Mutational landscape of inflammatory breast cancer.

Copy number alteration Inflammatory breast cancer Mutation Whole-exome sequencing

Journal

Journal of translational medicine
ISSN: 1479-5876
Titre abrégé: J Transl Med
Pays: England
ID NLM: 101190741

Informations de publication

Date de publication:
18 Apr 2024
Historique:
received: 08 03 2024
accepted: 12 04 2024
medline: 19 4 2024
pubmed: 19 4 2024
entrez: 18 4 2024
Statut: epublish

Résumé

Inflammatory breast cancer (IBC) is the most pro-metastatic form of BC. Better understanding of its enigmatic pathophysiology is crucial. We report here the largest whole-exome sequencing (WES) study of clinical IBC samples. We retrospectively applied WES to 54 untreated IBC primary tumor samples and matched normal DNA. The comparator samples were 102 stage-matched non-IBC samples from TCGA. We compared the somatic mutational profiles, spectra and signatures, copy number alterations (CNAs), HRD and heterogeneity scores, and frequencies of actionable genomic alterations (AGAs) between IBCs and non-IBCs. The comparisons were adjusted for the molecular subtypes. The number of somatic mutations, TMB, and mutational spectra were not different between IBCs and non-IBCs, and no gene was differentially mutated or showed differential frequency of CNAs. Among the COSMIC signatures, only the age-related signature was more frequent in non-IBCs than in IBCs. We also identified in IBCs two new mutational signatures not associated with any environmental exposure, one of them having been previously related to HIF pathway activation. Overall, the HRD score was not different between both groups, but was higher in TN IBCs than TN non-IBCs. IBCs were less frequently classified as heterogeneous according to heterogeneity H-index than non-IBCs (21% vs 33%), and clonal mutations were more frequent and subclonal mutations less frequent in IBCs. More than 50% of patients with IBC harbored at least one high-level of evidence (LOE) AGA (OncoKB LOE 1-2, ESCAT LOE I-II), similarly to patients with non-IBC. We provide the largest mutational landscape of IBC. Only a few subtle differences were identified with non-IBCs. The most clinically relevant one was the higher HRD score in TN IBCs than in TN non-IBCs, whereas the most intriguing one was the smaller intratumor heterogeneity of IBCs.

Sections du résumé

BACKGROUND BACKGROUND
Inflammatory breast cancer (IBC) is the most pro-metastatic form of BC. Better understanding of its enigmatic pathophysiology is crucial. We report here the largest whole-exome sequencing (WES) study of clinical IBC samples.
METHODS METHODS
We retrospectively applied WES to 54 untreated IBC primary tumor samples and matched normal DNA. The comparator samples were 102 stage-matched non-IBC samples from TCGA. We compared the somatic mutational profiles, spectra and signatures, copy number alterations (CNAs), HRD and heterogeneity scores, and frequencies of actionable genomic alterations (AGAs) between IBCs and non-IBCs. The comparisons were adjusted for the molecular subtypes.
RESULTS RESULTS
The number of somatic mutations, TMB, and mutational spectra were not different between IBCs and non-IBCs, and no gene was differentially mutated or showed differential frequency of CNAs. Among the COSMIC signatures, only the age-related signature was more frequent in non-IBCs than in IBCs. We also identified in IBCs two new mutational signatures not associated with any environmental exposure, one of them having been previously related to HIF pathway activation. Overall, the HRD score was not different between both groups, but was higher in TN IBCs than TN non-IBCs. IBCs were less frequently classified as heterogeneous according to heterogeneity H-index than non-IBCs (21% vs 33%), and clonal mutations were more frequent and subclonal mutations less frequent in IBCs. More than 50% of patients with IBC harbored at least one high-level of evidence (LOE) AGA (OncoKB LOE 1-2, ESCAT LOE I-II), similarly to patients with non-IBC.
CONCLUSIONS CONCLUSIONS
We provide the largest mutational landscape of IBC. Only a few subtle differences were identified with non-IBCs. The most clinically relevant one was the higher HRD score in TN IBCs than in TN non-IBCs, whereas the most intriguing one was the smaller intratumor heterogeneity of IBCs.

Identifiants

pubmed: 38637846
doi: 10.1186/s12967-024-05198-4
pii: 10.1186/s12967-024-05198-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

374

Subventions

Organisme : Ligue Contre le Cancer
ID : EL2022/FB
Organisme : Association Ruban Rose
ID : Prix Ruban Rose 2020

Informations de copyright

© 2024. The Author(s).

Références

Dawood S, Merajver SD, Viens P, Vermeulen PB, Swain SM, Buchholz TA, et al. International expert panel on inflammatory breast cancer: consensus statement for standardized diagnosis and treatment. Ann Oncol. 2011;22:515–23.
pubmed: 20603440 doi: 10.1093/annonc/mdq345
Bertucci F, Finetti P, Vermeulen P, Van Dam P, Dirix L, Birnbaum D, et al. Genomic profiling of inflammatory breast cancer: a review. Breast. 2014;23:538–45.
pubmed: 24998451 doi: 10.1016/j.breast.2014.06.008
Bertucci F, Finetti P, Birnbaum D, Viens P. Gene expression profiling of inflammatory breast cancer. Cancer. 2010;116:2783–93.
pubmed: 20503410 doi: 10.1002/cncr.25165
Bertucci F, Ueno NT, Finetti P, Vermeulen P, Lucci A, Robertson FM, et al. Gene expression profiles of inflammatory breast cancer: correlation with response to neoadjuvant chemotherapy and metastasis-free survival. Ann Oncol. 2014;25:358–65.
pubmed: 24299959 doi: 10.1093/annonc/mdt496
Van Laere S, Ueno NT, Finetti P, Vermeulen PB, Lucci A, Robertson F, et al. Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression data sets. Clin Cancer Res. 2013;19:4685–96.
pubmed: 23396049 pmcid: 6156084 doi: 10.1158/1078-0432.CCR-12-2549
Bekhouche I, Finetti P, Adelaide J, Ferrari A, Tarpin C, Charafe-Jauffret E, et al. High-resolution comparative genomic hybridization of inflammatory breast cancer and identification of candidate genes. PLoS ONE. 2011;6: e16950.
pubmed: 21339811 pmcid: 3037286 doi: 10.1371/journal.pone.0016950
Van der Auwera I, Yu W, Suo L, Van Neste L, van Dam P, Van Marck EA, et al. Array-based DNA methylation profiling for breast cancer subtype discrimination. PLoS ONE. 2010;5: e12616.
pubmed: 20830311 pmcid: 2935385 doi: 10.1371/journal.pone.0012616
Ross JS, Ali SM, Wang K, Khaira D, Palma NA, Chmielecki J, et al. Comprehensive genomic profiling of inflammatory breast cancer cases reveals a high frequency of clinically relevant genomic alterations. Breast Cancer Res Treat. 2015;154:155–62.
pubmed: 26458824 doi: 10.1007/s10549-015-3592-z
Hamm CA, Moran D, Rao K, Trusk PB, Pry K, Sausen M, et al. Genomic and immunological tumor profiling identifies targetable pathways and extensive cd8+/pdl1+ immune infiltration in inflammatory breast cancer tumors. Mol Cancer Ther. 2016;15:1746–56.
pubmed: 27196778 doi: 10.1158/1535-7163.MCT-15-0353
Liang X, Vacher S, Boulai A, Bernard V, Baulande S, Bohec M, et al. Targeted next-generation sequencing identifies clinically relevant somatic mutations in a large cohort of inflammatory breast cancer. Breast Cancer Res. 2018;20:88.
pubmed: 30086764 pmcid: 6081877 doi: 10.1186/s13058-018-1007-x
Matsuda N, Lim B, Wang Y, Krishnamurthy S, Woodward W, Alvarez RH, et al. Identification of frequent somatic mutations in inflammatory breast cancer. Breast Cancer Res Treat. 2017;163:263–72.
pubmed: 28243898 doi: 10.1007/s10549-017-4165-0
Goh G, Schmid R, Guiver K, Arpornwirat W, Chitapanarux I, Ganju V, et al. Clonal evolutionary analysis during her2 blockade in her2-positive inflammatory breast cancer: a phase ii open-label clinical trial of afatinib +/− vinorelbine. PLoS Med. 2016;13: e1002136.
pubmed: 27923043 pmcid: 5140058 doi: 10.1371/journal.pmed.1002136
Bertucci F, Rypens C, Finetti P, Guille A, Adelaide J, Monneur A, et al. Notch and DNA repair pathways are more frequently targeted by genomic alterations in inflammatory than in non-inflammatory breast cancers. Mol Oncol. 2020;14:504–19.
pubmed: 31854063 pmcid: 7053236 doi: 10.1002/1878-0261.12621
Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486:405–9.
pubmed: 22722202 pmcid: 4148686 doi: 10.1038/nature11154
Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012;486:353–60.
pubmed: 22722193 pmcid: 3383766 doi: 10.1038/nature11143
Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486:395–9.
pubmed: 22495314 doi: 10.1038/nature10933
Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486:400–4.
pubmed: 22722201 pmcid: 3428862 doi: 10.1038/nature11017
The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.
pmcid: 3465532 doi: 10.1038/nature11412
Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, et al. Mutational processes molding the genomes of 21 breast cancers. Cell. 2012;149:979–93.
pubmed: 22608084 pmcid: 3414841 doi: 10.1016/j.cell.2012.04.024
Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534:47–54.
pubmed: 27135926 pmcid: 4910866 doi: 10.1038/nature17676
Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, et al. The life history of 21 breast cancers. Cell. 2012;149:994–1007.
pubmed: 22608083 pmcid: 3428864 doi: 10.1016/j.cell.2012.04.023
Ferrari A, Vincent-Salomon A, Pivot X, Sertier AS, Thomas E, Tonon L, et al. A whole-genome sequence and transcriptome perspective on her2-positive breast cancers. Nature Commun. 2016;7:12222.
doi: 10.1038/ncomms12222
Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, Carbuccia N, et al. Genomic characterization of metastatic breast cancers. Nature. 2019;569:560–4.
pubmed: 31118521 doi: 10.1038/s41586-019-1056-z
Angus L, Smid M, Wilting SM, van Riet J, Van Hoeck A, Nguyen L, et al. The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies. Nat Genet. 2019;51:1450–8.
pubmed: 31570896 pmcid: 6858873 doi: 10.1038/s41588-019-0507-7
Yates LR, Knappskog S, Wedge D, Farmery JHR, Gonzalez S, Martincorena I, et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell. 2017;32(169–84): e7.
Luo R, Chong W, Wei Q, Zhang Z, Wang C, Ye Z, et al. Whole-exome sequencing identifies somatic mutations and intratumor heterogeneity in inflammatory breast cancer. NPJ Breast Cancer. 2021;7:72.
pubmed: 34075047 pmcid: 8169683 doi: 10.1038/s41523-021-00278-w
Li X, Kumar S, Harmanci A, Li S, Kitchen RR, Zhang Y, et al. Whole-genome sequencing of phenotypically distinct inflammatory breast cancers reveals similar genomic alterations to non-inflammatory breast cancers. Genome Med. 2021;13:70.
pubmed: 33902690 pmcid: 8077918 doi: 10.1186/s13073-021-00879-x
Bertucci F, Finetti P, Guille A, Adelaide J, Garnier S, Carbuccia N, et al. Comparative genomic analysis of primary tumors and metastases in breast cancer. Oncotarget. 2016;7:27208–19.
pubmed: 27028851 pmcid: 5053643 doi: 10.18632/oncotarget.8349
Bertucci F, Finetti P, Goncalves A, Birnbaum D. The therapeutic response of er+/her2− breast cancers differs according to the molecular basal or luminal subtype. NPJ Breast Cancer. 2020;6:8.
pubmed: 32195331 pmcid: 7060267 doi: 10.1038/s41523-020-0151-5
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25:1754–60.
pubmed: 19451168 pmcid: 2705234 doi: 10.1093/bioinformatics/btp324
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8.
pubmed: 21478889 pmcid: 3083463 doi: 10.1038/ng.806
Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31:213–9.
pubmed: 23396013 pmcid: 3833702 doi: 10.1038/nbt.2514
Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Kallberg M, et al. Strelka2: Fast and accurate calling of germline and somatic variants. Nat Methods. 2018;15:591–4.
pubmed: 30013048 doi: 10.1038/s41592-018-0051-x
Wang K, Li M, Hakonarson H. Annovar: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38: e164.
pubmed: 20601685 pmcid: 2938201 doi: 10.1093/nar/gkq603
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cbio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.
pubmed: 22588877 doi: 10.1158/2159-8290.CD-12-0095
Tamborero D, Rubio-Perez C, Deu-Pons J, Schroeder MP, Vivancos A, Rovira A, et al. Cancer genome interpreter annotates the biological and clinical relevance of tumor alterations. Genome Med. 2018;10:25.
pubmed: 29592813 pmcid: 5875005 doi: 10.1186/s13073-018-0531-8
Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. Gistic2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011;12:R41.
pubmed: 21527027 pmcid: 3218867 doi: 10.1186/gb-2011-12-4-r41
Shen R, Seshan VE. Facets: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 2016;44: e131.
pubmed: 27270079 pmcid: 5027494 doi: 10.1093/nar/gkw520
Marquard AM, Eklund AC, Joshi T, Krzystanek M, Favero F, Wang ZC, et al. Pan-cancer analysis of genomic scar signatures associated with homologous recombination deficiency suggests novel indications for existing cancer drugs. Biomarker Res. 2015;3:1–10.
doi: 10.1186/s40364-015-0033-4
Telli ML, Timms KM, Reid J, Hennessy B, Mills GB, Jensen KC, et al. Homologous recombination deficiency hrd) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res. 2016;22:3764–73.
pubmed: 26957554 pmcid: 6773427 doi: 10.1158/1078-0432.CCR-15-2477
Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, et al. Sciclone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput Biol. 2014;10: e1003665.
pubmed: 25102416 pmcid: 4125065 doi: 10.1371/journal.pcbi.1003665
Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, et al. Oncokb: a precision oncology knowledge base. JCO Precis Oncol. 2017;1:1–16.
doi: 10.1200/PO.17.00011
Condorelli R, Mosele F, Verret B, Bachelot T, Bedard PL, Cortes J, et al. Genomic alterations in breast cancer: level of evidence for actionability according to esmo scale for clinical actionability of molecular targets escat). Ann Oncol. 2019;30:365–73.
pubmed: 30715161 doi: 10.1093/annonc/mdz036
McGranahan N, Favero F, de Bruin EC, Birkbak NJ, Szallasi Z, Swanton C. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci Transl Med. 2015;7:283ra54.
pubmed: 25877892 pmcid: 4636056 doi: 10.1126/scitranslmed.aaa1408
Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.
pubmed: 23945592 pmcid: 3776390 doi: 10.1038/nature12477
Swanton C, McGranahan N, Starrett GJ, Harris RS. Apobec enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov. 2015;5:704–12.
pubmed: 26091828 pmcid: 4497973 doi: 10.1158/2159-8290.CD-15-0344
Hong Y, Zhang D, Zhou X, Chen A, Abliz A, Bai J, et al. Common postzygotic mutational signatures in healthy adult tissues related to embryonic hypoxia. Genomics Proteomics Bioinformatics. 2022;20:177–91.
pubmed: 34624550 doi: 10.1016/j.gpb.2021.09.005
Kucab JE, Zou X, Morganella S, Joel M, Nanda AS, Nagy E, et al. A compendium of mutational signatures of environmental agents. Cell. 2019;177(821–36): e16.
Mosele F, Remon J, Mateo J, Westphalen CB, Barlesi F, Lolkema MP, et al. Recommendations for the use of next-generation sequencing ngs) for patients with metastatic cancers: a report from the esmo precision medicine working group. Ann Oncol. 2020;31:1491–505.
pubmed: 32853681 doi: 10.1016/j.annonc.2020.07.014

Auteurs

François Bertucci (F)

Département d'Oncologie Médicale, Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France. bertuccif@ipc.unicancer.fr.
Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France. bertuccif@ipc.unicancer.fr.

Florence Lerebours (F)

Department of Medical Oncology, Institut Curie Saint-Cloud, Paris, France.

Michele Ceccarelli (M)

Sylvester Comprehensive Cancer Center, University of Miami, Miami, USA.
Department of Public Health Sciences, University of Miami, Miami, USA.

Arnaud Guille (A)

Département d'Oncologie Médicale, Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France.

Najeeb Syed (N)

Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.

Pascal Finetti (P)

Département d'Oncologie Médicale, Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France.

José Adélaïde (J)

Département d'Oncologie Médicale, Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France.

Steven Van Laere (S)

Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.

Anthony Goncalves (A)

Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France.

Patrice Viens (P)

Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France.

Daniel Birnbaum (D)

Département d'Oncologie Médicale, Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France.

Emilie Mamessier (E)

Département d'Oncologie Médicale, Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France.

Céline Callens (C)

Department of Medical Oncology, Institut Curie Saint-Cloud, Paris, France.

Davide Bedognetti (D)

Tumor Biology and Immunology Laboratory, Research Branch, Sidra Medicine, Doha, Qatar.

Classifications MeSH