/fphar.2022.798053
Wing, P. A. C. et al. Hypoxic and pharmacological activation of HIF inhibits SARS-CoV-2 infection of lung epithelial cells. Cell Rep. 35, 109020 (2021).
pubmed: 33852916
pmcid: 8020087
doi: 10.1016/j.celrep.2021.109020
Feng, R. et al. Activation of γ-globin expression by hypoxia-inducible factor 1α. Nature 610, 783–790 (2022).
pubmed: 36224385
pmcid: 9773321
doi: 10.1038/s41586-022-05312-w
Nowak, R. P. et al. First-in-class inhibitors of the ribosomal oxygenase MINA53. J. Med. Chem. 64, 17031–17050 (2021).
pubmed: 34843649
pmcid: 8667043
doi: 10.1021/acs.jmedchem.1c00605
Hewitson, K. S. et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem. 277, 26351–26355 (2002).
pubmed: 12042299
doi: 10.1074/jbc.C200273200
Islam, M. S. et al. Biochemical and structural investigations clarify the substrate selectivity of the 2-oxoglutarate oxygenase JMJD6. J. Biol. Chem. 294, 11637–11652 (2019).
pubmed: 31147442
pmcid: 6663879
doi: 10.1074/jbc.RA119.008693
Ng, S. S. et al. Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature 448, 87–91 (2007).
pubmed: 17589501
doi: 10.1038/nature05971
Johansson, C. et al. Structural analysis of human KDM5B guides histone demethylase inhibitor development. Nat. Chem. Biol. 12, 539–545 (2016).
pubmed: 27214403
doi: 10.1038/nchembio.2087
Rose, N. R. et al. Plant growth regulator daminozide is a selective inhibitor of human KDM2/7 histone demethylases. J. Med. Chem. 55, 6639–6643 (2012).
pubmed: 22724510
pmcid: 4673902
doi: 10.1021/jm300677j
Cockman, M. E. et al. Widespread hydroxylation of unstructured lysine-rich protein domains by JMJD6. Proc. Natl Acad. Sci. USA 119, e2201483119 (2022).
pubmed: 35930668
pmcid: 9371714
doi: 10.1073/pnas.2201483119
Hutchinson, S. E. et al. Enabling lead discovery for histone lysine demethylases by high-throughput RapidFire mass spectrometry. J. Biomol. Screen. 17, 39–48 (2012).
pubmed: 21859681
doi: 10.1177/1087057111416660
Rose, N. R. et al. Inhibitor scaffolds for 2-oxoglutarate-dependent histone lysine demethylases. J. Med. Chem. 51, 7053–7056 (2008).
pubmed: 18942826
doi: 10.1021/jm800936s
Tumber, A. et al. Potent and selective KDM5 inhibitor stops cellular demethylation of H3K4me3 at transcription start sites and proliferation of MM1S myeloma cells. Cell Chem. Biol. 24, 371–380 (2017).
pubmed: 28262558
pmcid: 5361737
doi: 10.1016/j.chembiol.2017.02.006
Kruidenier, L. et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488, 404–408 (2012).
pubmed: 22842901
pmcid: 4691848
doi: 10.1038/nature11262
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
pubmed: 25751142
pmcid: 4655817
doi: 10.1038/nmeth.3317
Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E. & Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 38, 2943–2945 (2022).
pubmed: 35561197
pmcid: 9113351
doi: 10.1093/bioinformatics/btac166
Brewitz, L. et al. 5-Substituted pyridine-2,4-dicarboxylate derivatives have potential for selective inhibition of human jumonji-C domain-containing protein 5. J. Med. Chem. 66, 10849–10865 (2023).
pubmed: 37527664
pmcid: 10424186
doi: 10.1021/acs.jmedchem.3c01114
Hopkinson, R. J. et al. 5-Carboxy-8-hydroxyquinoline is a broad spectrum 2-oxoglutarate oxygenase inhibitor which causes iron translocation. Chem. Sci. 4, 3110–3117 (2013).
pubmed: 26682036
doi: 10.1039/c3sc51122g