Single-cell multiomic dissection of response and resistance to chimeric antigen receptor T cells against BCMA in relapsed multiple myeloma.
Journal
Nature cancer
ISSN: 2662-1347
Titre abrégé: Nat Cancer
Pays: England
ID NLM: 101761119
Informations de publication
Date de publication:
19 Apr 2024
19 Apr 2024
Historique:
received:
24
02
2023
accepted:
26
03
2024
medline:
20
4
2024
pubmed:
20
4
2024
entrez:
19
4
2024
Statut:
aheadofprint
Résumé
Markers that predict response and resistance to chimeric antigen receptor (CAR) T cells in relapsed/refractory multiple myeloma are currently missing. We subjected mononuclear cells isolated from peripheral blood and bone marrow before and after the application of approved B cell maturation antigen-directed CAR T cells to single-cell multiomic analyses to identify markers associated with resistance and early relapse. Differences between responders and nonresponders were identified at the time of leukapheresis. Nonresponders showed an immunosuppressive microenvironment characterized by increased numbers of monocytes expressing the immune checkpoint molecule CD39 and suppressed CD8
Identifiants
pubmed: 38641734
doi: 10.1038/s43018-024-00763-8
pii: 10.1038/s43018-024-00763-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SPP microbone
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Merz, M. et al. Adjusted comparison of outcomes between patients from CARTITUDE-1 versus multiple Myeloma Patients with Prior Exposure to PI, Imid and Anti-CD-38 from a German Registry. Cancers 13, 5996 (2021).
pubmed: 34885106
pmcid: 8656798
doi: 10.3390/cancers13235996
Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).
pubmed: 33626253
doi: 10.1056/NEJMoa2024850
Berdeja, J. G. et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 398, 314–324 (2021).
pubmed: 34175021
doi: 10.1016/S0140-6736(21)00933-8
Martin, T. et al. Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J. Clin. Oncol. 41, 1265–1274 (2022).
Da Vià, M. C. et al. Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma. Nat. Med. 27, 616–619 (2021).
pubmed: 33619368
doi: 10.1038/s41591-021-01245-5
Samur, M. K. et al. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat. Commun. 12, 868 (2021).
pubmed: 33558511
pmcid: 7870932
doi: 10.1038/s41467-021-21177-5
Gagelmann, N. et al. Access to and affordability of CAR T-cell therapy in multiple myeloma: an EBMT position paper. Lancet Haematol. 9, e786–e795 (2022).
pubmed: 36174641
doi: 10.1016/S2352-3026(22)00226-5
Gazeau, N. et al. Effective anti-BCMA retreatment in multiple myeloma. Blood Adv. 5, 3016–3020 (2021).
pubmed: 34351389
pmcid: 8361465
doi: 10.1182/bloodadvances.2021004176
Deng, H. et al. Efficacy of humanized anti-BCMA CAR T cell therapy in relapsed/refractory multiple myeloma patients with and without extramedullary disease. Front. Immunol. 12, 720571 (2021).
pubmed: 34421924
pmcid: 8374046
doi: 10.3389/fimmu.2021.720571
Haradhvala, N. J. et al. Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma. Nat. Med. 28, 1848–1859 (2022).
pubmed: 36097221
pmcid: 9509487
doi: 10.1038/s41591-022-01959-0
Sheih, A. et al. Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy. Nat. Commun. 11, 219 (2020).
pubmed: 31924795
pmcid: 6954177
doi: 10.1038/s41467-019-13880-1
Bai, Z. et al. Single-cell antigen-specific landscape of CAR T infusion product identifies determinants of CD19-positive relapse in patients with ALL. Sci. Adv. 8, eabj2820 (2022).
pubmed: 35675405
pmcid: 9177075
doi: 10.1126/sciadv.abj2820
Boiarsky, R. et al. Single cell characterization of myeloma and its precursor conditions reveals transcriptional signatures of early tumorigenesis. Nat. Commun. 13, 7040 (2022).
pubmed: 36396631
pmcid: 9672303
doi: 10.1038/s41467-022-33944-z
Cohen, Y. C. et al. Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing. Nat. Med. 27, 491–503 (2021).
Dutta, A. K. et al. Single-cell profiling of tumour evolution in multiple myeloma—opportunities for precision medicine. Nat. Rev. Clin. Oncol. 19, 223–236 (2022).
Ledergor, G. et al. Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma. Nat. Med. 24, 1867–1876 (2018).
pubmed: 30523328
doi: 10.1038/s41591-018-0269-2
Merz, M. et al. Deciphering spatial genomic heterogeneity at a single cell resolution in multiple myeloma. Nat. Commun. 13, 807 (2022).
pubmed: 35145077
pmcid: 8831582
doi: 10.1038/s41467-022-28266-z
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).
pubmed: 34062119
pmcid: 8238499
doi: 10.1016/j.cell.2021.04.048
Phipson, B. et al. propeller: testing for differences in cell type proportions in single cell data. Bioinformatics 38, 4720–4726 (2022).
pubmed: 36005887
pmcid: 9563678
doi: 10.1093/bioinformatics/btac582
van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8
pubmed: 32024970
pmcid: 7115982
doi: 10.1038/s41568-019-0235-4
Cohen, A. D. et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest. 129, 2210–2221 (2019).
pubmed: 30896447
pmcid: 6546468
doi: 10.1172/JCI126397
Nakamura, K., Smyth, M. J. & Martinet, L. Cancer immunoediting and immune dysregulation in multiple myeloma. Blood 136, 2731–2740 (2020).
pubmed: 32645135
doi: 10.1182/blood.2020006540
Merz, M. et al. Spatiotemporal assessment of immunogenomic heterogeneity in multiple myeloma. Blood Adv. 7, 718–733 (2022).
Zavidij, O. et al. Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. Nat. Cancer 1, 493–506 (2020).
pubmed: 33409501
pmcid: 7785110
doi: 10.1038/s43018-020-0053-3
Clements, A. N. & Warfel, N. A. Targeting PIM kinases to improve the efficacy of immunotherapy. Cells 11, 3700 (2022).
pubmed: 36429128
pmcid: 9688203
doi: 10.3390/cells11223700
Keane, N. A., Reidy, M., Natoni, A., Raab, M. S. & O’Dwyer, M. Targeting the Pim kinases in multiple myeloma. Blood Cancer J. 5, e325 (2015).
pubmed: 26186558
pmcid: 4526774
doi: 10.1038/bcj.2015.46
Chatterjee, S. et al. Targeting PIM kinase with PD1 inhibition improves immunotherapeutic antitumor T-cell response. Clin. Cancer Res. 25, 1036–1049 (2019).
pubmed: 30327305
doi: 10.1158/1078-0432.CCR-18-0706
Moesta, A. K., Li, X.-Y. & Smyth, M. J. Targeting CD39 in cancer. Nat. Rev. Immunol. 20, 739–755 (2020).
pubmed: 32728220
doi: 10.1038/s41577-020-0376-4
Vucinic, V. et al. S287: factors influencing autologous lymphocyte collections for chimeric antigen receptor (CAR) T-cells—the role of T-cell senescence. HemaSphere 6, 188 (2022).
doi: 10.1097/01.HS9.0000844040.56318.a6
Chen, P.-H. et al. Activation of CAR and non-CAR T cells within the tumor microenvironment following CAR T cell therapy. JCI Insight 5, e134612 (2020).
pubmed: 32484797
pmcid: 7406247
doi: 10.1172/jci.insight.134612
Dhodapkar, K. M. et al. Changes in bone marrow tumor and immune cells correlate with durability of remissions following BCMA CAR T therapy in myeloma. Blood Cancer Discov. 3, 490–501 (2022).
pubmed: 36026513
pmcid: 9627239
doi: 10.1158/2643-3230.BCD-22-0018
Mathewson, N. D. et al. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell 184, 1281–1298 (2021).
pubmed: 33592174
pmcid: 7935772
doi: 10.1016/j.cell.2021.01.022
Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4
pubmed: 35110735
pmcid: 9166916
doi: 10.1038/s41586-021-04390-6
Wang, B. et al. Chimeric antigen receptor T cell therapy in the relapsed or refractory multiple myeloma with extramedullary disease—a single institution observation in China. Blood 136, 6 (2020).
doi: 10.1182/blood-2020-140243
García-Guerrero, E. et al. All-trans retinoic acid works synergistically with the γ-secretase inhibitor crenigacestat to augment BCMA on multiple myeloma and the efficacy of BCMA-CAR T cells. Haematologica 108, 568–580 (2023).
pubmed: 36722406
doi: 10.3324/haematol.2022.281339
Merz, M. et al. Cytogenetic subclone formation and evolution in progressive smoldering multiple myeloma. Leukemia 34, 1192–1196 (2020).
pubmed: 31712777
doi: 10.1038/s41375-019-0634-2
Merz, M. et al. Prognostic significance of cytogenetic heterogeneity in patients with newly diagnosed multiple myeloma. Blood Adv. 2, 1–9 (2017).
pubmed: 29344579
pmcid: 5761630
doi: 10.1182/bloodadvances.2017013334
Kumar, S. et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 17, e328–e346 (2016).
pubmed: 27511158
doi: 10.1016/S1470-2045(16)30206-6
Campbell, T. et al. Uses of anti-BCMA chimeric antigen receptors. Worldwide patent WO2021091978A1 (2021).
Schecter, J. M. & Fan, X. BCMA-targeted CAR-T cell therapy for multiple myeloma. Worldwide patent WO2022116086A1 (2022).
Germain, P.-L., Lun, A., Meixide, C. G., Macnair, W. & Robinson, M. D. Doublet identification in single-cell sequencing data using scDblFinder. F1000Res. 10, 979 (2022).
Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).
pubmed: 30643263
pmcid: 6340744
doi: 10.1038/s41590-018-0276-y
Koh, W. & Hoon, S. MapCell: learning a comparative cell type distance metric with Siamese neural nets with applications toward cell-type identification across experimental datasets. Front. Cell Dev. Biol. 9, 767897 (2021).
pubmed: 34796179
pmcid: 8593221
doi: 10.3389/fcell.2021.767897
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).
pubmed: 31178118
pmcid: 6687398
doi: 10.1016/j.cell.2019.05.031
Andreatta, M. et al. Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nat. Commun. 12, 2965 (2021).
pubmed: 34017005
pmcid: 8137700
doi: 10.1038/s41467-021-23324-4
Andreatta, M., Berenstein, A. J. & Carmona, S. J. scGate: marker-based purification of cell types from heterogeneous single-cell RNA-seq datasets. Bioinformatics 38, 2642–2644 (2022).
pubmed: 35258562
pmcid: 9048671
doi: 10.1093/bioinformatics/btac141
Fu, R. et al. clustifyr: an R package for automated single-cell RNA sequencing cluster classification. F1000Res. 9, 223 (2020).
pubmed: 32765839
pmcid: 7383722
doi: 10.12688/f1000research.22969.2
Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).
pubmed: 27124452
pmcid: 4944528
doi: 10.1126/science.aad0501
Borcherding, N., Bormann, N. L. & Kraus, G. scRepertoire: an R-based toolkit for single-cell immune receptor analysis. F1000Res. 9, 47 (2020).
pubmed: 32789006
pmcid: 7400693
doi: 10.12688/f1000research.22139.1
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
pubmed: 31740819
pmcid: 6884693
doi: 10.1038/s41592-019-0619-0
Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).
pubmed: 34557778
pmcid: 8454663
Tickle, T., Tirosh, I., Brown, M. & Haas, B. InferCNV: inferring copy number alterations from tumor single cell RNA-seq data. GitHub https://github.com/broadinstitute/inferCNV/wiki (2023).
Wang, Y. et al. iTALK: an R package to characterize and illustrate intercellular communication. Preprint at bioRxiv https://doi.org/10.1101/507871 (2019).
Dimitrov, D. et al. Comparison of methods and resources for cell–cell communication inference from single-cell RNA-seq data. Nat. Commun. 13, 3224 (2022).
pubmed: 35680885
pmcid: 9184522
doi: 10.1038/s41467-022-30755-0
Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).
pubmed: 30787437
pmcid: 6434952
doi: 10.1038/s41586-019-0969-x
Blache, U. et al. Advanced flow cytometry assays for immune monitoring of CAR-T cell applications. Front. Immunol. 12, 658314 (2021).
pubmed: 34012442
pmcid: 8127837
doi: 10.3389/fimmu.2021.658314