Wildlife ecotoxicology of plant protection products: knowns and unknowns about the impacts of currently used pesticides on terrestrial vertebrate biodiversity.

Amphibians Bats Biodiversity conservation Birds Collective scientific assessment Fungicides Herbicides Insecticides Mammals Reptiles Wildlife toxicology

Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
19 Apr 2024
Historique:
received: 22 06 2023
accepted: 17 03 2024
medline: 19 4 2024
pubmed: 19 4 2024
entrez: 19 4 2024
Statut: aheadofprint

Résumé

Agricultural practices are a major cause of the current loss of biodiversity. Among postwar agricultural intensification practices, the use of plant protection products (PPPs) might be one of the prominent drivers of the loss of wildlife diversity in agroecosystems. A collective scientific assessment was performed upon the request of the French Ministries responsible for the Environment, for Agriculture and for Research to review the impacts of PPPs on biodiversity and ecosystem services based on the scientific literature. While the effects of legacy banned PPPs on ecosystems and the underlying mechanisms are well documented, the impacts of current use pesticides (CUPs) on biodiversity have rarely been reviewed. Here, we provide an overview of the available knowledge related to the impacts of PPPs, including biopesticides, on terrestrial vertebrates (i.e. herptiles, birds including raptors, bats and small and large mammals). We focused essentially on CUPs and on endpoints at the subindividual, individual, population and community levels, which ultimately linked with effects on biodiversity. We address both direct toxic effects and indirect effects related to ecological processes and review the existing knowledge about wildlife exposure to PPPs. The effects of PPPs on ecological functions and ecosystem services are discussed, as are the aggravating or mitigating factors. Finally, a synthesis of knowns and unknowns is provided, and we identify priorities to fill gaps in knowledge and perspectives for research and wildlife conservation.

Identifiants

pubmed: 38639904
doi: 10.1007/s11356-024-33026-1
pii: 10.1007/s11356-024-33026-1
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Abu Zeid EH, Alam RTM, Ali SA, Hendawi MY (2019) Dose-related impacts of imidacloprid oral intoxication on brain and liver of rock pigeon (Columba livia domestica), residue analysis in different organs. Ecotox Environ Safe 167:60–68. https://doi.org/10.1016/j.ecoenv.2018.09.121
doi: 10.1016/j.ecoenv.2018.09.121
Acevedo-Whitehouse K, Duffus ALJ (2009) Effects of environmental change on wildlife health. Philos Trans r Soc B-Biol Sci 364:3429–3438. https://doi.org/10.1098/rstb.2009.0128
doi: 10.1098/rstb.2009.0128
Afonso E, Tournant P, Foltete JC, Giraudoux P, Baurand PE, Roue S, Canella V, Vey D, Scheifler R (2016) Is the lesser horseshoe bat (Rhinolophus hipposideros) exposed to causes that may have contributed to its decline? A non-invasive approach. Global Ecol Conserv 8:123–137. https://doi.org/10.1016/j.gecco.2016.09.002
doi: 10.1016/j.gecco.2016.09.002
Alarcon PAE, Lambertucci SA (2018) Pesticides thwart condor conservation. Science 360:612–612. https://doi.org/10.1126/science.aat6039
doi: 10.1126/science.aat6039
Albers PH, Heinz GH, Ohlendorf HM (2000) Environmental contaminants in terrestrial vertebrates: effects on populations, communities, and ecosystems. SETAC Special Publication, SETAC Press, Pensacola
Albers PH, Klein PN, Green DE, Melancon MJ, Bradley BP, Noguchi G (2006) Chlorfenapyr and mallard ducks: overview, study design, macroscopic effects, and analytical chemistry. Environ Toxicol Chem 25:438–445. https://doi.org/10.1897/05-004r.1
doi: 10.1897/05-004r.1
Alexander GJ, Horne D, Hanrahan SA (2002) An evaluation of the effects of deltamethrin on two non-target lizard species in the Karoo, South Africa. J Arid Environ 50:121–133. https://doi.org/10.1006/jare.2001.0848
doi: 10.1006/jare.2001.0848
Alharbi HA, Letcher RJ, Mineau P, Chen D, Chu SG (2016) Organophosphate pesticide method development and presence of chlorpyrifos in the feet of nearctic-neotropical migratory songbirds from Canada that over-winter in Central America agricultural areas. Chemosphere 144:827–835. https://doi.org/10.1016/j.chemosphere.2015.09.052
doi: 10.1016/j.chemosphere.2015.09.052
Amaral MJ, Bicho RC, Carretero MA, Sanchez-Hernandez JC, Faustino AMR, Soares A, Mann RM (2012a) The use of a lacertid lizard as a model for reptile ecotoxicology studies: Part 2-Biomarkers of exposure and toxicity among pesticide exposed lizards. Chemosphere 87:765–774. https://doi.org/10.1016/j.chemosphere.2012.01.048
doi: 10.1016/j.chemosphere.2012.01.048
Amaral MJ, Bicho RC, Carretero MA, Sanchez-Hernandez JC, Faustino AMR, Soares A, Mann RM (2012b) The usefulness of mesocosms for ecotoxicity testing with lacertid lizards. Acta Herpetol 7:263–280. https://doi.org/10.13128/ACTA_HERPETOL-10921
doi: 10.13128/ACTA_HERPETOL-10921
Amaral MJ, Carretero MA, Bicho RC, Soares A, Mann RM (2012c) The use of a lacertid lizard as a model for reptile ecotoxicology studies—Part 1 field demographics and morphology. Chemosphere 87:757–764. https://doi.org/10.1016/j.chemosphere.2011.12.075
doi: 10.1016/j.chemosphere.2011.12.075
Amaral MJ, Sanchez-Hernandez JC, Bicho RC, Carretero MA, Valente R, Faustino AMR, Soares A, Mann RM (2012d) Biomarkers of exposure and effect in a lacertid lizard (Podarcis bocagei Seoane) exposed to chlorpyrifos. Environ Toxicol Chem 31:2345–2353. https://doi.org/10.1002/etc.1955
doi: 10.1002/etc.1955
Anderson MJ, Valdiviezo A, Conway MH, Farrell C, Andringa RK, Janik A, Chiu WA, Rusyn I, Hamer SA (2023) Imidacloprid exposure is detectable in over one third of wild bird samples from diverse Texas ecoregions. Sci Total Environ 876:13. https://doi.org/10.1016/j.scitotenv.2023.162723
doi: 10.1016/j.scitotenv.2023.162723
ANSES (2018) Risques et bénéfices relatifs des alternatives aux produits phytopharmaceutiques comportant des néonicotinoïdes. Tome 2—Rapport sur les indicateurs de risque. Saisine n° 2016-SA-0057.  https://www.anses.fr/fr/system/files/PHYTO2016SA0057Ra-Tome2.pdf . Accessed 26 Mar 2024
Aramjoo H, Farkhondeh T, Aschner M, Naseri K, Mehrpour O, Sadighara P, Roshanravan B, Samarghandian S (2021) The association between diazinon exposure and dyslipidemia occurrence: a systematic and meta-analysis study. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-11363-1
doi: 10.1007/s11356-020-11363-1
Avery ML, Decker DG, Fischer DL (1994) Cage and flight pen evaluation of avian repellency and hazard associated with imidacloprid-treated rice seed. Crop Prot 13:535–540. https://doi.org/10.1016/0261-2194(94)90107-4
doi: 10.1016/0261-2194(94)90107-4
Avery ML, Humphrey JS, Decker DG (1997) Feeding deterrence of anthraquinone, anthracene, and anthrone to rice-eating birds. J Wildl Manag 61:1359–1365. https://doi.org/10.2307/3802138
doi: 10.2307/3802138
Badry A, Krone O, Jaspers VLB, Mateo R, Garcia-Fernandez A, Leivits M, Shore RF (2020) Towards harmonisation of chemical monitoring using avian apex predators: identification of key species for pan-European biomonitoring. Sci Total Environ 731:13. https://doi.org/10.1016/j.scitotenv.2020.139198
doi: 10.1016/j.scitotenv.2020.139198
Badry A, Schenke D, Treu G, Krone O (2021) Linking landscape composition and biological factors with exposure levels of rodenticides and agrochemicals in avian apex predators from Germany. Environ Res 193:11. https://doi.org/10.1016/j.envres.2020.110602
doi: 10.1016/j.envres.2020.110602
Bain D, Buttemer WA, Astheimer L, Fildes K, Hooper MJ (2004) Effects of sublethal fenitrothion ingestion on cholinesterase inhibition, standard metabolism, thermal preference, and prey-capture ability in the Australian central bearded dragon (Pogona vitticeps, Agamidae). Environ Toxicol Chem 23:109–116. https://doi.org/10.1897/02-555
doi: 10.1897/02-555
Bang JH, Ku HO, Kang HG, Kim H, Kim S, Park SW, Kim YS, Jang I, Bae YC, Woo GH, Yi H (2019) Acetylcholinesterase activity in the brain of wild birds in Korea-2014 to 2016. J Vet Sci 20:e9. https://doi.org/10.4142/jvs.2019.20.e9
doi: 10.4142/jvs.2019.20.e9
Barnthouse LW, Sorensens MT, Munns Jr WR (2019) Population-level ecological risk assessment. Taylor & Francis, London
Barraza AD, Finlayson KA, Leusch FDL, van de Merwe JP (2021) Systematic review of reptile reproductive toxicology to inform future research directions on endangered or threatened species, such as sea turtles. Environ Pollut 286:12. https://doi.org/10.1016/j.envpol.2021.117470
doi: 10.1016/j.envpol.2021.117470
Barré K, Le Viol I, Julliard R, Chiron F, Kerbiriou C (2018) Tillage and herbicide reduction mitigate the gap between conventional and organic farming effects on foraging activity of insectivorous bats. Ecol Evol 8:1496–1506. https://doi.org/10.1002/ece3.3688
doi: 10.1002/ece3.3688
Basso A, Attademo AM, Lajmanovich RC, Peltzer PM, Junges C, Cabagna MC, Fiorenza GS, Sanchez-Hernandez JC (2012) Plasma esterases in the tegu lizard Tupinambis merianae (Reptilia, Teiidae): impact of developmental stage, sex, and organophosphorus in vitro exposure. Environ Sci Pollut Res 19:214–225. https://doi.org/10.1007/s11356-011-0549-6
doi: 10.1007/s11356-011-0549-6
Baudrot V, Fernandez-de-Simon J, Coeurdassier M, Couval G, Giraudoux P, Lambin X (2020) Trophic transfer of pesticides: The fine line between predator-prey regulation and pesticide-pest regulation. J Anim Ecol 57:806–818. https://doi.org/10.1111/1365-2664.13578
doi: 10.1111/1365-2664.13578
Bayat S, Geiser F, Kristiansen P, Wilson SC (2014) Organic contaminants in bats: trends and new issues. Environ Int 63:40–52. https://doi.org/10.1016/j.envint.2013.10.009
doi: 10.1016/j.envint.2013.10.009
Bean TG, Beasley ValR, Berny P et al (2023) Toxicological effects assessment for wildlife in the 21
Belden JB, McMurry ST, Maul JD, Brain RA, Ghebremichael LT (2018) Relative abundance trends of bird populations in high intensity croplands in the Central United States. Integr Environ Assess Manag 14:692–702. https://doi.org/10.1002/ieam.4083
doi: 10.1002/ieam.4083
Bellot P, Dupont SM, Brischoux F, Budzinski H, Chastel O, Fritsch C, Lourdais O, Prouteau L, Rocchi S, Angelier F (2022a) Experimental exposure to tebuconazole affects metabolism and body condition in a passerine bird, the House Sparrow (Passer domesticus). Environ Toxicol Chem 41:2500–2511. https://doi.org/10.1002/etc.5446
doi: 10.1002/etc.5446
Bellot P, Brischoux F, Fritsch C, Goutte A, Alliot F, Rocchi S, Angelier F (2022b) Evidence of environmental transfer of tebuconazole to the eggs in the house sparrow (Passer domesticus): An experimental study. Chemosphere 308:5. https://doi.org/10.1016/j.chemosphere.2022.136469
doi: 10.1016/j.chemosphere.2022.136469
Bellot P, Brischoux F, Budzinski H et al (2023) Chronic exposure to tebuconazole alters thyroid hormones and plumage quality in house sparrows (Passer domesticus). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-28259-5
doi: 10.1007/s11356-023-28259-5
Bengtsson J, Ahnstrom J, Weibull AC (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Anim Ecol 42:261–269. https://doi.org/10.1111/j.1365-2664.2005.01005.x
doi: 10.1111/j.1365-2664.2005.01005.x
Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol 18:182–188. https://doi.org/10.1016/s0169-5347(03)00011-9
doi: 10.1016/s0169-5347(03)00011-9
Berger G, Graef F, Pfeffer H (2013) Glyphosate applications on arable fields considerably coincide with migrating amphibians. Sci Rep 3:2226. https://doi.org/10.1038/srep02622
doi: 10.1038/srep02622
Bernhardt ES, Rosi EJ, Gessner MO (2017) Synthetic chemicals as agents of global change. Front Ecol Environ 15:84–90. https://doi.org/10.1002/fee.1450
doi: 10.1002/fee.1450
Berny P, Gaillet JR (2008) Acute poisoning of Red Kites (Milvus milvus) in France: Data from the SAGIR network. J Wildl Dis 44:417–426. https://doi.org/10.7589/0090-3558-44.2.417
doi: 10.7589/0090-3558-44.2.417
Berny PJ, Buronfosse R, Videmann B, Buronfosse T (1999) Evaluation of the toxicity of imidacloprid in wild birds. A new high performance thin layer chromatography (HPTLC) method for the analysis of liver and crop samples in suspected poisoning cases. J Liq Chromatogr Relat Technol 22:1547–1559. https://doi.org/10.1081/jlc-100101750
doi: 10.1081/jlc-100101750
Berny P, Vilagines L, Cugnasse JM, Mastain O, Chollet JY, Joncour G, Razin M (2015) VIGILANCE POISON: Illegal poisoning and lead intoxication are the main factors affecting avian scavenger survival in the Pyrenees (France). Ecotox Environ Safe 118:71–82. https://doi.org/10.1016/j.ecoenv.2015.04.003
doi: 10.1016/j.ecoenv.2015.04.003
Beronius A, Zilliacus J, Hanberg A, Luijten M, van der Voet H, van Klaveren J (2020) Methodology for health risk assessment of combined exposures to multiple chemicals. Food Chem Toxicol 143:9. https://doi.org/10.1016/j.fct.2020.111520
doi: 10.1016/j.fct.2020.111520
Bertrand C, Zagatti P, Bonthoux S, Daniele G, Lafay F, Vulliet E, Bretagnolle V, Fritsch C, Pelosi C (2018) Assessing the impact of farming practices and landscape heterogeneity on ground beetles’ exposure to pesticides. In: International Conference on Ecological Sciences, Sfecologie 2018, Rennes, France
Betts MG, Verschuyl J, Giovanini J, Stokely T, Kroll AJ (2013) Initial experimental effects of intensive forest management on avian abundance. For Ecol Manag 310:1036–1044. https://doi.org/10.1016/j.foreco.2013.06.022
doi: 10.1016/j.foreco.2013.06.022
Bicho RC, Amaral MJ, Faustino AMR, Power DM, Rema A, Carretero MA, Soares A, Mann RM (2013) Thyroid disruption in the lizard Podarcis bocagei exposed to a mixture of herbicides: a field study. Ecotoxicology 22:156–165. https://doi.org/10.1007/s10646-012-1012-2
doi: 10.1007/s10646-012-1012-2
Bildfell RJ, Rumbeiha WK, Schuler KL, Meteyer CU, Wolff PL, Gillin CM (2013) A review of episodes of zinc phosphide toxicosis in wild geese (Branta spp.) in Oregon (2004–2011). J Vet Diagn Investig 25:162–167. https://doi.org/10.1177/1040638712472499
doi: 10.1177/1040638712472499
Bishop CA, Collins B, Mineau P, Burgess NM, Read WF, Risley C (2000) Reproduction of cavity-nesting birds in pesticide-sprayed apple orchards in southern Ontario, Canada, 1988–1994. Environ Toxicol Chem 19:588–599. https://doi.org/10.1002/etc.5620190310
doi: 10.1002/etc.5620190310
Bishop CA, Moran AJ, Toshack MC, Elle E, Maisonneuve F, Elliott JE (2018) Hummingbirds and bumble bees exposed to neonicotinoid and organophosphate insecticides in the Fraser Valley, British Columbia, Canada. Environ Toxicol Chem 37:2143–2152. https://doi.org/10.1002/etc.4174
doi: 10.1002/etc.4174
Bishop CA, Woundneh MB, Maisonneuve F, Common J, Elliott JE, Moran AJ (2020) Determination of neonicotinoids and butenolide residues in avian and insect pollinators and their ambient environment in Western Canada (2017, 2018). Sci Total Environ 737:11. https://doi.org/10.1016/j.scitotenv.2020.139386
doi: 10.1016/j.scitotenv.2020.139386
Blaustein AR, Romansic JM, Kiesecker JM, Hatch AC (2003) Ultraviolet radiation, toxic chemicals and amphibian population declines. Divers Distrib 9:123–140. https://doi.org/10.1046/j.1472-4642.2003.00015.x
doi: 10.1046/j.1472-4642.2003.00015.x
Boatman ND, Brickle NW, Hart JD, Milsom TP, Morris AJ, Murray AWA, Murray KA, Robertson PA (2004) Evidence for the indirect effects of pesticides on farmland birds. Ibis 146:131–143. https://doi.org/10.1111/j.1474-919X.2004.00347.x
doi: 10.1111/j.1474-919X.2004.00347.x
Boggs ASP, Botteri NL, Hamlin HJ, Guillette LJ (2011) Endocrine disruption of reproduction in reptiles. In: Norris DO, Lopez KH (eds) Hormones and reproduction of vertebrates, vol 3. Reptiles. Elsevier Academic Press Inc, San Diego, pp 373–396
Bonebrake TC, Guo FY, Dingle C, Baker DM, Kitching RL, Ashton LA (2019) Integrating proximal and horizon threats to biodiversity for conservation. Trends Ecol Evol 34:781–788. https://doi.org/10.1016/j.tree.2019.04.001
doi: 10.1016/j.tree.2019.04.001
Boone WW, McCleery RA, Reichert BE (2017) Fox squirrel response to forest restoration treatments in longleaf pine. J Mammal 98:1594–1603. https://doi.org/10.1093/jmammal/gyx110
doi: 10.1093/jmammal/gyx110
Borg C, Toft S (2000) Importance of insect prey quality for grey partridge chicks Perdix perdix: a self-selection experiment. J Anim Ecol 37:557–563. https://doi.org/10.1046/j.1365-2664.2000.00510.x
doi: 10.1046/j.1365-2664.2000.00510.x
Botias C, David A, Hill EM, Goulson D (2016) Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects. Sci Total Environ 566:269–278. https://doi.org/10.1016/j.scitotenv.2016.05.065
doi: 10.1016/j.scitotenv.2016.05.065
Bouvier JC, Boivin T, Charmantier A, Lambrechts M, Lavigne C (2016) More daughters in a less favourable world: breeding in intensively-managed orchards affects tertiary sex-ratio in the great tit. Basic Appl Ecol 17:638–647. https://doi.org/10.1016/j.baae.2016.07.003
doi: 10.1016/j.baae.2016.07.003
Bouvier JC, Delattre T, Boivin T, Musseau R, Thomas C, Lavigne C (2022) Great tits nesting in apple orchards preferentially forage in organic but not conventional orchards and in hedgerows. Agric Ecosyst Environ 337:11. https://doi.org/10.1016/j.agee.2022.108074
doi: 10.1016/j.agee.2022.108074
Bowler DE, Heldbjerg H, Fox AD, de Jong M, Bohning-Gaese K (2019) Long-term declines of European insectivorous bird populations and potential causes. Conserv Biol 33:1120–1130. https://doi.org/10.1111/cobi.13307
doi: 10.1111/cobi.13307
Brain RA, Anderson JC (2019) The agro-enabled urban revolution, pesticides, politics, and popular culture: a case study of land use, birds, and insecticides in the USA. Environ Sci Pollut Res 26:21717–21735. https://doi.org/10.1007/s11356-019-05305-9
doi: 10.1007/s11356-019-05305-9
Brasel JM, Collier AC, Pritsos CA (2007) Differential toxic effects of carbofuran and diazinon on time of flight in pigeons (Columba livia): potential for pesticide effects on migration. Toxicol Appl Pharmacol 219:241–246. https://doi.org/10.1016/j.taap.2006.11.028
doi: 10.1016/j.taap.2006.11.028
Brickle NW, Harper DGC, Aebischer NJ, Cockayne SH (2000) Effects of agricultural intensification on the breeding success of corn buntings Miliaria calandra. J Anim Ecol 37:742–755. https://doi.org/10.1046/j.1365-2664.2000.00542.x
doi: 10.1046/j.1365-2664.2000.00542.x
Bright JA, Morris AJ, Winspear R (2008) A review of indirect effects of pesticides on birds and mitigating land-management practices. RSPB Res Rep 28:1–66
Bro E, Decors A, Millot F, Soyez D, Moinet M, Berny P, Mastain O (2010) Intoxications des perdrix grises en nature. Nouveau bilan de la surveillance SAGIR. Faune Sauvage 289:26–32
Bro E, Millot F, Decors A, Devillers J (2015) Quantification of potential exposure of gray partridge (Perdix perdix) to pesticide active substances in farmlands. Sci Total Environ 521:315–325. https://doi.org/10.1016/j.scitotenv.2015.03.073
doi: 10.1016/j.scitotenv.2015.03.073
Bro E, Devillers J, Millot F, Decors A (2016) Residues of plant protection products in grey partridge eggs in French cereal ecosystems. Environ Sci Pollut Res 23:9559–9573. https://doi.org/10.1007/s11356-016-6093-7
doi: 10.1007/s11356-016-6093-7
Brodeur JC, Damonte MJ, Rojas DE, Cristos D, Vargas C, Poliserpi MB, Andriulo AE (2022) Concentration of current-use pesticides in frogs from the Pampa region and correlation of a mixture toxicity index with biological effects. Environ Res 204:11. https://doi.org/10.1016/j.envres.2021.112354
doi: 10.1016/j.envres.2021.112354
Brühl CA, Zaller JG (2019) Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front Environ Sci 7:177.  https://doi.org/10.3389/fenvs.2019.00177
Brühl CA, Zaller JG (2021) Indirect herbicide effects on biodiversity, ecosystem functions, and interactions with global changes. In: Mesnage R, Zaller JG (eds) Herbicides. Elsevier, Cambridge, pp 231–272
Brühl CA, Guckenmus B, Ebeling M, Barfknecht R (2011) Exposure reduction of seed treatments through dehusking behaviour of the wood mouse (Apodemus sylvaticus). Environ Sci Pollut Res 18:31–37. https://doi.org/10.1007/s11356-010-0351-x
doi: 10.1007/s11356-010-0351-x
Brühl CA, Schmidt T, Pieper S, Alscher A (2013) Terrestrial pesticide exposure of amphibians: An underestimated cause of global decline? Sci Rep 3:1135. https://doi.org/10.1038/srep01135
doi: 10.1038/srep01135
Brühl CA, Bakanov N, Kothe S, Eichler L, Sorg M, Horren T, Muhlethaler R, Meinel G, Lehmann GUC (2021) Direct pesticide exposure of insects in nature conservation areas in Germany. Sci Rep 11:10.  https://doi.org/10.1038/s41598-021-03366-w
Brussaard L, Caron P, Campbell B, Lipper L, Mainka S, Rabbinge R, Babin D, Pulleman M (2010) Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture. Curr Opin Environ Sustain 2:34–42. https://doi.org/10.1016/j.cosust.2010.03.007
doi: 10.1016/j.cosust.2010.03.007
Buchweitz JP, Viner TC, Lehner AF (2019) Qualitative identification of imidacloprid in postmortem animal tissue by gas chromatography-tandem mass spectrometry. Toxicol Mech Methods 29:511–517. https://doi.org/10.1080/15376516.2019.1616344
doi: 10.1080/15376516.2019.1616344
Burella PM, Simoniello MF, Poletta GL (2017) Evaluation of stage-dependent genotoxic effect of roundup® (Glyphosate) on Caiman latirostris embryos. Arch Environ Contam Toxicol 72:50–57. https://doi.org/10.1007/s00244-016-0311-7
doi: 10.1007/s00244-016-0311-7
Burella PM, Odetti LM, Simoniello MF, Poletta GL (2018) Oxidative damage and antioxidant defense in Caiman latirostris (broad-snouted caiman) exposed in ovo to pesticide formulations. Ecotox Environ Safe 161:437–443. https://doi.org/10.1016/j.ecoenv.2018.06.006
doi: 10.1016/j.ecoenv.2018.06.006
Burns F, Eaton MA, Barlow KE, Beckmann BC, Brereton T, Brooks DR, Brown PMJ, Al Fulaij N, Gent T, Henderson I, Noble DG, Parsons M, Powney GD, Roy HE, Stroh P, Walker K, Wilkinson JW, Wotton SR, Gregory RD (2016) Agricultural management and climatic change are the major drivers of biodiversity change in the UK. PLoS One 11:18. https://doi.org/10.1371/journal.pone.0151595
doi: 10.1371/journal.pone.0151595
Butchart SHM, Walpole M, Collen B et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168. https://doi.org/10.1126/science.1187512
doi: 10.1126/science.1187512
Butler SJ, Mattison EHA, Glithero NJ, Robinson LJ, Atkinson PW, Gillings S, Vickery JA, Norris K (2010) Resource availability and the persistence of seed-eating bird populations in agricultural landscapes: a mechanistic modelling approach. J Appl Ecol 47:67–75. https://doi.org/10.1111/j.1365-2664.2009.01750.x
doi: 10.1111/j.1365-2664.2009.01750.x
Byholm P, Makelainen S, Santangeli A, Goulson D (2018) First evidence of neonicotinoid residues in a long-distance migratory raptor, the European honey buzzard (Pernis apivorus). Sci Total Environ 639:929–933. https://doi.org/10.1016/j.scitotenv.2018.05.185
doi: 10.1016/j.scitotenv.2018.05.185
Cardone A (2015) Imidacloprid induces morphological and molecular damages on testis of lizard (Podarcis sicula). Ecotoxicology 24:94–105. https://doi.org/10.1007/s10646-014-1361-0
doi: 10.1007/s10646-014-1361-0
Carpenter JK, Monks JM, Nelson N (2016) The effect of two glyphosate formulations on a small, diurnal lizard (Oligosoma polychroma). Ecotoxicology 25:548–554. https://doi.org/10.1007/s10646-016-1613-2
doi: 10.1007/s10646-016-1613-2
Carson R (1962) Silent spring. Houghton Mifflin, Boston
Cavallaro MC, Main AR, Liber K, Phillips LD, Headley JV, Peru KM, Morrissey CA (2019) Neonicotinoids and other agricultural stressors collectively modify aquatic insect communities. Chemosphere 226:945–955. https://doi.org/10.1016/j.chemosphere.2019.03.176
doi: 10.1016/j.chemosphere.2019.03.176
Chamberlain DE, Joys A, Johnson PJ, Norton L, Feber RE, Fuller RJ (2010) Does organic farming benefit farmland birds in winter? Biol Let 6:82–84. https://doi.org/10.1098/rsbl.2009.0643
doi: 10.1098/rsbl.2009.0643
Chang J, Hao WY, Xu YY, Xu P, Li W, Li JZ, Wang HL (2018a) Stereoselective degradation and thyroid endocrine disruption of lambda-cyhalothrin in lizards (Eremias argus) following oral exposure. Environ Pollut 232:300–309. https://doi.org/10.1016/j.envpol.2017.09.072
doi: 10.1016/j.envpol.2017.09.072
Chang J, Li JT, Hao WY, Wang HL, Li W, Guo BY, Li JZ, Wang YH, Xu P (2018b) The body burden and thyroid disruption in lizards (Eremias argus) living in benzoylurea pesticides-contaminated soil. J Hazard Mater 347:218–226. https://doi.org/10.1016/j.jhazmat.2018.01.005
doi: 10.1016/j.jhazmat.2018.01.005
Chang J, Li W, Xu P, Guo BY, Wang HL (2019) Dose-dependent effects of flufenoxuron on thyroid system of mature female lizards (Eremias argus) and their offspring. Sci Total Environ 654:714–719. https://doi.org/10.1016/j.scitotenv.2018.11.167
doi: 10.1016/j.scitotenv.2018.11.167
Chen L, Xu P, Diao JL, Di SS, Li RT, Zhou ZQ (2016) Distribution, metabolism and toxic effects of beta-cypermethrin in lizards (Eremias argus) following oral administration. J Hazard Mater 306:87–94. https://doi.org/10.1016/j.jhazmat.2015.11.053
doi: 10.1016/j.jhazmat.2015.11.053
Chen L, Li RT, Diao JL, Tian ZN, Di SS, Zhang WJ, Cheng C, Zhou ZQ (2017) Tissue distribution and toxicity effects of myclobutanil enantiomers in lizards (Eremias argus). Ecotox Environ Safe 145:623–629. https://doi.org/10.1016/j.ecoenv.2017.07.017
doi: 10.1016/j.ecoenv.2017.07.017
Chen L, Wang DZ, Zhang WJ, Wang F, Zhang LY, Wang ZK, Li Y, Zhou ZQ, Diao JL (2019a) Ecological risk assessment of alpha-cypermethrin-treated food ingestion and reproductive toxicity in reptiles. Ecotox Environ Safe 171:657–664. https://doi.org/10.1016/j.ecoenv.2019.01.012
doi: 10.1016/j.ecoenv.2019.01.012
Chen L, Diao JL, Zhang WJ, Zhang LY, Wang ZK, Li Y, Deng Y, Zhou ZQ (2019b) Effects of beta-cypermethrin and myclobutanil on some enzymes and changes of biomarkers between internal tissues and saliva in reptiles (Eremias argus). Chemosphere 216:69–74. https://doi.org/10.1016/j.chemosphere.2018.10.099
doi: 10.1016/j.chemosphere.2018.10.099
Chiron F, Charge R, Julliard R, Jiguet F, Muratet A (2014) Pesticide doses, landscape structure and their relative effects on farmland birds. Agric Ecosyst Environ 185:153–160. https://doi.org/10.1016/j.agee.2013.12.013
doi: 10.1016/j.agee.2013.12.013
Chiu KR, Warner G, Nowak RA, Flaws JA, Mei WY (2020) The impact of environmental chemicals on the gut microbiome. Toxicol Sci 176:253–284. https://doi.org/10.1093/toxsci/kfaa065
doi: 10.1093/toxsci/kfaa065
Christensen TK, Lassen P, Elmeros M (2012) High exposure rates of anticoagulant rodenticides in predatory bird species in intensively managed landscapes in Denmark. Arch Environ Contam Toxicol 63:437–444. https://doi.org/10.1007/s00244-012-9771-6
doi: 10.1007/s00244-012-9771-6
Christin MS, Gendron AD, Brousseau P, Menard L, Marcogliese DJ, Cyr D, Ruby S, Fournier M (2003) Effects of agricultural pesticides on the immune system of Rana pipiens and on its resistance to parasitic infection. Environ Toxicol Chem 22:1127–1133. https://doi.org/10.1002/etc.5620220522
doi: 10.1002/etc.5620220522
Christin MS, Menard L, Giroux I, Marcogliese DJ, Ruby S, Cyr D, Fournier M, Brousseau P (2013) Effects of agricultural pesticides on the health of Rana pipiens frogs sampled from the field. Environ Sci Pollut Res 20:601–611. https://doi.org/10.1007/s11356-012-1160-1
doi: 10.1007/s11356-012-1160-1
Chu SG, Henny CJ, Kaiser JL, Drouillard KG, Haffner GD, Letcher RJ (2007) Dacthal and chlorophenoxy herbicides and chlorothalonil fungicide in eggs of osprey (Pandion haliaetus) from the Duwamish-Lake Washington-Puget Sound area of Washington state, USA. Environ Pollut 145:374–381. https://doi.org/10.1016/j.envpol.2005.12.058
doi: 10.1016/j.envpol.2005.12.058
Ciliberti A, Martin S, Ferrandez E, Belluco S, Rannou B, Dussart C, Berny P, de Buffrenil V (2013) Experimental exposure of juvenile savannah monitors (Varanus exanthematicus) to an environmentally relevant mixture of three contaminants: effects and accumulation in tissues. Environ Sci Pollut Res 20:3107–3114. https://doi.org/10.1007/s11356-012-1230-4
doi: 10.1007/s11356-012-1230-4
Clements WH, Rohr JR (2009) Community responses to contaminants: using basic ecological principles to predict ecotoxicological effects. Environ Toxicol Chem 28:1789–1800. https://doi.org/10.1897/09-140.1
doi: 10.1897/09-140.1
Cobb GP, Mellott R, Brewer LW, Bens CM, Kendall RJ (2000) Diazinon dissipation from vegetation, occurrence in earthworms, and presence in avian gastrointestinal tracts collected from apple orchards following D-Z-N® 50W application. Environ Toxicol Chem 19:1360–1367. https://doi.org/10.1002/etc.5620190519
doi: 10.1002/etc.5620190519
Coeurdassier M, Poirson C, Paul JP, Rieffel D, Michelat D, Reymond D, Legay P, Giraudoux P, Scheifler R (2012) The diet of migrant Red Kites Milvus milvus during a Water Vole Arvicola terrestris outbreak in eastern France and the associated risk of secondary poisoning by the rodenticide bromadiolone. Ibis 154:136–146. https://doi.org/10.1111/j.1474-919X.2011.01193.x
doi: 10.1111/j.1474-919X.2011.01193.x
Coeurdassier M, Berny P, Couval G, Decors A, Jacquot M, Queffélec S, Quintaine T, Giraudoux P (2014a) Evolution des effets non intentionnels de la lutte chimique contre le campagnol terrestre sur la faune sauvage et domestique—limiting the accidental poisoning of wild and domesticated animals due to the chemical pesticides used to control water vole outbreaks: progress to date. Fourrages 220:327–335
Coeurdassier M, Riols R, Decors A, Mionnet A, David F, Quintaine T, Truchetet D, Scheifler R, Giraudoux P (2014b) Unintentional wildlife poisoning and proposals for sustainable management of rodents. Conserv Biol 28:315–321. https://doi.org/10.1111/cobi.12230
doi: 10.1111/cobi.12230
Coeurdassier M, Villers A, Augiron S, Sage M, Couzi FX, Lattard V, Fourel I (2019) Pesticides threaten an endemic raptor in an overseas French territory. Biol Conserv 234:37–44. https://doi.org/10.1016/j.biocon.2019.03.022
doi: 10.1016/j.biocon.2019.03.022
Cox N, Young BE, Bowles P, Fernandez M et al (2022) A global reptile assessment highlights shared conservation needs of tetrapods. Nature 605:285–290. https://doi.org/10.1038/s41586-022-04664-7
doi: 10.1038/s41586-022-04664-7
Crane M, Hallmark N, Lagadic L, Ott K, Pickford D, Preuss T, Thompson H, Thorbek P, Weltje L, Wheeler JR (2019) Assessing the population relevance of endocrine-disrupting effects for nontarget vertebrates exposed to plant protection products. Integr Environ Assess Manag 15:278–291. https://doi.org/10.1002/ieam.4113
doi: 10.1002/ieam.4113
Crisol-Martinez E, Moreno-Moyano LT, Wilkinson N, Prasai T, Brown PH, Moore RJ, Stanley D (2016) A low dose of an organophosphate insecticide causes dysbiosis and sex-dependent responses in the intestinal microbiota of the Japanese quail (Coturnix japonica). PeerJ 4:e2002. https://doi.org/10.7717/peerj.2002
doi: 10.7717/peerj.2002
Cusaac JPW, Mimbs WH, Belden JB, Smith LM, McMurry ST (2015) Terrestrial exposure and effects of Headline AMP® Fungicide on amphibians. Ecotoxicology 24:1341–1351. https://doi.org/10.1007/s10646-015-1509-6
doi: 10.1007/s10646-015-1509-6
Cusaac JPW, Morrison SA, Belden JB, Smith LM, McMurry ST (2016) Acute toxicity of Headline® fungicide to Blanchard’s cricket frogs (Acris blanchardi). Ecotoxicology 25:447–455. https://doi.org/10.1007/s10646-015-1602-x
doi: 10.1007/s10646-015-1602-x
Cusaac JPW, Mimbs WH, Belden JB, Smith LM, McMurry ST (2017) Factors influencing the toxicity of headline® fungicides to terrestrial stage toads. Environ Toxicol Chem 36:2679–2688. https://doi.org/10.1002/etc.3816
doi: 10.1002/etc.3816
Dal Pizzol GE, Rosano VA, Rezende E, Kilpp JC, Ferretto MM, Mistura E, da Silva AN, Bertol CD, Rodrigues LB, Friedrich MT, Rossato-Grando LG (2021) Pesticide and trace element bioaccumulation in wild owls in Brazil. Environ Sci Pollut Res 28:37843–37850. https://doi.org/10.1007/s11356-021-13210-3
doi: 10.1007/s11356-021-13210-3
Dalkvist T, Sibly RM, Topping CJ (2013) Landscape structure mediates the effects of a stressor on field vole populations. Landsc Ecol 28:1961–1974. https://doi.org/10.1007/s10980-013-9932-7
doi: 10.1007/s10980-013-9932-7
Davidson C, Shaffer HB, Jennings MR (2001) Declines of the California red-legged frog: climate, UV-B, habitat, and pesticides hypotheses. Ecol Appl 11:464–479. https://doi.org/10.1890/1051-0761(2001)011[0464:dotcrl]2.0.co;2
doi: 10.1890/1051-0761(2001)011[0464:dotcrl]2.0.co;2
Davidson C, Shaffer HB, Jennings MR (2002) Spatial tests of the pesticide drift, habitat destruction, UV-B, and climate-change hypotheses for California amphibian declines. Conserv Biol 16:1588–1601. https://doi.org/10.1046/j.1523-1739.2002.01030.x
doi: 10.1046/j.1523-1739.2002.01030.x
De Falco M, Sciarrillo R, Capaldo A, Russo T, Gay F, Valiante S, Varano L, Laforgia V (2007) The effects of the fungicide methyl thiophanate on adrenal gland morphophysiology of the lizard, Podarcis sicula. Arch Environ Contam Toxicol 53:241–248. https://doi.org/10.1007/s00244-006-0204-2
doi: 10.1007/s00244-006-0204-2
De Lange HJ, Lahr J, Van der Pol JJC, Wessels Y, Faber JH (2009) Ecological vulnerability in wildlife: An expert judgement and multicriteria analysis tool using ecological traits to assess relative impact of pollutants. Environ Toxicol Chem 28:2233–2240. https://doi.org/10.1897/08-626.1
doi: 10.1897/08-626.1
de Montaigu CT, Goulson D (2020) Identifying agricultural pesticides that may pose a risk for birds. PeerJ 8:e9526. https://doi.org/10.7717/peerj.9526
doi: 10.7717/peerj.9526
de Snoo GR, Luttik R (2004) Availability of pesticide-treated seed on arable fields. Pest Manag Sci 60:501–506. https://doi.org/10.1002/ps.824
doi: 10.1002/ps.824
de Solla SR, Martin PA (2011) Absorption of current use pesticides by snapping turtle (Chelydra serpentina) eggs in treated soil. Chemosphere 85:820–825. https://doi.org/10.1016/j.chemosphere.2011.06.080
doi: 10.1016/j.chemosphere.2011.06.080
de Snoo GR, Scheidegger NMI, de Jong FMW (1999) Vertebrate wildlife incidents with pesticides: a European survey. Pest Sci 55:47–54. https://doi.org/10.1002/(sici)1096-9063(199901)55:1%3c47::aid-ps859%3e3.3.co;2-r
doi: 10.1002/(sici)1096-9063(199901)55:1<47::aid-ps859>3.3.co;2-r
de Solla SR, Palonen KE, Martin PA (2014) Toxicity of pesticides associated with potato production, including soil fumigants, to snapping turtle eggs (Chelydra serpentina). Environ Toxicol Chem 33:102–106. https://doi.org/10.1002/etc.2393
doi: 10.1002/etc.2393
Dechartres J, Pawluski JL, Gueguen MM, Jablaoui A, Maguin E, Rhimi M, Charlier TD (2019) Glyphosate and glyphosate-based herbicide exposure during the peripartum period affects maternal brain plasticity, maternal behaviour and microbiome. J Neuroendocrinol 31:e12731. https://doi.org/10.1111/jne.12731
doi: 10.1111/jne.12731
Decors A, Moinet M, Mastain O (2011) SAGIR – bilan 2009–2010. Rapport interne du réseau SAGIR ONCFS-FNC/FDC. http://www.oncfs.gouv.fr/IMG/BILAN2009-2010_versfinale.pdf
Dheyongera G, Grzebyk K, Rudolf AM, Sadowska ET, Koteja P (2016) The effect of chlorpyrifos on thermogenic capacity of bank voles selected for increased aerobic exercise metabolism. Chemosphere 149:383–390. https://doi.org/10.1016/j.chemosphere.2015.12.120
doi: 10.1016/j.chemosphere.2015.12.120
Di Blasio A, Bertolini S, Gili M, Avolio R, Leogrande M, Ostorero F, Ru G, Dondo A, Zoppi S (2020) Local context and environment as risk factors for acute poisoning in animals in northwest Italy. Sci Total Environ 709:136016. https://doi.org/10.1016/j.scitotenv.2019.136016
doi: 10.1016/j.scitotenv.2019.136016
Diaz-Paniagua C, Marco A, Fernandez M, Hernandez LM (2002) Lead, PCBs and other environmental pollutants on chameleon eggs in southern Spain. Fresenius Environ Bull 11:631–635
Distefano GG, Zangrando R, Basso M, Panzarin L, Gambaro A, Ghirardini AV, Picone M (2022) The ubiquity of neonicotinoid contamination: residues in seabirds with different trophic habits. Environ Res 206:8. https://doi.org/10.1016/j.envres.2021.112637
doi: 10.1016/j.envres.2021.112637
Donald PF, Sanderson FJ, Burfield IJ, van Bommel FPJ (2006) Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric Ecosyst Environ 116:189–196. https://doi.org/10.1016/j.agee.2006.02.007
doi: 10.1016/j.agee.2006.02.007
Drovetski SV, Schmidt BK, Lai JE et al (2022) Exposure to crop production alters cecal prokaryotic microbiota, inflates virulome and resistome in wild prairie grouse. Environ Pollut 306:119418. https://doi.org/10.1016/j.envpol.2022.119418
doi: 10.1016/j.envpol.2022.119418
Dudley N, Attwood SJ, Goulson D, Jarvis D, Bharucha ZP, Pretty J (2017) How should conservationists respond to pesticides as a driver of biodiversity loss in agroecosystems? Biol Conserv 209:449–453. https://doi.org/10.1016/j.biocon.2017.03.012
doi: 10.1016/j.biocon.2017.03.012
DuRant SE, Hopkins WA, Talent LG (2007) Impaired terrestrial and arboreal locomotor performance in the western fence lizard (Sceloporus occidentalis) after exposure to an AChE-inhibiting pesticide. Environ Pollut 149:18–24. https://doi.org/10.1016/j.envpol.2006.12.025
doi: 10.1016/j.envpol.2006.12.025
Eng ML, Stutchbury BJM, Morrissey CA (2017) Imidacloprid and chlorpyrifos insecticides impair migratory ability in a seed-eating songbird. Sci Rep 7:15176. https://doi.org/10.1038/s41598-017-15446-x
doi: 10.1038/s41598-017-15446-x
Eng ML, Stutchbury BJM, Morrissey CA (2019) A neonicotinoid insecticide reduces fueling and delays migration in songbirds. Science 365:1177. https://doi.org/10.1126/science.aaw9419
doi: 10.1126/science.aaw9419
Engell MD, Godwin J, Young LJ, Vandenbergh JG (2006) Perinatal exposure to endocrine disrupting compounds alters behavior and brain in the female pine vole. Neurotoxicol Teratol 28:103–110. https://doi.org/10.1016/j.ntt.2005.10.002
doi: 10.1016/j.ntt.2005.10.002
English SG, Sandoval-Herrera NI, Bishop CA, Cartwright M, Maisonneuve F, Elliott JE, Welch KC (2021) Neonicotinoid pesticides exert metabolic effects on avian pollinators. Sci Rep 11:11. https://doi.org/10.1038/s41598-021-82470-3
doi: 10.1038/s41598-021-82470-3
Ertl HM, Mora MA, Boellstorff DE, Brightsmith D, Carson K (2018) Potential effects of neonicotinoid insecticides on northern bobwhites. Wildl Soc Bull 42:649–655. https://doi.org/10.1002/wsb.921
doi: 10.1002/wsb.921
Espin S, Garcia-Fernandez A, Herzke D, Shore RF, van Hattum B, Martinez-Lopez E, Coeurdassier M, Eulaers I, Fritsch C, Gomez-Ramirez P, Jaspers VLB, Krone O, Duke G, Helander B, Mateo R, Movalli P, Sonne C, van den Brink NW (2016) Tracking pan-continental trends in environmental contamination using sentinel raptors-what types of samples should we use? Ecotoxicology 25:777–801. https://doi.org/10.1007/s10646-016-1636-8
doi: 10.1007/s10646-016-1636-8
European Food Safety Authority (2008) Conclusion regarding the peer review of the pesticide risk assessment of the active substance imidacloprid. Efsa J 6:148r. https://doi.org/10.2903/j.efsa.2008.148r
doi: 10.2903/j.efsa.2008.148r
European Food Safety Authority (2023) Risk assessment for birds and mammals. Efsa J 21:7790. https://doi.org/10.2903/j.efsa.2023.7790
doi: 10.2903/j.efsa.2023.7790
Falcone JF, DeWald LE (2010) Comparisons of arthropod and avian assemblages in insecticide-treated and untreated eastern hemlock (Tsuga canadensis L. Carr) stands in Great Smoky Mountains National Park. USA for Ecol Manag 260:856–863. https://doi.org/10.1016/j.foreco.2010.06.003
doi: 10.1016/j.foreco.2010.06.003
Fanke J, Wibbelt G, Krone O (2011) Mortality factors and diseases in free-ranging eurasian cranes (Grus grus) in Germany. J Wildl Dis 47:627–637. https://doi.org/10.7589/0090-3558-47.3.627
doi: 10.7589/0090-3558-47.3.627
Farkhondeh T, Aschner M, Sadeghi M, Mehrpour O, Naseri K, Amirabadizadeh A, Roshanravan B, Aramjoo H, Samarghandian S (2021) The effect of diazinon on blood glucose homeostasis: a systematic and meta-analysis study. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-11364-0
doi: 10.1007/s11356-020-11364-0
Fernandez-de-Simon J, Coeurdassier M, Couval G, Fourel I, Giraudoux P (2018) Do bromadiolone treatments to control grassland water voles (Arvicola scherman) affect small mustelid abundance? Pest Manag Sci 75:900–907. https://doi.org/10.1002/ps.5194
doi: 10.1002/ps.5194
Fernandez-Vizcaino E, de Mera IGF, Mougeot F, Mateo R, Ortiz-Santaliestra ME (2020) Multi-level analysis of exposure to triazole fungicides through treated seed ingestion in the red-legged partridge. Environ Res 189:109928. https://doi.org/10.1016/j.envres.2020.109928
doi: 10.1016/j.envres.2020.109928
Ferrante L, Leonel ACM, Gaiga R, Kaefer IL, Fearnside PM (2019) Local extinction of Scinax caldarum, a treefrog in Brazil’s Atlantic forest. Herpetol J 29:294–297. https://doi.org/10.33256/hj29.4.295298
doi: 10.33256/hj29.4.295298
Filippi-Codaccioni O, Clobert J, Julliard R (2009) Effects of organic and soil conservation management on specialist bird species. Agric Ecosyst Environ 129:140–143. https://doi.org/10.1016/j.agee.2008.08.004
doi: 10.1016/j.agee.2008.08.004
Filippi-Codaccioni O, Devictor V, Bas Y, Clobert J, Julliard R (2010a) Specialist response to proportion of arable land and pesticide input in agricultural landscapes. Biol Conserv 143:883–890. https://doi.org/10.1016/j.biocon.2009.12.035
doi: 10.1016/j.biocon.2009.12.035
Filippi-Codaccioni O, Devictor V, Bas Y, Julliard R (2010b) Toward more concern for specialisation and less for species diversity in conserving farmland biodiversity. Biol Conserv 143:1493–1500. https://doi.org/10.1016/j.biocon.2010.03.031
doi: 10.1016/j.biocon.2010.03.031
Firbank LG, Petit S, Smart S, Blain A, Fuller RJ (2008) Assessing the impacts of agricultural intensification on biodiversity: a British perspective. Philos Trans r Soc B-Biol Sci 363:777–787. https://doi.org/10.1098/rstb.2007.2183
doi: 10.1098/rstb.2007.2183
Fischer C, Thies C, Tscharntke T (2011) Small mammals in agricultural landscapes: opposing responses to farming practices and landscape complexity. Biol Conserv 144:1130–1136. https://doi.org/10.1016/j.biocon.2010.12.032
doi: 10.1016/j.biocon.2010.12.032
Fischer C, Gayer C, Kurucz K, Riesch F, Tscharntke T, Batary P (2018) Ecosystem services and disservices provided by small rodents in arable fields: effects of local and landscape management. J Anim Ecol 55:548–558. https://doi.org/10.1111/1365-2664.13016
doi: 10.1111/1365-2664.13016
Flohre A, Fisher C, Aavik T, Bengtsson J et al (2011) Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecol Appl 21:1772–1781. https://doi.org/10.1890/10-0645.1
doi: 10.1890/10-0645.1
Fontaine B, Moussy C, Chiffard Carricaburu J, Dupuy J, Corolleur E, Schmaltz L, Lorrillière R, Loïs G, Gaudard C (2020) Suivi des oiseaux communs en France 1989–2019: 30 ans de suivis participatifs. In: MNHN- Centre d'Ecologie des Sciences de la Conservation, LPO BirdLife France - Service Connaissance, Ministère de la Transition écologique et solidaire, Paris.  https://www.vigienature.fr/sites/vigienature/files/atoms/files/syntheseoiseauxcommuns2020_final.pdf . Accessed 26 Mar 2024
Ford AT et al (2021) The role of behavioral ecotoxicology in environmental protection. Environ Sci Technol 55:5620–5628. https://doi.org/10.1021/acs.est.0c06493
doi: 10.1021/acs.est.0c06493
Fox AD (2004) Has Danish agriculture maintained farmland bird populations? J Anim Ecol 41:427–439. https://doi.org/10.1111/j.0021-8901.2004.00917.x
doi: 10.1111/j.0021-8901.2004.00917.x
Freitas LM, Paranaiba J, Perez APS, Machado MRF, Lima FC (2020) Toxicity of pesticides in lizards. Hum Exp Toxicol 39:596–604. https://doi.org/10.1177/0960327119899980
doi: 10.1177/0960327119899980
Fritsch C, Appenzeller B, Burkart L, Coeurdassier M, Scheifler R, Raoul F, Driget V, Powolny T, Gagnaison C, Rieffel D, Afonso E, Goydadin A-C, Hardy EM, Palazzi P, Schaeffer C, Gaba S, Bretagnolle V, Bertrand C, Pelosi C (2022) Pervasive exposure of wild small mammals to legacy and currently used pesticide mixtures in arable landscapes. Sci Rep 12:15904. https://doi.org/10.1038/s41598-022-19959-y
doi: 10.1038/s41598-022-19959-y
Fritsch C, Bertrand C, Appenzeller B, Delhomme O, Millet M, Bourdat-Deschamps M, Nélieu S, Coeurdassier M, Scheifler R, Gaba S, Bretagnolle V, Pelosi C (2023) Residues of glyphosate, AMPA and glufosinate in soils, earthworms and wild small mammals in arable landscapes: a new case of “emerging organic contaminants”? SETAC Europe 33rd Annual Meeting, Dublin, Ireland
Frixione MG, Rodriguez-Estrella R (2020) Genotoxicity in American kestrels in an agricultural landscape in the Baja California peninsula, Mexico. Environ Sci Pollut Res 27:45755–45766.  https://doi.org/10.1007/s11356-020-10392-0
Fuentes E, Gaffard A, Rodrigues A, Millet M, Bretagnolle V, Moreau J, Monceau K (2023) Neonicotinoids: still present in farmland birds despite their ban. Chemosphere 321:10. https://doi.org/10.1016/j.chemosphere.2023.138091
doi: 10.1016/j.chemosphere.2023.138091
Gabriel D, Sait SM, Hodgson JA, Schmutz U, Kunin WE, Benton TG (2010) Scale matters: the impact of organic farming on biodiversity at different spatial scales. Ecol Lett 13:858–869. https://doi.org/10.1111/j.1461-0248.2010.01481.x
doi: 10.1111/j.1461-0248.2010.01481.x
Gandhi K, Khan S, Patrikar M, Markad A, Kumar N, Choudhari A, Sagar P, Indurkar S (2021) Exposure risk and environmental impacts of glyphosate: highlights on the toxicity of herbicide co-formulants. Environ Challenges 4:100149. https://doi.org/10.1016/j.envc.2021.100149
doi: 10.1016/j.envc.2021.100149
Garces A, Pires I, Rodrigues P (2020) Teratological effects of pesticides in vertebrates: a review. J Environ Sci Health Part B-Pestic Contam Agric Wastes 55:75–89. https://doi.org/10.1080/03601234.2019.1660562
doi: 10.1080/03601234.2019.1660562
Garcia-Fernandez AJ, Calvo JF, Martinez-Lopez E, Maria-Mojica P, Martinez JE (2008) Raptor ecotoxicology in Spain: a review on persistent environmental contaminants. Ambio 37:432–439. https://doi.org/10.1579/0044-7447(2008)37[432:reisar]2.0.co;2
doi: 10.1579/0044-7447(2008)37[432:reisar]2.0.co;2
Garrett DR, Pelletier F, Garant D, Bélisle M (2021a) Combined influence of food availability and agricultural intensification on a declining aerial insectivore. bioRxiv2021.02.02.427782. https://doi.org/10.1101/2021.02.02.427782
Garrett DR, Pelletier F, Garant D, Bélisle M (2021b) Interacting effects of cold snaps, rain, and agriculture on the fledging success of a declining aerial insectivore. bioRxiv2021.06.29.450344. https://doi.org/10.1101/2021.06.29.450344
Geiger F et al (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105. https://doi.org/10.1016/j.baae.2009.12.001
doi: 10.1016/j.baae.2009.12.001
Gendron AD, Marcogliese DJ, Barbeau S, Christin MS, Brousseau P, Ruby S, Cyr D, Fournier M (2003) Exposure of leopard frogs to a pesticide mixture affects life history characteristics of the lungworm Rhabdias ranae. Oecologia 135:469–476. https://doi.org/10.1007/s00442-003-1210-y
doi: 10.1007/s00442-003-1210-y
Gibbons DW, Bohan DA, Rothery P, Stuart RC, Haughton AJ, Scott RJ, Wilson JD, Perry JN, Clark SJ, Dawson RJG, Firbank LG (2006) Weed seed resources for birds in fields with contrasting conventional and genetically modified herbicide-tolerant crops. Proc r Soc B-Biol Sci 273:1921–1928. https://doi.org/10.1098/rspb.2006.3522
doi: 10.1098/rspb.2006.3522
Gibbons D, Morrissey C, Mineau P (2015) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res 22:103–118. https://doi.org/10.1007/s11356-014-3180-5
doi: 10.1007/s11356-014-3180-5
Gibbs KE, Mackey RL, Currie DJ (2009) Human land use, agriculture, pesticides and losses of imperiled species. Divers Distrib 15:242–253. https://doi.org/10.1111/j.1472-4642.2008.00543.x
doi: 10.1111/j.1472-4642.2008.00543.x
Glinski DA, Purucker ST, Van Meter RJ, Black MC, Henderson WM (2019) Endogenous and exogenous biomarker analysis in terrestrial phase amphibians (Lithobates sphenocephala) following dermal exposure to pesticide mixtures. Environ Chem 16:55–67. https://doi.org/10.1071/en18163
doi: 10.1071/en18163
Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818. https://doi.org/10.1126/science.1185383
doi: 10.1126/science.1185383
Gomez-Ramirez P, Martinez-Lopez E, Garcia-Fernandez AJ, Zweers AJ, van den Brink NW (2012) Organohalogen exposure in a Eurasian Eagle owl (Bubo bubo) population from Southeastern Spain: Temporal-spatial trends and risk assessment. Chemosphere 88:903–911. https://doi.org/10.1016/j.chemosphere.2012.03.014
doi: 10.1016/j.chemosphere.2012.03.014
Gomez-Ramirez P, Shore RF, van den Brink NW, van Hattum B, Bustnes JO, Duke G, Fritsch C, Garcia-Fernandez AJ, Helander BO, Jaspers V, Krone O, Martinez-Lopez E, Mateo R, Movalli P, Sonne C (2014) An overview of existing raptor contaminant monitoring activities in Europe. Environ Int 67:12–21. https://doi.org/10.1016/j.envint.2014.02.004
doi: 10.1016/j.envint.2014.02.004
Gomez-Ramirez P, Perez-Garcia JM, Leon-Ortega M, Martinez JE, Calvo JF, Sanchez-Zapata JA, Botella F, Maria-Mojica P, Martinez-Lopez E, Garcia-Fernandez AJ (2019) Spatiotemporal variations of organochlorine pesticides in an apex predator: Influence of government regulations and farming practices. Environ Res 176:1135. https://doi.org/10.1016/j.envres.2019.108543
doi: 10.1016/j.envres.2019.108543
Goulson D (2013) REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides. J Anim Ecol 50:977–987. https://doi.org/10.1111/1365-2664.12111
doi: 10.1111/1365-2664.12111
Grant MJ, Booth A (2009) A typology of reviews: an analysis of 14 review types and associated methodologies. Health Inf Lib J 26:91–108
doi: 10.1111/j.1471-1842.2009.00848.x
Graves EE, Jelks KA, Foley JE, Filigenzi MS, Poppenga RH, Ernest HB, Melnicoe R, Tell LA (2019) Analysis of insecticide exposure in California hummingbirds using liquid chromatography-mass spectrometry. Environ Sci Pollut Res 26:15458–15466. https://doi.org/10.1007/s11356-019-04903-x
doi: 10.1007/s11356-019-04903-x
Graves EE, Meese RJ, Holyoak M (2023) Neonicotinoid exposure in Tricolored Blackbirds (Agelaius tricolor). Environ Sci Pollut Res 30:15392–15399. https://doi.org/10.1007/s11356-022-23290-4
doi: 10.1007/s11356-022-23290-4
Groh K, Vom Berg C, Schirmer K, Tlili A (2022) Anthropogenic chemicals as underestimated drivers of biodiversity loss: scientific and societal implications. Environ Sci Technol 56:707–710. https://doi.org/10.1021/acs.est.1c08399
doi: 10.1021/acs.est.1c08399
Guerrero I, Morales MB, Onate JJ, Geiger F et al (2012) Response of ground-nesting farmland birds to agricultural intensification across Europe: landscape and field level management factors. Biol Conserv 152:74–80. https://doi.org/10.1016/j.biocon.2012.04.001
doi: 10.1016/j.biocon.2012.04.001
Guillot H (2017) L’herpétofaune, sentinelle de l’accumulation et des effets des contaminants environnementaux ? Thesis report, University of La Rochelle.  https://theses.hal.science/tel-01804939v1/document . Accessed 23 Mar 2024
Guitart R, Sachana M, Caloni F, Croubels S, Vandenbroucke V, Berny P (2010) Animal poisoning in Europe. Part 3: Wildlife. Vet J 183:260–265. https://doi.org/10.1016/j.tvjl.2009.03.033
doi: 10.1016/j.tvjl.2009.03.033
Gutierrez-Arellano C, Mulligan M (2018) A review of regulation ecosystem services and disservices from faunal populations and potential impacts of agriculturalisation on their provision, globally. Nat Conserv Bulgaria 1–39. https://doi.org/10.3897/natureconservation.30.26989
Hallmann CA, Foppen RPB, van Turnhout CAM, de Kroon H, Jongejans E (2014) Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511:341. https://doi.org/10.1038/nature13531
doi: 10.1038/nature13531
Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W, Muller A, Sumser H, Horren T, Goulson D, de Kroon H (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12:21. https://doi.org/10.1371/journal.pone.0185809
doi: 10.1371/journal.pone.0185809
Harris ML, Chora L, Bishop CA, Bogart JP (2000) Species- and age-related differences in susceptibility to pesticide exposure for two amphibians, Rana pipiens and Bufo americanus. Bull Environ Contam Toxicol 64:263–270. https://doi.org/10.1007/s001289910039
doi: 10.1007/s001289910039
Harris SH, Kormann UG, Stokely TD, Verschuyl J, Kroll AJ, Betts MG (2020) Do birds help trees grow? An experimental study of the effects of land-use intensification on avian trophic cascades. 101:e03018. https://doi.org/10.1002/ecy.3018
Harrison XA, Blount JD, Inger R, Norris DR, Bearhop S (2011) Carry-over effects as drivers of fitness differences in animals. J Anim Ecol 80:4–18. https://doi.org/10.1111/j.1365-2656.2010.01740.x
doi: 10.1111/j.1365-2656.2010.01740.x
Hart JD, Milsom TP, Fisher G, Wilkins V, Moreby SJ, Murray AWA, Robertson PA (2006) The relationship between yellowhammer breeding performance, arthropod abundance and insecticide applications on arable farmland. J Anim Ecol 43:81–91. https://doi.org/10.1111/j.1365-2664.2005.01103.x
doi: 10.1111/j.1365-2664.2005.01103.x
Hayes TB, Falso P, Gallipeau S, Stice M (2010) The cause of global amphibian declines: a developmental endocrinologist’s perspective. J Exp Biol 213:921–933. https://doi.org/10.1242/jeb.040865
doi: 10.1242/jeb.040865
Hegde G, Krishnamurthy SV, Berger G (2019) Common frogs’ response to agrochemicals contamination in coffee plantations, Western Ghats, India. Chem Ecol 35:397–407. https://doi.org/10.1080/02757540.2019.1584613
doi: 10.1080/02757540.2019.1584613
Helander B, Bignert A, Asplund L (2008) Using raptors as environmental sentinels: monitoring the white-tailed sea eagle Haliaeetus albicilla in Sweden. Ambio 37:425–431. https://doi.org/10.1579/0044-7447(2008)37[425:Uraesm]2.0.Co;2
doi: 10.1579/0044-7447(2008)37[425:Uraesm]2.0.Co;2
Henderson IG, Ravenscroft N, Smith G, Holloway S (2009) Effects of crop diversification and low pesticide inputs on bird populations on arable land. Agric Ecosyst Environ 129:149–156. https://doi.org/10.1016/j.agee.2008.08.014
doi: 10.1016/j.agee.2008.08.014
Hernandez-Jerez A, Adriaanse P, Aldrich A, Berny P, Coja T, Duquesne S, Gimsing AL, Marina M, Millet M, Pelkonen O, Pieper S, Tiktak A, Tzoulaki I, Widenfalk A, Wolterink G, Russo D, Streissl F, Topping C, Efsa Panel Plant Protection Prod (2019) Scientific statement on the coverage of bats by the current pesticide risk assessment for birds and mammals. Efsa J 17. https://doi.org/10.2903/j.efsa.2019.5758
Herrera-Giraldo J, Figuerola C, Holmes N, Swinnerton K, Carambot E, González-Maya J, Gómez-Hoyos D (2019) Survival analysis of two endemic lizard species before, during and after a rat eradication attempt on Desecheo Island, Puerto Rico. In: Veitch CR, Clout MN, Martin AR, Russell JC, West CJ (eds) Island invasives: scaling up to meet the challenge. Species survival commission, IUCN, Gland, pp 191-195.  https://library.sprep.org/sites/default/files/2021-07/survival-analysis-lizard-species.pdf . Accessed 28 Mar 2024
Heys KA, Shore RF, Pereira MG, Martin FL (2017) Levels of organochlorine pesticides are associated with amyloid aggregation in apex avian brains. Environ Sci Technol 51:8672–8681. https://doi.org/10.1021/acs.est.7b00840
doi: 10.1021/acs.est.7b00840
Hill JM, Egan JF, Stauffer GE, Diefenbach DR (2014) Habitat availability is a more plausible explanation than insecticide acute toxicity for us grassland bird species declines. PLoS One 9:e98064. https://doi.org/10.1371/journal.pone.0098064
doi: 10.1371/journal.pone.0098064
Hindmarch S, Elliott J (2018) Ecological factors driving uptake of anticoagulant rodenticides in predators. In: van den Brink NW, Elliott JE, Shore RF, Rattner BA (eds) Anticoagulant rodenticides and wildlife. Springer International Publishing, Sham, pp 229–258
Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice PV, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130. https://doi.org/10.1016/j.biocon.2004.07.018
doi: 10.1016/j.biocon.2004.07.018
Holem RR, Hopkins WA, Talent LG (2006) Effect of acute exposure to malathion and lead on sprint performance of the western fence lizard (Sceloporus occidentalis). Arch Environ Contam Toxicol 51:111–116. https://doi.org/10.1007/s00244-005-0099-3
doi: 10.1007/s00244-005-0099-3
Holem RR, Hopkins WA, Talent LG (2008) Effects of repeated exposure to malathion on growth, food consumption, and locomotor performance of the western fence lizard (Sceloporus occidentalis). Environ Pollut 152:92–98. https://doi.org/10.1016/j.envpol.2007.05.017
doi: 10.1016/j.envpol.2007.05.017
Homyack JA, Haas CA (2009) Long-term effects of experimental forest harvesting on abundance and reproductive demography of terrestrial salamanders. Biol Conserv 142:110–121. https://doi.org/10.1016/j.biocon.2008.10.003
doi: 10.1016/j.biocon.2008.10.003
Hooper SE, Amelon SK, Lin CH (2022) Development of an LC-MS/MS method for non-invasive biomonitoring of neonicotinoid and systemic herbicide pesticide residues in bat hair. Toxics 10:11. https://doi.org/10.3390/toxics10020073
doi: 10.3390/toxics10020073
Howald G, Donlan CJ, Galvan JP, Russell JC, Parkes J, Samaniego A, Wang YW, Veitch D, Genovesi P, Pascal M, Saunders A, Tershy B (2007) Invasive rodent eradication on islands. Conserv Biol 21:1258–1268. https://doi.org/10.1111/j.1523-1739.2007.00755.x
doi: 10.1111/j.1523-1739.2007.00755.x
Howald G, Ross J, Buckle AP (2015) Rodent control and island conservation. In: Buckle AP, Smith RH (eds) Rodent Pests and Their Control, 2nd edn. Cabi Publishing, Wallingford, pp 366–396
doi: 10.1079/9781845938178.0366
Hsiao CJ, Lin CL, Lin TY, Wang SE, Wu CH (2016) Imidacloprid toxicity impairs spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas. NeuroReport 27:462–468. https://doi.org/10.1097/wnr.0000000000000562
doi: 10.1097/wnr.0000000000000562
Humann-Guilleminot S, de Montaigu CT, Sire J, et al (2019a) A sublethal dose of the neonicotinoid insecticide acetamiprid reduces sperm density in a songbird. Environmental Research 177. https://doi.org/10.1016/j.envres.2019.108589
Humann-Guilleminot S, Clement S, Desprat J, Binkowski LJ, Glauser G, Helfenstein F (2019b) A large-scale survey of house sparrow feathers reveals ubiquitous presence of neonicotinoids in farmlands. Sci Total Environ 660:1091–1097.  https://doi.org/10.1016/j.scitotenv.2019.01.068
Humann-Guilleminot S, Binkowski ŁJ, Jenni L et al (2019c) A nation-wide survey of neonicotinoid insecticides in agricultural land with implications for agri-environment schemes. J Appl Ecol 56:1502–1514.  https://doi.org/10.1111/1365-2664.13392
Humann-Guilleminot S, Laurent S, Bize P, Roulin A, Glauser G, Helfenstein F (2021) Contamination by neonicotinoid insecticides in barn owls (Tyto alba) and Alpine swifts (Tachymarptis melba). Sci Total Environ 785:8. https://doi.org/10.1016/j.scitotenv.2021.147403
doi: 10.1016/j.scitotenv.2021.147403
Hussain R, Ali F, Rafique A, Ghaffar A, Jabeen G, Rafay M, Liaqat S, Khan I, Malik R, Khan MK, Niaz M, Akram K, Masood A (2019) Exposure to sub-acute concentrations of glyphosate induce clinico-hematological, serum biochemical and genotoxic damage in adult cockerels. Pak Vet J 39:181–186. https://doi.org/10.29261/pakvetj/2019.064
doi: 10.29261/pakvetj/2019.064
Hvezdova M, Kosubova P, Kosikova M, Scherr KE, Simek Z, Brodsky L, Sudoma M, Skulcova L, Sanka M, Svobodova M, Krkoskova L, Vasickova J, Neuwirthova N, Bielska L, Hofman J (2018) Currently and recently used pesticides in Central European arable soils. Sci Total Environ 613:361–370. https://doi.org/10.1016/j.scitotenv.2017.09.049
doi: 10.1016/j.scitotenv.2017.09.049
IPBES (2019) Global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. In: Brondizio ES, Settele J, Díaz S, Ngo HT (eds) IPBES secretariat, Bonn.  https://doi.org/10.5281/zenodo.3831673 . Accessed 28 Mar 2024
Jacquot M, Coeurdassier M, Couval G, Renaude R, Pleydell D, Truchetet D, Raoul F, Giraudoux P (2013) Using long-term monitoring of red fox populations to assess changes in rodent control practices. J Anim Ecol 50:1406–1414. https://doi.org/10.1111/1365-2664.12151
doi: 10.1111/1365-2664.12151
Jaspers VLB, Sonne C, Soler-Rodriguez F, Boertmann D, Dietz R, Eens M, Rasmussen LM, Covaci A (2013) Persistent organic pollutants and methoxylated polybrominated diphenyl ethers in different tissues of white-tailed eagles (Haliaeetus albicilla) from West Greenland. Environ Pollut 175:137–146. https://doi.org/10.1016/j.envpol.2012.12.023
doi: 10.1016/j.envpol.2012.12.023
Jeliazkov A, Mimet A, Charge R, Jiguet F, Devictor V, Chiron F (2016) Impacts of agricultural intensification on bird communities: new insights from a multi-level and multi-facet approach of biodiversity. Agric Ecosyst Environ 216:9–22. https://doi.org/10.1016/j.agee.2015.09.017
doi: 10.1016/j.agee.2015.09.017
Jennings N, Pocock MJO (2009) Relationships between sensitivity to agricultural intensification and ecological traits of insectivorous mammals and arthropods. Conserv Biol 23:1195–1203. https://doi.org/10.1111/j.1523-1739.2009.01208.x
doi: 10.1111/j.1523-1739.2009.01208.x
Jing X, Yao GJ, Liu DH, Liu C, Wang F, Wang P, Zhou ZQ (2017) Exposure of frogs and tadpoles to chiral herbicide fenoxaprop-ethyl. Chemosphere 186:832–838. https://doi.org/10.1016/j.chemosphere.2017.07.132
doi: 10.1016/j.chemosphere.2017.07.132
Jones G, Jacobs DS, Kunz TH, Willig MR, Racey PA (2009) Carpe noctem: the importance of bats as bioindicators. Endang Species Res 8:93–115. https://doi.org/10.3354/esr00182
doi: 10.3354/esr00182
Kaczynski P, Lozowicka B, Perkowski M, Zon W, Hrynko I, Rutkowska E, Skibko Z (2021) Impact of broad-spectrum pesticides used in the agricultural and forestry sector on the pesticide profile in wild boar, roe deer and deer and risk assessment for venison consumers. Sci Total Environ 784:14. https://doi.org/10.1016/j.scitotenv.2021.147215
doi: 10.1016/j.scitotenv.2021.147215
Kahnonitch I, Lubin Y, Korine C (2018) Insectivorous bats in semi-arid agroecosystems—effects on foraging activity and implications for insect pest control. Agric Ecosyst Environ 261:80–92. https://doi.org/10.1016/j.agee.2017.11.003
doi: 10.1016/j.agee.2017.11.003
Kannan K, Yun SH, Rudd RJ, Behr M (2010) High concentrations of persistent organic pollutants including PCBs, DDT, PBDEs and PFOS in little brown bats with white-nose syndrome in New York, USA. Chemosphere 80:613–618. https://doi.org/10.1016/j.chemosphere.2010.04.060
doi: 10.1016/j.chemosphere.2010.04.060
Kattwinkel M, Liess M, Arena M, Bopp S, Streissl F, Rombke J (2015) Recovery of aquatic and terrestrial populations in the context of European pesticide risk assessment. Environ Rev 23:382–394. https://doi.org/10.1139/er-2015-0013
doi: 10.1139/er-2015-0013
Katzenberger J, Gottschalk E, Balkenhol N, Waltert M (2019) Long-term decline of juvenile survival in German red kites. J Ornithol 160:337–349. https://doi.org/10.1007/s10336-018-1619-z
doi: 10.1007/s10336-018-1619-z
Kiesecker JM (2011) Global stressors and the global decline of amphibians: tipping the stress immunocompetency axis. 26:897-908. https://doi.org/10.1007/s11284-010-0702-6
Kirk DA, Lindsay KEF (2017) Subtle differences in birds detected between organic and nonorganic farms in Saskatchewan Prairie Parklands by farm pair and bird functional group. Agric Ecosyst Environ 246:184–201. https://doi.org/10.1016/j.agee.2017.04.009
doi: 10.1016/j.agee.2017.04.009
Kirk DA, Lindsay KE, Brook RW (2011) Risk of agricultural practices and habitat change to farmland birds. Avian Conserv Ecol 6:5. https://doi.org/10.5751/ace-00446-060105
doi: 10.5751/ace-00446-060105
Kirk DA, Martin AE, Lindsay KE (2020) Organic farming benefits birds most in regions with more intensive agriculture. J Appl Ecol 57:1043–1055. https://doi.org/10.1111/1365-2664.13589
doi: 10.1111/1365-2664.13589
Kissane Z, Shephard JM (2017) The rise of glyphosate and new opportunities for biosentinel early-warning studies. Conserv Biol 31:1293–1300. https://doi.org/10.1111/cobi.12955
doi: 10.1111/cobi.12955
Kitowski I, Lopucki R, Stachniuk A, Fornal E (2021) Banned pesticide still poisoning EU raptors. Science 371:1319–1320. https://doi.org/10.1126/science.abh0840
doi: 10.1126/science.abh0840
Kitulagodage M, Buttemer WA, Astheimer LB (2011) Adverse effects of fipronil on avian reproduction and development: maternal transfer of fipronil to eggs in zebra finch Taeniopygia guttata and in ovo exposure in chickens Gallus domesticus. Ecotoxicology 20:653–660. https://doi.org/10.1007/s10646-011-0605-5
doi: 10.1007/s10646-011-0605-5
Köhler HR, Triebskorn R (2013) Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 341:759–765. https://doi.org/10.1126/science.1237591
doi: 10.1126/science.1237591
Koivisto E, Santangeli A, Koivisto P, Korkolainen T, Vuorisalo T, Hanski IK, Loivamaa I, Koivisto S (2018) The prevalence and correlates of anticoagulant rodenticide exposure in non-target predators and scavengers in Finland. Sci Total Environ 642:701–707. https://doi.org/10.1016/j.scitotenv.2018.06.063
doi: 10.1016/j.scitotenv.2018.06.063
Kolbenschlag S, Gerstle V, Eberhardt J, Bollinger E, Schulz R, Brühl CA, Bundschuh M (2023) A temporal perspective on aquatic subsidy: Bti affects emergence of Chironomidae. Ecotoxicol Environ Safe 250:10. https://doi.org/10.1016/j.ecoenv.2023.114503
doi: 10.1016/j.ecoenv.2023.114503
Korine C, Niv A, Axelrod M, Dahan T (2020) Species richness and activity of insectivorous bats in cotton fields in semi-arid and mesic Mediterranean agroecosystems. Mamm Biol 100:73–80. https://doi.org/10.1007/s42991-019-00002-z
doi: 10.1007/s42991-019-00002-z
Kragten S, Trimbos KB, de Snoo GR (2008) Breeding skylarks (Alauda arvensis) on organic and conventional arable farms in The Netherlands. Agric Ecosyst Environ 126:163–167. https://doi.org/10.1016/j.agee.2008.01.021
doi: 10.1016/j.agee.2008.01.021
Kraus JM, Kuivila KM, Hladik ML, Shook N, Mushet DM, Dowdy K, Harrington R (2021) Cross-ecosystem fluxes of pesticides from prairie wetlands mediated by aquatic insect emergence: implications for terrestrial insectivores. Environ Toxicol Chem 40:2282–2296. https://doi.org/10.1002/etc.5111
doi: 10.1002/etc.5111
Krebs JR, Wilson JD, Bradbury RB, Siriwardena GM (1999) The second silent spring? Nature 400:611–612. https://doi.org/10.1038/23127
doi: 10.1038/23127
Krief S, Berny P, Gumisiriza F, Gross R, Demeneix B, Fini JB, Chapman CA, Chapman LJ, Seguya A, Wasswa J (2017) Agricultural expansion as risk to endangered wildlife: pesticide exposure in wild chimpanzees and baboons displaying facial dysplasia. Sci Total Environ 598:647–656. https://doi.org/10.1016/j.scitotenv.2017.04.113
doi: 10.1016/j.scitotenv.2017.04.113
Krief S, Iglesias-Gonzalez A, Appenzeller BMR, Rachid L, Beltrame M, Asalu E, Okimat JP, Kane-Maguire N, Spirhanzlova P (2022) Chimpanzee exposure to pollution revealed by human biomonitoring approaches. Ecotox Environ Safe 233:11. https://doi.org/10.1016/j.ecoenv.2022.113341
doi: 10.1016/j.ecoenv.2022.113341
Krishnan K, Rahman S, Hasbum A, Morales D, Thompson LM, Crews D, Gore AC (2019) Maternal care modulates transgenerational effects of endocrine-disrupting chemicals on offspring pup vocalizations and adult behaviors. Horm Behav 107:96–109. https://doi.org/10.1016/j.yhbeh.2018.12.009
doi: 10.1016/j.yhbeh.2018.12.009
Kroll AJ, Verschuyl J, Giovanini J, Betts MG (2017) Assembly dynamics of a forest bird community depend on disturbance intensity and foraging guild. J Anim Ecol 54:784–793. https://doi.org/10.1111/1365-2664.12773
doi: 10.1111/1365-2664.12773
Kuijper DPJ, Oosterveld E, Wymenga E (2009) Decline and potential recovery of the European grey partridge (Perdix perdix) population: a review. Eur J Wildl Res 55:455–463. https://doi.org/10.1007/s10344-009-0311-2
doi: 10.1007/s10344-009-0311-2
Kuzukiran O, Simsek I, Yorulmaz T, Yurdakok-Dikmen B, Ozkan O, Filazi A (2021) Multiresidues of environmental contaminants in bats from Turkey. Chemosphere 282:131022. https://doi.org/10.1016/j.chemosphere.2021.131022
doi: 10.1016/j.chemosphere.2021.131022
Lajmanovich RC, Attademo AM, Simoniello MF, Poletta GL, Junges CM, Peltzer PM, Grenon P, Cabagna-Zenklusen MC (2015) Harmful effects of the dermal intake of commercial formulations containing Chlorpyrifos, 2,4-D, and Glyphosate on the common toad Rhinella arenarum (Anura: Bufonidae). Water Air Soil Pollut 226:427. https://doi.org/10.1007/s11270-015-2695-9
doi: 10.1007/s11270-015-2695-9
Lambert O, Pouliquen H, Clergeau P (2005) Impact of cholinesterase-inhibitor insecticides on non-target wildlife: a review of studies relative to terrestrial vertebrates. Rev Ecol Terre Vie 60:3–20
Latorre MA, Gonzalez ECL, Larriera A, Poletta GL, Siroski PA (2013) Effects of in vivo exposure to Roundup (R) on immune system of Caiman latirostris. J Immunotoxicol 10:349–354. https://doi.org/10.3109/1547691x.2012.747233
doi: 10.3109/1547691x.2012.747233
Latorre MA, Romito ML, Larriera A, Poletta GL, Siroski PA (2016) Total and differential white blood cell counts in Caiman latirostris after in ovo and in vivo exposure to insecticides. J Immunotoxicol 13:903–908. https://doi.org/10.1080/1547691x.2016.1236854
doi: 10.1080/1547691x.2016.1236854
Lazaran MA, Bocetti CI, Whyte RS (2013) Impacts of phragmites management on marsh wren nesting behavior. Wilson J Ornithol 125:184–187. https://doi.org/10.1676/11-098.1
doi: 10.1676/11-098.1
Leeb C, Brühl C, Theissinger K (2020) Potential pesticide exposure during the post-breeding migration of the common toad (Bufo bufo) in a vineyard dominated landscape. Sci Total Environ 706:134430. https://doi.org/10.1016/j.scitotenv.2019.134430
doi: 10.1016/j.scitotenv.2019.134430
Leemans M, Couderq S, Demeneix B, Fini J-B (2019) Pesticides with potential thyroid hormone-disrupting effects: a review of recent data. Front Endocrino 10:743. https://doi.org/10.3389/fendo.2019.00743
doi: 10.3389/fendo.2019.00743
Lenhardt PP, Brühl CA, Berger G (2015) Temporal coincidence of amphibian migration and pesticide applications on arable fields in spring. Basic Appl Ecol 16:54–63. https://doi.org/10.1016/j.baae.2014.10.005
doi: 10.1016/j.baae.2014.10.005
Lennon RJ, Isaac NJB, Shore RF, Peach WJ, Dunn JC, Pereira MG, Arnold KE, Garthwaite D, Brown CD (2019) Using long-term datasets to assess the impacts of dietary exposure to neonicotinoids on farmland bird populations in England. PLoS One 14:e0223093. https://doi.org/10.1371/journal.pone.0223093
doi: 10.1371/journal.pone.0223093
Lennon RJ, Peach WJ, Dunn JC, Shore RF, Pereira MG, Sleep D, Dodd S, Wheatley CJ, Arnold KE, Brown CD (2020) From seeds to plasma: confirmed exposure of multiple farmland bird species to clothianidin during sowing of winter cereals. Sci Total Environ 723:138056. https://doi.org/10.1016/j.scitotenv.2020.138056
doi: 10.1016/j.scitotenv.2020.138056
Li YJ, Miao RQ, Khanna M (2020) Neonicotinoids and decline in bird biodiversity in the United States. Nat Sustain 3:1027–1035. https://doi.org/10.1038/s41893-020-0582-x
doi: 10.1038/s41893-020-0582-x
Liebing J, Volker I, Curland N et al. (2020) Health status of free-ranging ring-necked pheasant chicks (Phasianus colchicus) in North-Western Germany. PLoS One 15. https://doi.org/10.1371/journal.pone.0234044
Lopez Gonzalez EC, Latorre MA, Larriera A, Siroski PA, Poletta GL (2013) Induction of micronuclei in broad snouted caiman (Caiman latirostris) hatchlings exposed in vivo to Roundup® (glyphosate) concentrations used in agriculture. Pest Biochem Physiol 105:131–134. https://doi.org/10.1016/j.pestbp.2012.12.009
doi: 10.1016/j.pestbp.2012.12.009
Lopez Gonzalez EC, Larriera A, Siroski PA, Poletta GL (2017) Micronuclei and other nuclear abnormalities on Caiman latirostris (Broad-snouted caiman) hatchlings after embryonic exposure to different pesticide formulations. Ecotox Environ Safe 136:84–91. https://doi.org/10.1016/j.ecoenv.2016.10.035
doi: 10.1016/j.ecoenv.2016.10.035
Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, Mateo R (2013) Experimental exposure of red-legged partridges (Alectoris rufa) to seeds coated with imidacloprid, thiram and difenoconazole. Ecotoxicology 22:125–138. https://doi.org/10.1007/s10646-012-1009-x
doi: 10.1007/s10646-012-1009-x
Lopez-Antia A, Ortiz-Santaliestra ME, Mateo R (2014) Experimental approaches to test pesticide-treated seed avoidance by birds under a simulated diversification of food sources. Sci Total Environ 496:179–187. https://doi.org/10.1016/j.scitotenv.2014.07.031
doi: 10.1016/j.scitotenv.2014.07.031
Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, Mateo R (2015) Imidacloprid-treated seed ingestion has lethal effect on adult partridges and reduces both breeding investment and offspring immunity. Environ Res 136:97–107. https://doi.org/10.1016/j.envres.2014.10.023
doi: 10.1016/j.envres.2014.10.023
Lopez-Antia A, Feliu J, Camarero PR, Ortiz-Santaliestra ME, Mateo R (2016) Risk assessment of pesticide seed treatment for farmland birds using refined field data. J Anim Ecol 53:1373–1381. https://doi.org/10.1111/1365-2664.12668
doi: 10.1111/1365-2664.12668
Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, Camarero PR, Mateo R (2018) Brood size is reduced by half in birds feeding on flutriafol-treated seeds below the recommended application rate. Environ Pollut 243:418–426. https://doi.org/10.1016/j.envpol.2018.08.078
doi: 10.1016/j.envpol.2018.08.078
Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, Camarero PR, Mateo R (2021) Birds feeding on tebuconazole treated seeds have reduced breeding output. Environ Pollut 271:9. https://doi.org/10.1016/j.envpol.2020.116292
doi: 10.1016/j.envpol.2020.116292
Lopez-Perea JJ, Camarero PR, Molina-Lopez RA, Parpal L, Obon E, Sola J, Mateo R (2015) Interspecific and geographical differences in anticoagulant rodenticide residues of predatory wildlife from the Mediterranean region of Spain. Sci Total Environ 511:259–267. https://doi.org/10.1016/j.scitotenv.2014.12.042
doi: 10.1016/j.scitotenv.2014.12.042
Lopez-Perea JJ, Camarero PR, Sanchez-Barbudo IS, Mateo R (2019) Urbanization and cattle density are determinants in the exposure to anticoagulant rodenticides of non-target wildlife. Environ Pollut 244:801–808. https://doi.org/10.1016/j.envpol.2018.10.101
doi: 10.1016/j.envpol.2018.10.101
Lopez-Perea JJ, Mateo R (2018) Secondary exposure to anticoagulant rodenticides and effects on predators. In: van den Brink NW, Elliott JE, Shore RF, Rattner BA (eds) Anticoagulant rodenticides and wildlife. Springer International Publishing, Sham, pp 159–193
Luzardo OP, Ruiz-Suarez N, Valeron PF, Camacho M, Zumbado M, Henriquez-Hernandez LA, Boada LD (2014) Methodology for the identification of 117 pesticides commonly involved in the poisoning of wildlife using GCMS-MS and LCMS-MS. J Anal Toxicol 38:155–163. https://doi.org/10.1093/jat/bku009
doi: 10.1093/jat/bku009
MacDonald AM, Jardine CM, Thomas PJ, Nemeth NM (2018) Neonicotinoid detection in wild turkeys (Meleagris gallopavo silvestris) in Ontario, Canada. Environ Sci Pollut Res 25:16254–16260. https://doi.org/10.1007/s11356-018-2093-0
doi: 10.1007/s11356-018-2093-0
Machado-Neves M, Neto MJO, Miranda DC et al (2018) Dietary exposure to tebuconazole affects testicular and epididymal histomorphometry in frugivorous bats. Bull Environ Contam Toxicol 101:197–204. https://doi.org/10.1007/s00128-018-2377-6
doi: 10.1007/s00128-018-2377-6
Magalhaes JZ, Udo MSB, Sanchez-Sarmiento AM, Carvalho MPN, Bernardi MM, Spinosa HS (2015) Prenatal exposure to fipronil disturbs maternal aggressive behavior in rats. Neurotoxicol Teratol 52:11–16. https://doi.org/10.1016/j.ntt.2015.09.007
doi: 10.1016/j.ntt.2015.09.007
Manabe M, Kanda S, Fukunaga K, Tsubura A, Nishiyama T (2006) Evaluation of the estrogenic activities of some pesticides and their combinations using MtT/Se cell proliferation assay. Int J Hyg Environ Health 209:413–421. https://doi.org/10.1016/j.ijheh.2006.04.004
doi: 10.1016/j.ijheh.2006.04.004
Margalida A (2012) Baits, Budget Cuts: A Deadly Mix. Science 338:192–192. https://doi.org/10.1126/science.338.6104.192-a
doi: 10.1126/science.338.6104.192-a
Martin PA, Johnson DL, Forsyth DJ, Hill BD (2000) Effects of two grasshopper control insecticides on food resources and reproductive success of two species of grassland songbirds. Environ Toxicol Chem 19:2987–2996. https://doi.org/10.1002/etc.5620191220
doi: 10.1002/etc.5620191220
Martinez-Haro M, Mateo R, Guitart R, Soler-Rodriguez F, Perez-Lopez M, Maria-Mojica P, Garcia-Fernandez AJ (2008) Relationship of the toxicity of pesticide formulations and their commercial restrictions with the frequency of animal poisonings. Ecotox Environ Safe 69:396–402. https://doi.org/10.1016/j.ecoenv.2007.05.006
doi: 10.1016/j.ecoenv.2007.05.006
Martinez-Haro M, Chinchilla JM, Camarero PR, Vinuelas JA, Crespo MJ, Mateo R (2022) Determination of glyphosate exposure in the Iberian hare: a potential focal species associated to agrosystems. Sci Total Environ 823:7. https://doi.org/10.1016/j.scitotenv.2022.153677
doi: 10.1016/j.scitotenv.2022.153677
Martinez-Lopez E, Maria-Mojica P, Martinez JE, Calvo JF, Wright J, Shore RF, Romero D, Garcia-Fernandez AJ (2007) Organochlorine residues in booted eagle (Hieraaetus pennatus) and goshawk (Accipiter gentilis) eggs from southeastern Spain. Environ Toxicol Chem 26:2373–2378. https://doi.org/10.1897/07-057r.1
doi: 10.1897/07-057r.1
Martinez-Lopez E, Espin S, Barbar F, Lambertucci SA, Gomez-Ramirez P, Garcia-Fernandez AJ (2015) Contaminants in the southern tip of South America: analysis of organochlorine compounds in feathers of avian scavengers from Argentinean Patagonia. Ecotox Environ Safe 115:83–92. https://doi.org/10.1016/j.ecoenv.2015.02.011
doi: 10.1016/j.ecoenv.2015.02.011
Martinez-Padilla J, Lopez-Idiaquez D, Lopez-Perea JJ, Mateo R, Paz A, Vinuela J (2017) A negative association between bromadiolone exposure and nestling body condition in common kestrels: management implications for vole outbreaks. Pest Manag Sci 73:364–370. https://doi.org/10.1002/ps.4435
doi: 10.1002/ps.4435
Mason R, Tennekes H, Sánchez-Bayo F, Jepsen P (2013) Immune suppression by neonicotinoid insecticides at the root of global wildlife declines. J Environ Immuno Toxicol 1:3–12. https://doi.org/10.7178/jeit.1
doi: 10.7178/jeit.1
Mateo-Tomas P, Olea PP, Minguez E, Mateo R, Vinuela J (2020) Direct evidence of poison-driven widespread population decline in a wild vertebrate. Proc Natl Acad Sci U S A 117:16418–16423. https://doi.org/10.1073/pnas.1922355117
doi: 10.1073/pnas.1922355117
Matthiessen P, Wheeler JR, Weltje L (2018) A review of the evidence for endocrine disrupting effects of current-use chemicals on wildlife populations. Crit Rev Toxicol 48:195–216. https://doi.org/10.1080/10408444.2017.1397099
doi: 10.1080/10408444.2017.1397099
Mauldin RE, Witmer GW, Shriner SA, Moulton RS, Horak KE (2020) Effects of brodifacoum and diphacinone exposure on four species of reptiles: tissue residue levels and survivorship. Pest Manag Sci 76:1958–1966. https://doi.org/10.1002/ps.5730
doi: 10.1002/ps.5730
Maute K, French K, Bull CM, Story P, Hose G (2015) Current insecticide treatments used in locust control have less of a short-term impact on Australian arid-zone reptile communities than does temporal variation. Wildl Res 42:50–59. https://doi.org/10.1071/wr14194
doi: 10.1071/wr14194
Maxwell S, Fuller RA, Brooks TM, Watson JEM (2016) The ravages of guns, nets and bulldozers. Nature 536:143–145. https://doi.org/10.1038/536143a
doi: 10.1038/536143a
Mayer M, Duan XD, Sunde P, Topping CJ (2020) European hares do not avoid newly pesticide-sprayed fields: overspray as unnoticed pathway of pesticide exposure. Sci Total Environ 715:136977. https://doi.org/10.1016/j.scitotenv.2020.136977
doi: 10.1016/j.scitotenv.2020.136977
McClure CJW, Westrip JRS, Johnson JA, Schulwitz SE, Virani MZ, Davies R, Symes A, Wheatley H, Thorstrom R, Amar A, Buij R, Jones VR, Williams NP, Buechley ER, Butchart SHM (2018) State of the world’s raptors: distributions, threats, and conservation recommendations. Biol Conserv 227:390–402. https://doi.org/10.1016/j.biocon.2018.08.012
doi: 10.1016/j.biocon.2018.08.012
McComb BC, Curtis L, Chambers CL, Newton M, Bentson K (2008) Acute toxic hazard evaluations of glyphosate herbicide on terrestrial vertebrates of the Oregon coast range. Environ Sci Pollut Res 15:266–272. https://doi.org/10.1065/espr2007.07.437
doi: 10.1065/espr2007.07.437
McConnell LL, Sparling DW (2010) Emerging contaminants and their potential effects on amphibians and reptiles. In: Sparling DW, Linder G, Bishop CA, Krest S (eds) Ecotoxicology of amphibians and reptiles, 2nd edn. Taylor & Francis, Boca Raton, pp 487–509
McGee S, Whitfield-Aslund M, Duca D, Kopysh N, Dan T, Knopper L, Brewer L (2018) Field evaluation of the potential for avian exposure to clothianidin following the planting of clothianidin-treated corn seed. PeerJ 6:e5880. https://doi.org/10.7717/peerj.5880
doi: 10.7717/peerj.5880
McKenzie AJ, Vickery JA, Leifert C, Shotton P, Whittingham MJ (2011) Disentangling the effects of fertilisers and pesticides on winter stubble use by farmland birds. Basic Appl Ecol 12:80–88. https://doi.org/10.1016/j.baae.2010.10.007
doi: 10.1016/j.baae.2010.10.007
McLaren BE, Emslie K, Honsberger T, McCready T, Bell FW, Foster RF (2011) Monitoring and understanding mammal assemblages: experiences from Bending Lake, Fallingsnow, and Tom Hill. Forestry Chronicle 87:225–234. https://doi.org/10.5558/tfc2011-010
doi: 10.5558/tfc2011-010
Mendes BD, Mesak C, Calixto JED, Malafaia G (2018) Mice exposure to haloxyfop-p-methyl ester at predicted environmentally relevant concentrations leads to anti-predatory response deficit. Environ Sci Pollut Res 25:31762–31770. https://doi.org/10.1007/s11356-018-3222-5
doi: 10.1007/s11356-018-3222-5
Meng ZY, Liu L, Yan S, Sun W, Jia M, Tian SN, Huang SR, Zhou ZQ, Zhu WT (2020) Gut microbiota: a key factor in the host health effects induced by pesticide exposure? J Agric Food Chem 68:10517–10531. https://doi.org/10.1021/acs.jafc.0c04678
doi: 10.1021/acs.jafc.0c04678
Merton D (1987) Eradication of rabbits from Round Island, Mauritius: a conservation success story. Dodo 24:19–43
Mestre AP, Amavet PS, Vanzetti AI, Moleon MS, Marco MVP, Poletta GL, Siroski PA (2019) Effects of cypermethrin (pyrethroid), glyphosate and chlorpyrifos (organophosphorus) on the endocrine and immune system of Salvator merianae (Argentine tegu). Ecotox Environ Safe 169:61–67. https://doi.org/10.1016/j.ecoenv.2018.10.057
doi: 10.1016/j.ecoenv.2018.10.057
Mestre AP, Amavet PS, Sloot IS, Carletti JV, Poletta GL, Siroski PA (2020) Effects of glyphosate, cypermethrin, and chlorpyrifos on hematological parameters of the tegu lizard (Salvator merianae) in different embryo stages. Chemosphere 252. https://doi.org/10.1016/j.chemosphere.2020.126433
Michel N, Burel F, Butet A (2006) How does landscape use influence small mammal diversity, abundance and biomass in hedgerow networks of farming landscapes? Acta Oecol. Int J Ecol 30:11–20. https://doi.org/10.1016/j.actao.2005.12.006
doi: 10.1016/j.actao.2005.12.006
Millot F, Berny P, Decors A, Bro E (2015) Little field evidence of direct acute and short-term effects of current pesticides on the grey partridge. Ecotox Environ Safe 117:41–61. https://doi.org/10.1016/j.ecoenv.2015.03.017
doi: 10.1016/j.ecoenv.2015.03.017
Millot F, Decors A, Mastain O, Quintaine T, Berny P, Vey D, Lasseur R, Bro E (2017) Field evidence of bird poisonings by imidacloprid-treated seeds: a review of incidents reported by the French SAGIR network from 1995 to 2014. Environ Sci Pollut Res 24:5469–5485. https://doi.org/10.1007/s11356-016-8272-y
doi: 10.1007/s11356-016-8272-y
Milner JM, van Beest FM, Storaas T (2013) Boom and bust of a moose population: a call for integrated forest management. Eur J for Res 132:959–967. https://doi.org/10.1007/s10342-013-0727-9
doi: 10.1007/s10342-013-0727-9
Mineau P (2002) Estimating the probability of bird mortality from pesticide sprays on the basis of the field study record. Environ Toxicol Chem 21:1497–1506. https://doi.org/10.1897/1551-5028(2002)021%3c1497:etpobm%3e2.0.co;2
doi: 10.1897/1551-5028(2002)021<1497:etpobm>2.0.co;2
Mineau P, Whiteside M (2006) Lethal risk to birds from insecticide use in the United States—a spatial and temporal analysis. Environ Toxicol Chem 25:1214–1222. https://doi.org/10.1897/05-035r.1
doi: 10.1897/05-035r.1
Mineau P, Whiteside M (2013) Pesticide acute toxicity is a better correlate of US grassland bird declines than agricultural intensification. PLoS One 8:e57457. https://doi.org/10.1371/journal.pone.0057457
doi: 10.1371/journal.pone.0057457
Mineau P, Downes CM, Kirk DA, Bayne E, Csizy M (2005) Patterns of bird species abundance in relation to granular insecticide use in the Canadian prairies. Ecoscience 12:267–278. https://doi.org/10.2980/i1195-6860-12-2-267.1
doi: 10.2980/i1195-6860-12-2-267.1
Mineau P, Callaghan C (2018) Neonicotinoid insecticides and bats: an assessment of the direct and indirect risk. Canadian Wildlife Federation, Kanata.  https://cwf-fcf.org/en/resources/research-papers/1809-014-Bats-and-Neonics-Report-high_rez.pdf
Mineau P, Palmer C (2013) The impact of the nation’s most widely used insecticides on birds. American Bird Conservancy, Washington.  https://dariuszzdziebk.wpenginepowered.com/wp-content/uploads/2015/05/Neonic_FINAL.pdf . Accessed 28 Mar 2024
Mingo V, Lotters S, Wagner N (2016) Risk of pesticide exposure for reptile species in the European Union. Environ Pollut 215:164–169. https://doi.org/10.1016/j.envpol.2016.05.011
doi: 10.1016/j.envpol.2016.05.011
Mingo V, Lotters S, Wagner N (2017) The impact of land use intensity and associated pesticide applications on fitness and enzymatic activity in reptiles-A field study. Sci Total Environ 590:114–124. https://doi.org/10.1016/j.scitotenv.2017.02.178
doi: 10.1016/j.scitotenv.2017.02.178
Mingo V (2018) The use of plant protection products and its impact on reptiles. Thesis report, Trier University.  https://ubt.opus.hbznrw.de/opus45-ubtr/frontdoor/deliver/index/docId/960/file/Dissertation_The+use+of+Plant+protection+products+and+its+impact+on+reptiles_29.05.18.pdf . Accessed 28 Mar 2024
Mohanty B, Pandey SP, Tsutsui K (2017) Thyroid disrupting pesticides impair the hypothalamic-pituitary-testicular axis of a wildlife bird, Amandava amandava. Reprod Toxicol 71:32–41. https://doi.org/10.1016/j.reprotox.2017.04.006
doi: 10.1016/j.reprotox.2017.04.006
Møller AP (2019) Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years. Ecol Evol 9:6581–6587. https://doi.org/10.1002/ece3.5236
Møller AP, Czeszczewik D, Flensted-Jensen E, Erritzoe J, Krams I, Laursen K, Liang W, Walankiewicz W (2021) Abundance of insects and aerial insectivorous birds in relation to pesticide and fertilizer use. Avian Res 12:9.  https://doi.org/10.1186/s40657-021-00278-1
Moreau J, Monceau K, Gonnet G, Pfister M, Bretagnolle V (2022a) Organic farming positively affects the vitality of passerine birds in agricultural landscapes. Agric Ecosyst Environ 336:9. https://doi.org/10.1016/j.agee.2022.108034
doi: 10.1016/j.agee.2022.108034
Moreau J, Rabdeau J, Badenhausser I, Giraudeau M, Sepp T, Crepin M, Gaffard A, Bretagnolle V, Monceau K (2022b) Pesticide impacts on avian species with special reference to farmland birds: a review. Environ Monit Assess 194:48. https://doi.org/10.1007/s10661-022-10394-0
doi: 10.1007/s10661-022-10394-0
Moriceau MA, Lefebvre S, Fourel I, Benoit E, Buronfosse-Roque F, Orabi P, Rattner B, Lattard V (2022) Exposure of predatory and scavenging birds to anticoagulant rodenticides in France: exploration of data from French surveillance programs. Sci Total Environ 810:151291. https://doi.org/10.1016/j.scitotenv.2021.151291
doi: 10.1016/j.scitotenv.2021.151291
Morris SA, Thompson HM (2011) Dehusking of seed by small mammals: default values for use in risk assessment. Integr Environ Assess Manag 7:147–148. https://doi.org/10.1002/ieam.145
doi: 10.1002/ieam.145
Morris AJ, Wilson JD, Whittingham MJ, Bradbury RB (2005) Indirect effects of pesticides on breeding yellowhammer (Emberiza citrinella). Agric Ecosyst Environ 106:1–16. https://doi.org/10.1016/j.agee.2004.07.016
doi: 10.1016/j.agee.2004.07.016
Morrissey C, Fritsch C, Fremlin K, Adams W, Borga K, Brinkmann M, Eulaers I, Gobas F, Moore DRJ, van den Brink N, Wickwire T (2023) Advancing exposure assessment approaches to improve wildlife risk assessment. Integr Environ Assess Manag 25. https://doi.org/10.1002/ieam.4743
Mougeot F, Garcia J, Viñuela J (2011) Breeding biology, behaviour, diet and conservation of the Red Kite (Milvus milvus), with particular emphasis on Mediterranean populations. In: Zuberogoitia I, Martínez JE (eds) Ecology and conservation of European forest raptors and owls. Diputación Foral de Vizcaya, Bilbao, pp 190–204.  http://www.eeza.csic.es/Documentos/Publicaciones/2011-Red%20kite%20book%20chapter.pdf . Accessed 28 Mar 2024
Moye JK, Pritsos CA (2010) Effects of chlorpyrifos and aldicarb on flight activity and related cholinesterase inhibition in homing pigeons, columba livia: potential for migration effects. Bull Environ Contam Toxicol 84:677–681. https://doi.org/10.1007/s00128-010-0020-2
doi: 10.1007/s00128-010-0020-2
Naim M, Noor HM, Kasim A, Abu J (2010) Growth performance of nestling barn owls, Tyto Alba javanica in rat baiting area in Malaysia. ARPN J Agric Biol Sci 5:1–13
Naim M, Noor HM, Kasim A, Abu J (2011) Comparison of the breeding performance of the barn owl Tyto alba javanica under chemical and bio-based rodenticide baiting in immature oil palms in Malaysia. Dynamic Biochemistry, Process Biotechnology and Molecular Biology 5:5–11.  http://www.globalsciencebooks.info/Online/GSBOnline/images/2011/DBPBMB_5(SI2)/DBPBMB_5(SI2)5-11o.pdf . Accessed 26 Mar 2024
Nakayama SMM, Morita A, Ikenaka Y, Mizukawa H, Ishizuka M (2019) A review: poisoning by anticoagulant rodenticides in non-target animals globally. J Vet Med Sci 81:298–313. https://doi.org/10.1292/jvms.17-0717
doi: 10.1292/jvms.17-0717
Neuman-Lee LA, Gaines KF, Baumgartner KA, Voorhees JR, Novak JM, Mullin SJ (2014) Assessing multiple endpoints of atrazine ingestion on gravid Northern watersnakes (Nerodia sipedon) and their offspring. Environ Toxicol 29:1072–1082. https://doi.org/10.1002/tox.21837
doi: 10.1002/tox.21837
Newton I (2013) Organochlorine pesticides and birds. British Birds 106:189–205
Norton L, Johnson P, Joys A, Stuart R, Chamberlain D, Feber R, Firbank L, Manley W, Wolfe M, Hart B, Mathews F, MacDonald D, Fuller RJ (2009) Consequences of organic and non-organic farming practices for field, farm and landscape complexity. Agric Ecosyst Environ 129:221–227. https://doi.org/10.1016/j.agee.2008.09.002
doi: 10.1016/j.agee.2008.09.002
Ockleford C, Adriaanse P, Berny P et al. (2018) Scientific Opinion on the state of the science on pesticide risk assessment for amphibians and reptiles. Efsa J 16. https://doi.org/10.2903/j.efsa.2018.5125
Odderskaer P, Prang A, Poulsen JG, Andersen PN, Elmegaard N (1997) Skylark (Alauda arvensis) utilisation of micro-habitats in spring barley fields. Agric Ecosyst Environ 62:21–29. https://doi.org/10.1016/s0167-8809(96)01113-9
doi: 10.1016/s0167-8809(96)01113-9
O’Donnell KM, Thompson FR, Semlitsch RD (2015) Prescribed fire and timber harvest effects on terrestrial salamander abundance, detectability, and microhabitat use. J Wildl Manag 79:766–775. https://doi.org/10.1002/jwmg.884
doi: 10.1002/jwmg.884
Ojelade BS, Durowoju OS, Adesoye PO, Gibb SW, Ekosse GI (2022) Review of glyphosate-based herbicide and aminomethylphosphonic acid (AMPA): environmental and health impacts. Appl Sci-Basel 12:29. https://doi.org/10.3390/app12178789
doi: 10.3390/app12178789
Okoniewski JC, Stone WB, Hynes KP (2006) Continuing organochlorine insecticide mortality in wild birds in New York, 2000–2004. Bull Environ Contam Toxicol 77:726–731. https://doi.org/10.1007/s00128-006-1124-6
doi: 10.1007/s00128-006-1124-6
Olea PP, Sanchez-Barbudo IS, Vinuela J, Barja I, Mateo-Tomas P, Pineiro A, Mateo R, Purroy FJ (2009) Lack of scientific evidence and precautionary principle in massive release of rodenticides threatens biodiversity: old lessons need new reflections. Environ Conserv 36:1–4. https://doi.org/10.1017/s0376892909005323
doi: 10.1017/s0376892909005323
Oliveira JM, Destro ALF, Freitas MB, Oliveira LL (2021) How do pesticides affect bats?—a brief review of recent publications. Braz J Biol 81:499–507. https://doi.org/10.1590/1519-6984.225330
doi: 10.1590/1519-6984.225330
Ortiz-Santaliestra ME, Alcaide V, Camarero PR, Mateo R, Mougeot F (2020) Egg overspray with herbicides and fungicides reduces survival of red-Legged partridge chicks. Environ Sci Technol 54:12402–12411. https://doi.org/10.1021/acs.est.0c04203
doi: 10.1021/acs.est.0c04203
O’Shea TJ, Cryan PM, Hayman DTS, Plowright RK, Streicker DG (2016) Multiple mortality events in bats: a global review. Mammal Rev 46:175–190. https://doi.org/10.1111/mam.12064
doi: 10.1111/mam.12064
O'Shea TJ, Johnston JJ (2009) Environmental contaminants and bats: investigating exposure and effects. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats. Johns Hopkins University Press, Baltimore, pp 500–528
Ottinger MA, Dean KM (2011) Neuroendocrine impacts of endocrine-disrupting chemicals in birds: Life stage and species sensitivities. J Toxicol Environ Heal 14:413–422. https://doi.org/10.1080/10937404.2011.578560
doi: 10.1080/10937404.2011.578560
Pandey SP, Mohanty B (2015) The neonicotinoid pesticide imidacloprid and the dithiocarbamate fungicide mancozeb disrupt the pituitary-thyroid axis of a wildlife bird. Chemosphere 122:227–234. https://doi.org/10.1016/j.chemosphere.2014.11.061
doi: 10.1016/j.chemosphere.2014.11.061
Pandey SP, Tsutsui K, Mohanty B (2017) Endocrine disrupting pesticides impair the neuroendocrine regulation of reproductive behaviors and secondary sexual characters of red munia (Amandava amandava). Physiol Behav 173:15–22. https://doi.org/10.1016/j.physbeh.2017.01.030
doi: 10.1016/j.physbeh.2017.01.030
Park KJ (2015) Mitigating the impacts of agriculture on biodiversity: bats and their potential role as bioindicators. Mamm Biol 80:191–204. https://doi.org/10.1016/j.mambio.2014.10.004
doi: 10.1016/j.mambio.2014.10.004
Peillex C, Pelletier M (2020) The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. J Immunotoxicol 17:163–174. https://doi.org/10.1080/1547691x.2020.1804492
doi: 10.1080/1547691x.2020.1804492
Pelosi C, Bertrand C, Daniele G, Coeurdassier M, Benoit P, Nelieu S, Lafay F, Bretagnolle V, Gaba S, Vulliet E, Fritsch C (2021) Residues of currently used pesticides in soils and earthworms: a silent threat? Agric Ecosyst Environ 305:13. https://doi.org/10.1016/j.agee.2020.107167
doi: 10.1016/j.agee.2020.107167
Persson L, Almroth BMC, Collins CD, Cornell S, de Wit CA, Diamond ML, Fantke P, Hassellov M, MacLeod M, Ryberg MW, Jorgensen PS, Villarrubia-Gomez P, Wang ZY, Hauschild MZ (2022) Outside the safe operating space of the planetary boundary for novel entities. Environ Sci Technol 56:1510–1521. https://doi.org/10.1021/acs.est.1c04158
doi: 10.1021/acs.est.1c04158
Pesce S, Mamy L, Achard AL, Le Gall M, Le Perchec S, Rechauchere O, Tibi A, Leenhardt S, Sanchez W (2021) Collective scientific assessment as a relevant tool to inform public debate and policy making: an illustration about the effects of plant protection products on biodiversity and ecosystem services. Environ Sci Pollut Res 28:38448–38454. https://doi.org/10.1007/s11356-021-14863-w
doi: 10.1007/s11356-021-14863-w
Peveling R, Demba SA (2003) Toxicity and pathogenicity of Metarhizium anisopliae var. acridum (Deuteromycotina, Hyphomycetes) and fipronil to the fringe-toed lizard Acanthodactylus dumerili (Squamata: Lacertidae). Environ Toxicol Chem 22:1437–1447. https://doi.org/10.1002/etc.5620220704
doi: 10.1002/etc.5620220704
Peveling R, McWilliam AN, Nagel P, Rasolomanana H, Raholijaona RL, Ravoninjatovo A, Dewhurst CF, Gibson G, Rafanomezana S, Tingle CCD (2003) Impact of locust control on harvester termites and endemic vertebrate predators in Madagascar. J Anim Ecol 40:729–741. https://doi.org/10.1046/j.1365-2664.2003.00833.x
doi: 10.1046/j.1365-2664.2003.00833.x
Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzweiser DP, Krupke C, Liess M, McField M, Morrissey CA, Noome DA, Settele J, Simon-Delso N, Stark JD, Van der Sluijs JP, Van Dyck H, Wiemers M (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res 22:68–102. https://doi.org/10.1007/s11356-014-3471-x
doi: 10.1007/s11356-014-3471-x
Plaza PI, Martinez-Lopez E, Lambertucci SA (2019) The perfect threat: pesticides and vultures. Sci Total Environ 687:1207–1218. https://doi.org/10.1016/j.scitotenv.2019.06.160
doi: 10.1016/j.scitotenv.2019.06.160
Pocock MJO, Jennings N (2008) Testing biotic indicator taxa: the sensitivity of insectivorous mammals and their prey to the intensification of lowland agriculture. J Anim Ecol 45:151–160. https://doi.org/10.1111/j.1365-2664.2007.01361.x
doi: 10.1111/j.1365-2664.2007.01361.x
Poisson MC, Garrett DR, Sigouin A, Belisle M, Garant D, Haroune L, Bellenger JP, Pelletier F (2021) Assessing pesticides exposure effects on the reproductive performance of a declining aerial insectivore. Ecol Appl 31:13. https://doi.org/10.1002/eap.2415
doi: 10.1002/eap.2415
Ponce C, Alonso JC, Argandona G, Fernandez AG, Carrasco M (2010) Carcass removal by scavengers and search accuracy affect bird mortality estimates at power lines. Anim Conserv 13:603–612. https://doi.org/10.1111/j.1469-1795.2010.00387.x
doi: 10.1111/j.1469-1795.2010.00387.x
Potts GR (1986) The partridge: pesticides, predation and conservation. Sheridan House Inc, New York
Poulin B, Lefebvre G (2018) Perturbation and delayed recovery of the reed invertebrate assemblage in Camargue marshes sprayed with Bacillus thuringiensis israelensis. Insect Sci 25:542–548. https://doi.org/10.1111/1744-7917.12416
doi: 10.1111/1744-7917.12416
Poulin B, Lefebvre G, Paz L (2010) Red flag for green spray: adverse trophic effects of Bti on breeding birds. J Anim Ecol 47:884–889. https://doi.org/10.1111/j.1365-2664.2010.01821.x
doi: 10.1111/j.1365-2664.2010.01821.x
Poulin B, Tetrel C, Lefebvre G (2021) Impact of mosquito control operations on waterbirds in a Camargue nature reserve. Wetl Ecol Manag 30:1049–1064.  https://doi.org/10.1007/s11273-021-09834-4
Power AG (2010) Ecosystem services and agriculture: trade-offs and synergies. Philos Trans R Soc B-Biol Sci 365:2959–2971. https://doi.org/10.1098/rstb.2010.0143
doi: 10.1098/rstb.2010.0143
Prosser P, Hart ADM (2005) Assessing potential exposure of birds to pesticide-treated seeds. Ecotoxicology 14:679–691. https://doi.org/10.1007/s10646-005-0018-4
doi: 10.1007/s10646-005-0018-4
Prosser RS, Anderson JC, Hanson ML, Solomon KR, Sibley PK (2016) Indirect effects of herbicides on biota in terrestrial edge-of-field habitats: a critical review of the literature. Agric Ecosyst Environ 232:59–72. https://doi.org/10.1016/j.agee.2016.07.009
doi: 10.1016/j.agee.2016.07.009
Prouteau L (2021) Caractérisation de la contamination en pesticides azoles et néonicotinoïdes chez les espèces d’intérêt localisées en région Nouvelle-Aquitaine : développement de méthodes analytiques et applications. Sciences de l'environnement. Université de La Rochelle (ULR), 2021. PhD. Thesis.  https://hal.science/tel-03359720 . Accessed 26 Mar 2024
Put JE, Mitchell GW, Fahrig L (2018) Higher bat and prey abundance at organic than conventional soybean fields. Biol Conserv 226:177–185. https://doi.org/10.1016/j.biocon.2018.06.021
doi: 10.1016/j.biocon.2018.06.021
Rattner BA (2009) History of wildlife toxicology. Ecotoxicology 18:773–783. https://doi.org/10.1007/s10646-009-0354-x
doi: 10.1007/s10646-009-0354-x
Rattner BA, Harvey JJ (2021) Challenges in the interpretation of anticoagulant rodenticide residues and toxicity in predatory and scavenging birds. Pest Manag Sci 77:604–610.  https://doi.org/10.1002/ps.6137
Rattner BA, Horak KE, Warner SE, Day DD, Meteyer CU, Volker SF, Eisemann JD, Johnston JJ (2011) Acute toxicity, histopathology, and coagulopathy in American kestrels (Falco sparverius) following administration of the rodenticide diphacinone. Environ Toxicol Chem 30:1213–1222. https://doi.org/10.1002/etc.490
doi: 10.1002/etc.490
Rattner BA, Horak KE, Lazarus RS, Eisenreich KM, Meteyer CU, Volker SF, Campton CM, Eisemann JD, Johnston JJ (2012) Assessment of toxicity and potential risk of the anticoagulant rodenticide diphacinone using Eastern screech-owls (Megascops asio). Ecotoxicology 21:832–846. https://doi.org/10.1007/s10646-011-0844-5
doi: 10.1007/s10646-011-0844-5
Rattner BA, Horak KE, Lazarus RS, Goldade DA, Johnston JJ (2014) Toxicokinetics and coagulopathy threshold of the rodenticide diphacinone in eastern screech-owls (Megascops asio). Environ Toxicol Chem 33:74–81. https://doi.org/10.1002/etc.2390
doi: 10.1002/etc.2390
Rattner BA, Volker SF, Lankton JS, Bean TG, Lazarus RS, Horak KE (2020) Brodifacoum toxicity in American kestrels (Falco sparverius) with evidence of increased hazard on subsequent anticoagulant rodenticide exposure. Environ Toxicol Chem 39:468–481. https://doi.org/10.1002/etc.4629
doi: 10.1002/etc.4629
Rattner BA, Bean TG, Beasley VR et al (2023) Wildlife ecological risk assessment in the 21st century: promising technologies to assess toxicological effects. Integr Environ Assess Manag. https://doi.org/10.1002/ieam.4806
doi: 10.1002/ieam.4806
Rauschenberger RH, Wiebe JJ, Buckland JE, Smith JT, Sepulveda MS, Gross TS (2004) Achieving environmentally relevant organochlorine pesticide concentrations in eggs through maternal exposure in Alligator mississippiensis. Mar Environ Res 58:851–856. https://doi.org/10.1016/j.marenvres.2004.03.104
doi: 10.1016/j.marenvres.2004.03.104
Rauschenberger RH, Wiebe JJ, Sepulveda MS, Scarborough JE, Gross TS (2007) Parental exposure to pesticides and poor clutch viability in American alligators. Environ Sci Technol 41:5559–5563. https://doi.org/10.1021/es0628194
doi: 10.1021/es0628194
Read WF, English SG, Hick KG, Bishop CA (2021) Bluebirds experience impaired hatching success in conventionally sprayed apple orchard habitats: A 31-Year Study. Environ Toxicol Chem 40:3369–3378. https://doi.org/10.1002/etc.5218
doi: 10.1002/etc.5218
Reif J, Hanzelka J (2020) Continent-wide gradients in open-habitat insectivorous bird declines track spatial patterns in agricultural intensity across Europe. Glob Ecol Biogeogr 29:1988–2013. https://doi.org/10.1111/geb.13170
doi: 10.1111/geb.13170
Relyea RA (2005) The lethal impact of roundup on aquatic and terrestrial amphibians. Ecol Appl 15:1118–1124. https://doi.org/10.1890/04-1291
doi: 10.1890/04-1291
Rey PJ (2011) Preserving frugivorous birds in agro-ecosystems: lessons from Spanish olive orchards. J Anim Ecol 48:228–237. https://doi.org/10.1111/j.1365-2664.2010.01902.x
doi: 10.1111/j.1365-2664.2010.01902.x
Rial-Berriel C, Acosta-Dacal A, Zumbado M, Henríquez-Hernández LA, Rodríguez-Hernández Á, Macías-Montes A, Boada LD, Travieso-Aja MM, Cruz BM, Luzardo OP (2021) A method scope extension for the simultaneous analysis of POPs, current-use and banned pesticides, rodenticides, and pharmaceuticals in liver. Application to food safety and biomonitoring. Toxics 9:238. https://doi.org/10.3390/toxics9100238
doi: 10.3390/toxics9100238
Richmond ME (2018) Glyphosate: A review of its global use, environmental impact, and potential health effects on humans and other species. J Environ Stud Sci 8:416–434. https://doi.org/10.1007/s13412-018-0517-2
doi: 10.1007/s13412-018-0517-2
Rieke S, Heise T, Schmidt F, Haider W, Bednarz H, Niehaus K, Mentz A, Kalinowski J, Hirsch-Ernst KI, Steinberg P, Niemann L, Marx-Stoelting P (2017) Mixture effects of azole fungicides on the adrenal gland in a broad dose range. Toxicology 385:28–37. https://doi.org/10.1016/j.tox.2017.04.012
doi: 10.1016/j.tox.2017.04.012
Rigal S, Dakos V, Alonso H et al (2023) Farmland practices are driving bird population decline across Europe. Proc Natl Acad Sci USA 120:e2216573120. https://doi.org/10.1073/pnas.2216573120
doi: 10.1073/pnas.2216573120
Rivers JW, Verschuyl J, Schwarz CJ, Kroll AJ, Bett MG (2019) No evidence of a demographic response to experimental herbicide treatments by the White-crowned Sparrow, an early successional forest songbird. Condor 121:duz004. https://doi.org/10.1093/condor/duz004
doi: 10.1093/condor/duz004
Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Anim Ecol 39:157–176. https://doi.org/10.1046/j.1365-2664.2002.00695.x
doi: 10.1046/j.1365-2664.2002.00695.x
Rogers KH, McMillin S, Olstad KJ, Poppenga RH (2019) Imidacloprid poisoning of songbirds following a drench application of trees in a residential neighbourhood in California. USA Environ Toxicol Chem 38:1724–1727. https://doi.org/10.1002/etc.4473
doi: 10.1002/etc.4473
Rohr JR, Kerby JL, Sih A (2006) Community ecology as a framework for predicting contaminant effects. Trends Ecol Evol 21:606–613. https://doi.org/10.1016/j.tree.2006.07.002
doi: 10.1016/j.tree.2006.07.002
Rohr JR, Schotthoefer AM, Raffel TR, Carrick HJ, Halstead N, Hoverman JT, Johnson CM, Johnson LB, Lieske C, Piwoni MD, Schoff PK, Beasley VR (2008) Agrochemicals increase trematode infections in a declining amphibian species. Nature 455:1235-U50. https://doi.org/10.1038/nature07281
doi: 10.1038/nature07281
Rohr JR, Barrett CB, Civitello DJ, Craft ME, Delius B, DeLeo GA, Hudson PJ, Jouanard N, Nguyen KH, Ostfeld RS, Remais JV, Riveau G, Sokolow SH, Tilman D (2019) Emerging human infectious diseases and the links to global food production. Nat Sustain 2:445–456. https://doi.org/10.1038/s41893-019-0293-3
doi: 10.1038/s41893-019-0293-3
Rolek BW, Harrison DJ, Loftin CS, Wood PB (2018) Regenerating clearcuts combined with postharvest forestry treatments promote habitat for breeding and post-breeding spruce-fir avian assemblages in the Atlantic Northern Forest. For Ecol Manag 427:392–413. https://doi.org/10.1016/j.foreco.2018.05.068
doi: 10.1016/j.foreco.2018.05.068
Rosenberg KV, Dokter AM, Blancher PJ, Sauer JR, Smith AC, Smith PA, Stanton JC, Panjabi A, Helft L, Parr M, Marra PP (2019) Decline of the North American avifauna. Science 366:120–124. https://doi.org/10.1126/science.aaw1313
doi: 10.1126/science.aaw1313
Rowe CL (2008) “The calamity of so long life”: life histories, contaminants, and potential emerging threats to long-lived vertebrates. Bioscience 58:623–631. https://doi.org/10.1641/b580709
doi: 10.1641/b580709
Roy CL, Chen D (2023) High population prevalence of neonicotinoids in sharp-tailed grouse and greater prairie-chickens across an agricultural gradient during spring and fall. Sci Total Environ 856:14. https://doi.org/10.1016/j.scitotenv.2022.159120
doi: 10.1016/j.scitotenv.2022.159120
Roy C, Grolleau G, Chamoulaud S, Riviere JL (2005) Plasma B-esterase activities in European raptors. J Wildl Dis 41:184–208. https://doi.org/10.7589/0090-3558-41.1.184
doi: 10.7589/0090-3558-41.1.184
Roy CL, Coy PL, Chen D, Ponder J, Jankowski M (2019) Multi-scale availability of neonicotinoid-treated seed for wildlife in an agricultural landscape during spring planting. Sci Total Environ 682:271–281. https://doi.org/10.1016/j.scitotenv.2019.05.010
doi: 10.1016/j.scitotenv.2019.05.010
Ruiz D, Regnier SM, Kirkley AG, Hara M, Haro F, Aldirawi H, Dybala MP, Sargis RM (2019) Developmental exposure to the endocrine disruptor tolylfluanid induces sex-specific later-life metabolic dysfunction. Reprod Toxicol 89:74–82. https://doi.org/10.1016/j.reprotox.2019.06.010
doi: 10.1016/j.reprotox.2019.06.010
Rumschlag SL, Rohr JR (2018) The influence of pesticide use on amphibian chytrid fungal infections varies with host life stage across broad spatial scales. Glob Ecol Biogeogr 27:1277–1287. https://doi.org/10.1111/geb.12784
doi: 10.1111/geb.12784
Rusch A, Chaplin-Kramer R, Gardiner MM, Hawro V, Holland J, Landis D, Thies C, Tscharntke T, Weisser WW, Winqvist C, Woltz M, Bommarco R (2016) Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric Ecosyst Environ 221:198–204. https://doi.org/10.1016/j.agee.2016.01.039
doi: 10.1016/j.agee.2016.01.039
Ruuskanen S, Rainio MJ, Uusitalo M, Saikkonen K, Helander M (2020a) Effects of parental exposure to glyphosate-based herbicides on embryonic development and oxidative status: a long-term experiment in a bird model. Sci Rep 10:6349. https://doi.org/10.1038/s41598-020-63365-1
doi: 10.1038/s41598-020-63365-1
Ruuskanen S, Rainio MJ, Kuosmanen V, Laihonen M, Saikkonen K, Saloniemi I, Helander M (2020b) Female preference and adverse developmental effects of glyphosate-based herbicides on ecologically relevant traits in Japanese quails. Environ Sci Technol 54:1128–1135. https://doi.org/10.1021/acs.est.9b07331
doi: 10.1021/acs.est.9b07331
Ruuskanen S, Rainio MJ, Gomez-Gallego C, Selenius O, Salminen S, Collado MC, Saikkonen K, Saloniemi I, Helander M (2020c) Glyphosate-based herbicides influence antioxidants, reproductive hormones and gut microbiome but not reproduction: a long-term experiment in an avian model. Environ Pollut 266:115108. https://doi.org/10.1016/j.envpol.2020.115108
doi: 10.1016/j.envpol.2020.115108
Saaristo M, Brodin T, Balshine S, Bertram MG, Brooks BW, Ehlman SM, McCallum ES, Sih A, Sundin J, Wong BBM, Arnold KE (2018) Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife. Proc R Soc B-Biol Sci 285:20181297. https://doi.org/10.1098/rspb.2018.1297
doi: 10.1098/rspb.2018.1297
Sabin LB, Mora MA (2022) Ecological risk assessment of the effects of neonicotinoid insecticides on northern bobwhites (Colinus virginianus) in the South Texas Plains Ecoregion. Integr Environ Assess Manag 18:488–499. https://doi.org/10.1002/ieam.4479
doi: 10.1002/ieam.4479
Sanchez LC, Peltzer PM, Lajmanovich RC, Manzano AS, Junges CM, Attademo AM (2013) Reproductive activity of anurans in a dominant agricultural landscape from central-eastern Argentina. Rev Mex Biodivers 84:912–926. https://doi.org/10.7550/rmb.32842
doi: 10.7550/rmb.32842
Sanchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27. https://doi.org/10.1016/j.biocon.2019.01.020
doi: 10.1016/j.biocon.2019.01.020
Satre D, Reichert M, Corbitt C (2009) Effects of vinclozolin, an anti-androgen, on affiliative behavior in the Dark-eyed Junco, Junco hyemalis. Environ Res 109:400–404. https://doi.org/10.1016/j.envres.2009.01.004
doi: 10.1016/j.envres.2009.01.004
Schabacker J, Hahne J, Ludwigs JD, Vallon M, Foudoulakis M, Murfitt R, Ristau K (2021) Residue levels of pesticides on fruits for use in wildlife risk Assessments. Integr Environ Assess Manag 17:552–561. https://doi.org/10.1002/ieam.4345
doi: 10.1002/ieam.4345
Schanzer S, Koch M, Kiefer A et al (2022) Analysis of pesticide and persistent organic pollutant residues in German bats. Chemosphere 305:135342. https://doi.org/10.1016/j.chemosphere.2022.135342
doi: 10.1016/j.chemosphere.2022.135342
Scharenberg W, Struwe-Juhl B (2006) White-tailed eagles (Haliaeetus albicilla) in Schleswig-Holstein no longer endangered by organochlorines. Bull Environ Contam Toxicol 77:888–895. https://doi.org/10.1007/s00128-006-1227-0
doi: 10.1007/s00128-006-1227-0
Schaumburg LG, Siroski PA, Poletta GL, Mudry MD (2016) Genotoxicity induced by Roundup® (Glyphosate) in tegu lizard (Salvator merianae) embryos. Pest Biochem Physiol 130:71–78. https://doi.org/10.1016/j.pestbp.2015.11.009
doi: 10.1016/j.pestbp.2015.11.009
Scholz S, Nichols JW, Escher BI et al (2022) The eco-exposome concept: supporting an integrated assessment of mixtures of environmental chemicals. Environ Toxicol Chem 41:30–45. https://doi.org/10.1002/etc.5242
doi: 10.1002/etc.5242
Shimshoni JA, Evgeny E, Lublin A, Cuneah O, King R, Horowitz I, Shlosberg A (2012) Determination of brain cholinesterase activity in normal and pesticide exposed wild birds in Israel. Isr J Vet Med 67:214–219
Shinya S, Sashika M, Minamikawa M, Itoh T, Yohannes YB, Nakayama SMM, Ishizuka M, Nimako C, Ikenaka Y (2022) Estimation of the effects of neonicotinoid insecticides on wild raccoon, Procyon lotor, in Hokkaido, Japan: Urinary concentrations and hepatic metabolic capability of neonicotinoids. Environ Toxicol Chem 41:1865–1874. https://doi.org/10.1002/etc.5349
doi: 10.1002/etc.5349
Sievers M, Hale R, Parris KM, Melvin SD, Lanctot CM, Swearer SE (2019) Contaminant-induced behavioural changes in amphibians: a meta-analysis. Sci Total Environ 693:133570. https://doi.org/10.1016/j.scitotenv.2019.07.376
doi: 10.1016/j.scitotenv.2019.07.376
Sigouin A, Bélisle M, Garant D, Pelletier F (2021) Agricultural pesticides and ectoparasites: potential combined effects on the physiology of a declining aerial insectivore. Conserv Physol 9:coab025. https://doi.org/10.1093/conphys/coab025
doi: 10.1093/conphys/coab025
Silva JM, Navoni JA, Freire EMX (2020) Lizards as model organisms to evaluate environmental contamination and biomonitoring. Environ Monit Assess 192. https://doi.org/10.1007/s10661-020-08435-7
Siriwardena GM, Crick HQP, Baillie SR, Wilson JD (2000) Agricultural land-use and the spatial distribution of granivorous lowland farmland birds. Ecography 23:702–719. https://doi.org/10.1034/j.1600-0587.2000.230608.x
doi: 10.1034/j.1600-0587.2000.230608.x
Siroski PA, Poletta GL, Latorre MA, Merchant ME, Ortega HH, Mudry MD (2016) Immunotoxicity of commercial-mixed glyphosate in broad snouted caiman (Caiman latirostris). Chem-Biol Interact 244:64–70. https://doi.org/10.1016/j.cbi.2015.11.031
doi: 10.1016/j.cbi.2015.11.031
Sladek B, Burger L, Munn I (2008) Avian community response to mid-rotation herbicide release and prescribed burning in Conservation Reserve Program plantations. South J Appl for 32:111–119. https://doi.org/10.1093/sjaf/32.3.111
doi: 10.1093/sjaf/32.3.111
Smalling KL, Fellers GM, Kleeman PM, Kuivila KM (2013) Accumulation of pesticides in pacific chorus frogs (Pseudacris regilla) from California’s Sierra Nevada Mountains, USA. Environ Toxicol Chem 32:2026–2034. https://doi.org/10.1002/etc.2308
doi: 10.1002/etc.2308
Smalling KL, Reeves R, Muths E, Vandever M, Battaglin WA, Hladik ML, Pierce CL (2015) Pesticide concentrations in frog tissue and wetland habitats in a landscape dominated by agriculture. Sci Total Environ 502:80–90. https://doi.org/10.1016/j.scitotenv.2014.08.114
doi: 10.1016/j.scitotenv.2014.08.114
Smart J, Amar A, Sim IMW, Etheridge B, Cameron D, Christie G, Wilson JD (2010) Illegal killing slows population recovery of a re-introduced raptor of high conservation concern - The red kite Milvus milvus. Biol Conserv 143:1278–1286. https://doi.org/10.1016/j.biocon.2010.03.002
doi: 10.1016/j.biocon.2010.03.002
Spiller KJ, Dettmers R (2019) Evidence for multiple drivers of aerial insectivore declines in North America. Condor 121:13. https://doi.org/10.1093/condor/duz010
doi: 10.1093/condor/duz010
Stahlschmidt P, Brühl CA (2012) Bats at risk? Bat activity and insecticide residue analysis of food items in an apple orchard. Environ Toxicol Chem 31:1556–1563. https://doi.org/10.1002/etc.1834
doi: 10.1002/etc.1834
Stanton RL, Morrissey CA, Clark RG (2016) Tree Swallow (Tachycineta bicolor) foraging responses to agricultural land use and abundance of insect prey. Can J Zool 94:637–642. https://doi.org/10.1139/cjz-2015-0238
doi: 10.1139/cjz-2015-0238
Stanton RL, Morrissey CA, Clark RG (2018) Analysis of trends and agricultural drivers of farmland bird declines in North America: a review. Agric Ecosyst Environ 254:244–254. https://doi.org/10.1016/j.agee.2017.11.028
doi: 10.1016/j.agee.2017.11.028
Stoate C, Boatman ND, Borralho RJ, Carvalho CR, de Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63:337–365. https://doi.org/10.1006/jema.2001.0473
doi: 10.1006/jema.2001.0473
Stokely TD, Kormann UG, Verschuyl J, Kroll AJ, Frey DW, Harris SH, Mainwaring D, Maguire D, Hatten JA, Rivers JW, Fitzgerald S, Betts MG (2021) Experimental evaluation of herbicide use on biodiversity, ecosystem services and timber production trade-offs in forest plantations. J Appl Ecol 15. https://doi.org/10.1111/1365-2664.13936
Stoleson SH, Ristau TE, deCalesta DS, Horsley SB (2011) Ten-year response of bird communities to an operational herbicide-shelterwood treatment in a northern hardwood forest. For Ecol Manag 262:1205–1214. https://doi.org/10.1016/j.foreco.2011.06.017
doi: 10.1016/j.foreco.2011.06.017
Sun JC, Covaci A, Bustnes JO, Jaspers VLB, Helander B, Bardsen BJ, Boertmann D, Dietzf R, Labansen AL, Lepoint G, Schulz R, Malarvannan G, Sonne C, Thorup K, Tottrup AP, Zubrod JP, Eens M, Eulaers I (2020) Temporal trends of legacy organochlorines in different white-tailed eagle (Haliaeetus albicilla) subpopulations: a retrospective investigation using archived feathers. Environ Int 138:10. https://doi.org/10.1016/j.envint.2020.105618
doi: 10.1016/j.envint.2020.105618
Swanson JE, Muths E, Pierce CL, Dinsmore SJ, Vandever MW, Hladik ML, Smalling KL (2018) Exploring the amphibian exposome in an agricultural landscape using telemetry and passive sampling. Sci Rep 8. https://doi.org/10.1038/s41598-018-28132-3
Syromyatnikov MY, Isuwa MM, Savinkova OV, Derevshchikova MI, Popov VN (2020) The effect of pesticides on the microbiome of animals. Agric Basel 10. https://doi.org/10.3390/agriculture10030079
Székács A, Darvas B (2018) Re-registration challenges of glyphosate in the European Union. Front Environ Sci 6:35. https://doi.org/10.3389/fenvs.2018.00078
Taliansky-Chamudis A, Gomez-Ramirez P, Leon-Ortega M, Garcia-Fernandez AJ (2017) Validation of a QuECheRS method for analysis of neonicotinoids in small volumes of blood and assessment of exposure in Eurasian eagle owl (Bubo bubo) nestlings. Sci Total Environ 595:93–100. https://doi.org/10.1016/j.scitotenv.2017.03.246
doi: 10.1016/j.scitotenv.2017.03.246
Tang FHM, Lenzen M, McBratney A, Maggi F (2021) Risk of pesticide pollution at the global scale. Nat Geosci 14:206-+. https://doi.org/10.1038/s41561-021-00712-5
doi: 10.1038/s41561-021-00712-5
Taylor RL, Maxwell BD, Boik RJ (2006) Indirect effects of herbicides on bird food resources and beneficial arthropods. Agric Ecosyst Environ 116:157–164. https://doi.org/10.1016/j.agee.2006.01.012
doi: 10.1016/j.agee.2006.01.012
Tenan S, Adrover J, Navarro AM, Sergio F, Tavecchia G (2012) Demographic consequences of poison-related mortality in a threatened bird of prey. PLoS One 7:11. https://doi.org/10.1371/journal.pone.0049187
doi: 10.1371/journal.pone.0049187
Tennekes H, Zillweger A-B (2010) The systemic insecticides: a disaster in the making, Swiss Society of Toxicology, Annual Meeting, 22 November 2012. ETS Nederland BV Zutphen, pp 57.  https://www.boerenlandvogels.nl/sites/default/files/Tennekes_Presentation_Annual%20Meeting_Swiss%20Toxicology%20Society_%2022112012.pdf . Accessed 26 Mar 2024
Tetsatsi ACM, Nkeng-Effouet PA, Alumeti DM, Bonsou GRF, Kamanyi A, Watcho P (2019) Colibri® insecticide induces male reproductive toxicity: alleviating effects of Lannea acida (Anacardiaceae) in rats. Basic Clin Androl 29. https://doi.org/10.1186/s12610-019-0096-4
Thompson HM (1996) Interactions between pesticides: a review of reported effects and their implications for wildlife risk assessment. Ecotoxicology 5:59–81. https://doi.org/10.1007/bf00119047
doi: 10.1007/bf00119047
Todd B, Willson J, Gibbons JW (2010) The global status of reptiles and causes of their decline. In: Sparling DW, Linder G, Bishop CA, Krest S (eds) Ecotoxicology of amphibians and reptiles, 2nd edn. Taylor & Francis, Boca Raton, pp 47–67
Topping CJ, Sibly RM, Akcakaya HR, Smith GC, Crocker DR (2005) Risk assessment of UK skylark populations using life-history and individual-based landscape models. Ecotoxicology 14:925–936. https://doi.org/10.1007/s10646-005-0027-3
doi: 10.1007/s10646-005-0027-3
Topping CJ, Dalby L, Skov F (2016) Landscape structure and management alter the outcome of a pesticide ERA: evaluating impacts of endocrine disruption using the ALMaSS European Brown Hare model. Sci Total Environ 541:1477–1488. https://doi.org/10.1016/j.scitotenv.2015.10.042
doi: 10.1016/j.scitotenv.2015.10.042
Topping CJ, Aldrich A, Berny P (2020) Overhaul environmental risk assessment for pesticides. Science 367:360–363. https://doi.org/10.1126/science.aay1144
doi: 10.1126/science.aay1144
Torquetti CG, Guimaraes ATB, Soto-Blanco B (2021) Exposure to pesticides in bats. Sci Total Environ 755:15. https://doi.org/10.1016/j.scitotenv.2020.142509
doi: 10.1016/j.scitotenv.2020.142509
Traba J, Morales MB (2019) The decline of farmland birds in Spain is strongly associated to the loss of fallow land. Sci Rep 9:6. https://doi.org/10.1038/s41598-019-45854-0
doi: 10.1038/s41598-019-45854-0
Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x
doi: 10.1111/j.1461-0248.2005.00782.x
Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59. https://doi.org/10.1016/j.biocon.2012.01.068
doi: 10.1016/j.biocon.2012.01.068
Tschumi M, Ekroos J, Hjort C, Smith HG, Birkhofer K (2018) Predation-mediated ecosystem services and disservices in agricultural landscapes. Ecol Appl 28:2109–2118. https://doi.org/10.1002/eap.1799
doi: 10.1002/eap.1799
Tuck SL, Winqvist C, Mota F, Ahnstrom J, Turnbull LA, Bengtsson J (2014) Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J Appl Ecol 51:746–755. https://doi.org/10.1111/1365-2664.12219
doi: 10.1111/1365-2664.12219
Van Bruggen AHC, He MM, Shin K, Mai V, Jeong KC, Finckh MR, Morris JG (2018) Environmental and health effects of the herbicide glyphosate. Sci Total Environ 616:255–268. https://doi.org/10.1016/j.scitotenv.2017.10.309
doi: 10.1016/j.scitotenv.2017.10.309
Van Dijk TC, Van Staalduinen MA, Van der Sluijs JP (2013) Macro-invertebrate decline in surface water polluted with imidacloprid. PLoS One 8:10. https://doi.org/10.1371/journal.pone.0062374
doi: 10.1371/journal.pone.0062374
Van Meter RJ, Glinski DA, Henderson WM, Garrison AW, Cyterski M, Purucker ST (2015) Pesticide uptake across the amphibian dermis through soil and overspray exposures. Arch Environ Contam Toxicol 69:545–556. https://doi.org/10.1007/s00244-015-0183-2
doi: 10.1007/s00244-015-0183-2
Van Meter RJ, Glinski DA, Henderson WM, Purucker ST (2016) Soil organic matter content effects on dermal pesticide bioconcentration in American toads (Bufo Americanus). Environ Toxicol Chem 35:2734–2741. https://doi.org/10.1002/etc.3439
doi: 10.1002/etc.3439
Van Meter RJ, Glinski DA, Purucker ST, Henderson WM (2018) Influence of exposure to pesticide mixtures on the metabolomic profile in post-metamorphic green frogs (Lithobates clamitans). Sci Total Environ 624:1348–1359. https://doi.org/10.1016/j.scitotenv.2017.12.175
doi: 10.1016/j.scitotenv.2017.12.175
van der Sluijs JP, Amaral-Rogers V, Belzunces LP et al (2015) Conclusions of the worldwide integrated assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environ Sci Pollut Res 22:148–154. https://doi.org/10.1007/s11356-014-3229-5
doi: 10.1007/s11356-014-3229-5
van Drooge B, Mateo R, Vives I, Cardiel I, Guitart R (2008) Organochlorine residue levels in livers of birds of prey from Spain: Inter-species comparison in relation with diet and migratory patterns. Environ Pollut 153:84–91. https://doi.org/10.1016/j.envpol.2007.07.029
doi: 10.1016/j.envpol.2007.07.029
Vijver MG, Hunting ER, Nederstigt TAP, Tamis WLM, van den Brink PJ, van Bodegom PM (2017) Postregistration monitoring of pesticides is urgently required to protect ecosystems. Environ Toxicol Chem 36:860–865. https://doi.org/10.1002/etc.3721
doi: 10.1002/etc.3721
Vyas NB (1999) Factors influencing estimation of pesticide-related wildlife mortality. Toxicol Ind Health 15:187–192. https://doi.org/10.1177/074823379901500116
doi: 10.1177/074823379901500116
Vyas NB, Kuenzel WJ, Hill EF, Sauer JR (1995) Acephate affects migratory orientation of the white-throated sparrow (Zonotrichia albicollis). Environ Toxicol Chem 14:1961–1965. https://doi.org/10.1002/etc.5620141118
doi: 10.1002/etc.5620141118
Vyas NB, Spann JW, Hulse CS, Torrez M, Williams BI, Leffel R (2004) Decomposed gosling feet provide evidence of insecticide exposure. Environ Monit Assess 98:351–361. https://doi.org/10.1023/B:EMAS.0000038195.38438.be
doi: 10.1023/B:EMAS.0000038195.38438.be
Vyas NB, Spann JW, Hulse CS, Gentry S, Borges SL (2007) Dermal insecticide residues from birds inhabiting an orchard. Environ Monit Assess 133:209–214. https://doi.org/10.1007/s10661-006-9573-2
doi: 10.1007/s10661-006-9573-2
Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D (2021) Insect decline in the Anthropocene: death by a thousand cuts. Proc Natl Acad Sci U S A 118:10. https://doi.org/10.1073/pnas.2023989118
doi: 10.1073/pnas.2023989118
Wang YH, Guo BY, Gao YX, Xu P, Zhang YF, Li JZ, Wang HL (2014) Stereoselective degradation and toxic effects of benalaxyl on blood and liver of the Chinese lizard Eremias argus. Pest Biochem Physiol 108:34–41. https://doi.org/10.1016/j.pestbp.2013.11.004
doi: 10.1016/j.pestbp.2013.11.004
Wang YH, Zhang Y, Xu P, Guo BY, Li W (2018) Metabolism distribution and effect of thiamethoxam after oral exposure in Mongolian Racerunner (Eremias argus). J Agric Food Chem 66:7376–7383. https://doi.org/10.1021/acs.jafc.8b02102
doi: 10.1021/acs.jafc.8b02102
Wang D, Zheng SC, Wang P, Matsiko J, Sun HZ, Hao YF, Li YM, Zhang ZW, Que PJ, Meng DR, Zhang QH, Jiang GB (2019a) Effects of migration and reproduction on the variation in persistent organic pollutant levels in Kentish Plovers from Cangzhou Wetland, China. Sci Total Environ 670:122–128. https://doi.org/10.1016/j.scitotenv.2019.03.039
doi: 10.1016/j.scitotenv.2019.03.039
Wang YH, Zhang Y, Li W, Han YT, Guo BY (2019b) Study on neurotoxicity of dinotefuran, thiamethoxam and imidacloprid against Chinese lizards (Eremias argus). Chemosphere 217:150–157. https://doi.org/10.1016/j.chemosphere.2018.11.016
doi: 10.1016/j.chemosphere.2018.11.016
Wang YH, Zhang Y, Li W, Yang L, Guo BY (2019c) Distribution, metabolism and hepatotoxicity of neonicotinoids in small farmland lizard and their effects on GH/IGF axis. Sci Total Environ 662:834–841. https://doi.org/10.1016/j.scitotenv.2019.01.277
doi: 10.1016/j.scitotenv.2019.01.277
Wang YH, Zhang Y, Zeng T, Li W, Yang L, Guo BY (2019d) Accumulation and toxicity of thiamethoxam and its metabolite clothianidin to the gonads of Eremias argus. Sci Total Environ 667:586–593. https://doi.org/10.1016/j.scitotenv.2019.02.419
doi: 10.1016/j.scitotenv.2019.02.419
Wang YH, Xu P, Chang J, Li W, Yang L, Tian HT (2020a) Unraveling the toxic effects of neonicotinoid insecticides on the thyroid endocrine system of lizards. Environ Pollut 258:113731. https://doi.org/10.1016/j.envpol.2019.113731
doi: 10.1016/j.envpol.2019.113731
Wang ZK, Tian ZN, Chen L, Zhang WJ, Zhang LY, Li Y, Diao JL, Zhou ZQ (2020b) Stereoselective metabolism and potential adverse effects of chiral fungicide triadimenol on Eremias argus. Environ Sci Pollut Res 27:7823–7834. https://doi.org/10.1007/s11356-019-07205-4
doi: 10.1007/s11356-019-07205-4
Wang ZK, Zhu WN, Xu YY, Yu SM, Zhang LY, Zhou ZQ, Diao JL (2021) Effects of simazine and food deprivation chronic stress on energy allocation among the costly physiological processes of male lizards (Eremias argus). Environ Pollut 269:11. https://doi.org/10.1016/j.envpol.2020.116139
doi: 10.1016/j.envpol.2020.116139
Waters CN, Zalasiewicz J, Summerhayes C et al (2016) The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351:137. https://doi.org/10.1126/science.aad2622
doi: 10.1126/science.aad2622
Weir SM, Dobrovolny M, Torres C, Goode M, Rainwater TR, Salice CJ, Anderson TA (2013) Organochlorine pesticides in squamate reptiles from Southern Arizona, USA. Bull Environ Contam Toxicol 90:654–659. https://doi.org/10.1007/s00128-013-0990-y
doi: 10.1007/s00128-013-0990-y
Weir SM, Yu SY, Talent LG, Maul JD, Anderson TA, Salice CJ (2015) Improving reptile ecological risk assessment: oral and dermal toxicity of pesticides to a common lizard species (Sceloporus occidentalis). Environ Toxicol Chem 34:1778–1786. https://doi.org/10.1002/etc.2975
doi: 10.1002/etc.2975
Werner SJ, Linz GM, Tupper SK, Carlson JC (2010) Laboratory efficacy of chemical repellents for reducing blackbird damage in rice and sunflower Crops. J Wildl Manag 74:1400–1404. https://doi.org/10.2193/2009-287
doi: 10.2193/2009-287
Wickramasinghe LP, Harris S, Jones G, Vaughan N (2003) Bat activity and species richness on organic and conventional farms: impact of agricultural intensification. J Anim Ecol 40:984–993. https://doi.org/10.1111/j.1365-2664.2003.00856.x
doi: 10.1111/j.1365-2664.2003.00856.x
Wickramasinghe LP, Harris S, Jones G, Jennings NV (2004) Abundance and species richness of nocturnal insects on organic and conventional farms: Effects of agricultural intensification on bat foraging. Conserv Biol 18:1283–1292. https://doi.org/10.1111/j.1523-1739.2004.00152.x
doi: 10.1111/j.1523-1739.2004.00152.x
Willemsen RE, Hailey A (2001) Effects of spraying the herbicides 2,4-D and 2,4,5-T on a population of the tortoise Testudo hermanni in Southern Greece. Environ Pollut 113:71–78. https://doi.org/10.1016/s0269-7491(00)00160-3
doi: 10.1016/s0269-7491(00)00160-3
Williams N, Sweetman J (2019) Effects of neonicotinoids on the emergence and composition of chironomids in the Prairie Pothole Region. Environ Sci Pollut Res 26:3862–3868. https://doi.org/10.1007/s11356-018-3683-6
doi: 10.1007/s11356-018-3683-6
Williams-Guillén K, Olimpi E, Maas B, Taylor PJ, Arlettaz R (2016) Bats in the anthropogenic matrix: challenges and opportunities for the conservation of chiroptera and their ecosystem services in agricultural landscapes. In: Voigt CC, Kingston T (eds) Bats in the Anthropocene: Conservation of Bats in a Changing World. Springer International Publishing, Cham, pp 151–186
doi: 10.1007/978-3-319-25220-9_6
Winqvist C, Bengtsson J, Aavik T, Berendse F, Clement LW, Eggers S, Fischer C, Flohre A, Geiger F, Liira J, Part T, Thies C, Tscharntke T, Weisser WW, Bommarco R (2011) Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J Appl Ecol 48:570–579. https://doi.org/10.1111/j.1365-2664.2010.01950.x
doi: 10.1111/j.1365-2664.2010.01950.x
Winters AM, Rumbeiha WK, Winterstein SR, Fine AE, Munkhtsog B, Hickling GJ (2010) Residues in Brandt’s voles (Microtus brandti) exposed to bromadiolone-impregnated baits in Mongolia. Ecotox Environ Safe 73:1071–1077. https://doi.org/10.1016/j.ecoenv.2010.02.021
doi: 10.1016/j.ecoenv.2010.02.021
Wobeser G, Bollinger T, Leighton FA, Blakley B, Mineau P (2004) Secondary poisoning of eagles following intentional poisoning of coyotes with anticholinesterase pesticides in Western Canada. J Wildl Dis 40:163–172. https://doi.org/10.7589/0090-3558-40.2.163
doi: 10.7589/0090-3558-40.2.163
Wood TJ, Goulson D (2017) The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ Sci Pollut Res 24:17285–17325. https://doi.org/10.1007/s11356-017-9240-x
doi: 10.1007/s11356-017-9240-x
Wu CH, Lin CL, Wang SE, Lu CW (2020) Effects of imidacloprid, a neonicotinoid insecticide, on the echolocation system of insectivorous bats. Pest Biochem Physiol 163:94–101. https://doi.org/10.1016/j.pestbp.2019.10.010
doi: 10.1016/j.pestbp.2019.10.010
Yao GJ, Jing X, Liu C, Wang P, Liu XK, Hou YZ, Zhou ZQ, Liu DH (2017) Enantioselective degradation of alpha-cypermethrin and detection of its metabolites in bullfrog (Rana catesbeiana). Ecotoxicol Environ Safe 141:93–97. https://doi.org/10.1016/j.ecoenv.2017.03.019
doi: 10.1016/j.ecoenv.2017.03.019
Yildirim I, Ozcan H (2007) Determination of pesticide residues in water and soil resources of Troia (Troy). Fresenius Environ Bull 16:63–70
Zhang LB, Zhu GJ, Jones G, Zhang SY (2009) Conservation of bats in China: problems and recommendations. Oryx 43:179–182. https://doi.org/10.1017/s0030605309432022
doi: 10.1017/s0030605309432022
Zhang W, Jiang F, Ou J (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1. 1:125–144.  http://www.iaees.org/publications/journals/piaees/articles/2011-1(2)/Global-pesticide-consumption-pollution.pdf . Accessed 26 Mar 2024
Zhang LY, Chen L, Meng ZY, Zhang WJ, Xu X, Wang ZK, Qin YN, Deng Y, Liu R, Zhou ZQ, Diao JL (2019) Bioaccumulation, behavior changes and physiological disruptions with gender-dependent in lizards (Eremias argus) after exposure to glufosinate-ammonium and L-glufosinate-ammonium. Chemosphere 226:817–824. https://doi.org/10.1016/j.chemosphere.2019.04.007
doi: 10.1016/j.chemosphere.2019.04.007
Zhang LY, Chen L, Meng ZY, Jia M, Li RS, Yan S, Tian SN, Zhou ZQ, Diao JL (2020) Effects of L-Glufosinate-ammonium and temperature on reproduction controlled by neuroendocrine system in lizard (Eremias argus). Environ Pollut 257:8. https://doi.org/10.1016/j.envpol.2019.113564
doi: 10.1016/j.envpol.2019.113564
Zhao GP, Yang FW, Li JW, Xing HZ, Ren FZ, Pang GF, Li YX (2020) Toxicities of neonicotinoid-containing pesticide mixtures on nontarget organisms. Environ Toxicol Chem 39:1884–1993. https://doi.org/10.1002/etc.4842
doi: 10.1002/etc.4842
Zhao Q, Huang MY, Liu Y, Wan YY, Duan RY, Wu LF (2021) Effects of atrazine short-term exposure on jumping ability and intestinal microbiota diversity in male Pelophylax nigromaculatus adults. Environ Sci Pollut Res 28:36122–36132. https://doi.org/10.1007/s11356-021-13234-9
doi: 10.1007/s11356-021-13234-9

Auteurs

Clémentine Fritsch (C)

Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université de Franche-Comté, 16 Route de Gray, F-25000, Besançon, France.

Philippe Berny (P)

UR-ICE, Vetagro Sup, Campus Vétérinaire, 69280, Marcy L'étoile, France.

Olivier Crouzet (O)

Direction de La Recherche Et de L'Appui Scientifique, Office Français de La Biodiversité, Site de St-Benoist, 78610, Auffargis, France.

Sophie Le Perchec (S)

INRAE, UAR 1479 DipSO, 35042, Rennes, France.

Michael Coeurdassier (M)

Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université de Franche-Comté, 16 Route de Gray, F-25000, Besançon, France. michael.coeurdassier@univ-fcomte.fr.

Classifications MeSH