Single-cell multiomic dissection of response and resistance to chimeric antigen receptor T cells against BCMA in relapsed multiple myeloma.


Journal

Nature cancer
ISSN: 2662-1347
Titre abrégé: Nat Cancer
Pays: England
ID NLM: 101761119

Informations de publication

Date de publication:
19 Apr 2024
Historique:
received: 24 02 2023
accepted: 26 03 2024
medline: 20 4 2024
pubmed: 20 4 2024
entrez: 19 4 2024
Statut: aheadofprint

Résumé

Markers that predict response and resistance to chimeric antigen receptor (CAR) T cells in relapsed/refractory multiple myeloma are currently missing. We subjected mononuclear cells isolated from peripheral blood and bone marrow before and after the application of approved B cell maturation antigen-directed CAR T cells to single-cell multiomic analyses to identify markers associated with resistance and early relapse. Differences between responders and nonresponders were identified at the time of leukapheresis. Nonresponders showed an immunosuppressive microenvironment characterized by increased numbers of monocytes expressing the immune checkpoint molecule CD39 and suppressed CD8

Identifiants

pubmed: 38641734
doi: 10.1038/s43018-024-00763-8
pii: 10.1038/s43018-024-00763-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SPP microbone

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Merz, M. et al. Adjusted comparison of outcomes between patients from CARTITUDE-1 versus multiple Myeloma Patients with Prior Exposure to PI, Imid and Anti-CD-38 from a German Registry. Cancers 13, 5996 (2021).
pubmed: 34885106 pmcid: 8656798 doi: 10.3390/cancers13235996
Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).
pubmed: 33626253 doi: 10.1056/NEJMoa2024850
Berdeja, J. G. et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 398, 314–324 (2021).
pubmed: 34175021 doi: 10.1016/S0140-6736(21)00933-8
Martin, T. et al. Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J. Clin. Oncol. 41, 1265–1274 (2022).
Da Vià, M. C. et al. Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma. Nat. Med. 27, 616–619 (2021).
pubmed: 33619368 doi: 10.1038/s41591-021-01245-5
Samur, M. K. et al. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat. Commun. 12, 868 (2021).
pubmed: 33558511 pmcid: 7870932 doi: 10.1038/s41467-021-21177-5
Gagelmann, N. et al. Access to and affordability of CAR T-cell therapy in multiple myeloma: an EBMT position paper. Lancet Haematol. 9, e786–e795 (2022).
pubmed: 36174641 doi: 10.1016/S2352-3026(22)00226-5
Gazeau, N. et al. Effective anti-BCMA retreatment in multiple myeloma. Blood Adv. 5, 3016–3020 (2021).
pubmed: 34351389 pmcid: 8361465 doi: 10.1182/bloodadvances.2021004176
Deng, H. et al. Efficacy of humanized anti-BCMA CAR T cell therapy in relapsed/refractory multiple myeloma patients with and without extramedullary disease. Front. Immunol. 12, 720571 (2021).
pubmed: 34421924 pmcid: 8374046 doi: 10.3389/fimmu.2021.720571
Haradhvala, N. J. et al. Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma. Nat. Med. 28, 1848–1859 (2022).
pubmed: 36097221 pmcid: 9509487 doi: 10.1038/s41591-022-01959-0
Sheih, A. et al. Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy. Nat. Commun. 11, 219 (2020).
pubmed: 31924795 pmcid: 6954177 doi: 10.1038/s41467-019-13880-1
Bai, Z. et al. Single-cell antigen-specific landscape of CAR T infusion product identifies determinants of CD19-positive relapse in patients with ALL. Sci. Adv. 8, eabj2820 (2022).
pubmed: 35675405 pmcid: 9177075 doi: 10.1126/sciadv.abj2820
Boiarsky, R. et al. Single cell characterization of myeloma and its precursor conditions reveals transcriptional signatures of early tumorigenesis. Nat. Commun. 13, 7040 (2022).
pubmed: 36396631 pmcid: 9672303 doi: 10.1038/s41467-022-33944-z
Cohen, Y. C. et al. Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing. Nat. Med. 27, 491–503 (2021).
Dutta, A. K. et al. Single-cell profiling of tumour evolution in multiple myeloma—opportunities for precision medicine. Nat. Rev. Clin. Oncol. 19, 223–236 (2022).
Ledergor, G. et al. Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma. Nat. Med. 24, 1867–1876 (2018).
pubmed: 30523328 doi: 10.1038/s41591-018-0269-2
Merz, M. et al. Deciphering spatial genomic heterogeneity at a single cell resolution in multiple myeloma. Nat. Commun. 13, 807 (2022).
pubmed: 35145077 pmcid: 8831582 doi: 10.1038/s41467-022-28266-z
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).
pubmed: 34062119 pmcid: 8238499 doi: 10.1016/j.cell.2021.04.048
Phipson, B. et al. propeller: testing for differences in cell type proportions in single cell data. Bioinformatics 38, 4720–4726 (2022).
pubmed: 36005887 pmcid: 9563678 doi: 10.1093/bioinformatics/btac582
van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8
pubmed: 32024970 pmcid: 7115982 doi: 10.1038/s41568-019-0235-4
Cohen, A. D. et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest. 129, 2210–2221 (2019).
pubmed: 30896447 pmcid: 6546468 doi: 10.1172/JCI126397
Nakamura, K., Smyth, M. J. & Martinet, L. Cancer immunoediting and immune dysregulation in multiple myeloma. Blood 136, 2731–2740 (2020).
pubmed: 32645135 doi: 10.1182/blood.2020006540
Merz, M. et al. Spatiotemporal assessment of immunogenomic heterogeneity in multiple myeloma. Blood Adv. 7, 718–733 (2022).
Zavidij, O. et al. Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. Nat. Cancer 1, 493–506 (2020).
pubmed: 33409501 pmcid: 7785110 doi: 10.1038/s43018-020-0053-3
Clements, A. N. & Warfel, N. A. Targeting PIM kinases to improve the efficacy of immunotherapy. Cells 11, 3700 (2022).
pubmed: 36429128 pmcid: 9688203 doi: 10.3390/cells11223700
Keane, N. A., Reidy, M., Natoni, A., Raab, M. S. & O’Dwyer, M. Targeting the Pim kinases in multiple myeloma. Blood Cancer J. 5, e325 (2015).
pubmed: 26186558 pmcid: 4526774 doi: 10.1038/bcj.2015.46
Chatterjee, S. et al. Targeting PIM kinase with PD1 inhibition improves immunotherapeutic antitumor T-cell response. Clin. Cancer Res. 25, 1036–1049 (2019).
pubmed: 30327305 doi: 10.1158/1078-0432.CCR-18-0706
Moesta, A. K., Li, X.-Y. & Smyth, M. J. Targeting CD39 in cancer. Nat. Rev. Immunol. 20, 739–755 (2020).
pubmed: 32728220 doi: 10.1038/s41577-020-0376-4
Vucinic, V. et al. S287: factors influencing autologous lymphocyte collections for chimeric antigen receptor (CAR) T-cells—the role of T-cell senescence. HemaSphere 6, 188 (2022).
doi: 10.1097/01.HS9.0000844040.56318.a6
Chen, P.-H. et al. Activation of CAR and non-CAR T cells within the tumor microenvironment following CAR T cell therapy. JCI Insight 5, e134612 (2020).
pubmed: 32484797 pmcid: 7406247 doi: 10.1172/jci.insight.134612
Dhodapkar, K. M. et al. Changes in bone marrow tumor and immune cells correlate with durability of remissions following BCMA CAR T therapy in myeloma. Blood Cancer Discov. 3, 490–501 (2022).
pubmed: 36026513 pmcid: 9627239 doi: 10.1158/2643-3230.BCD-22-0018
Mathewson, N. D. et al. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell 184, 1281–1298 (2021).
pubmed: 33592174 pmcid: 7935772 doi: 10.1016/j.cell.2021.01.022
Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4
pubmed: 35110735 pmcid: 9166916 doi: 10.1038/s41586-021-04390-6
Wang, B. et al. Chimeric antigen receptor T cell therapy in the relapsed or refractory multiple myeloma with extramedullary disease—a single institution observation in China. Blood 136, 6 (2020).
doi: 10.1182/blood-2020-140243
García-Guerrero, E. et al. All-trans retinoic acid works synergistically with the γ-secretase inhibitor crenigacestat to augment BCMA on multiple myeloma and the efficacy of BCMA-CAR T cells. Haematologica 108, 568–580 (2023).
pubmed: 36722406 doi: 10.3324/haematol.2022.281339
Merz, M. et al. Cytogenetic subclone formation and evolution in progressive smoldering multiple myeloma. Leukemia 34, 1192–1196 (2020).
pubmed: 31712777 doi: 10.1038/s41375-019-0634-2
Merz, M. et al. Prognostic significance of cytogenetic heterogeneity in patients with newly diagnosed multiple myeloma. Blood Adv. 2, 1–9 (2017).
pubmed: 29344579 pmcid: 5761630 doi: 10.1182/bloodadvances.2017013334
Kumar, S. et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 17, e328–e346 (2016).
pubmed: 27511158 doi: 10.1016/S1470-2045(16)30206-6
Campbell, T. et al. Uses of anti-BCMA chimeric antigen receptors. Worldwide patent WO2021091978A1 (2021).
Schecter, J. M. & Fan, X. BCMA-targeted CAR-T cell therapy for multiple myeloma. Worldwide patent WO2022116086A1 (2022).
Germain, P.-L., Lun, A., Meixide, C. G., Macnair, W. & Robinson, M. D. Doublet identification in single-cell sequencing data using scDblFinder. F1000Res. 10, 979 (2022).
Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).
pubmed: 30643263 pmcid: 6340744 doi: 10.1038/s41590-018-0276-y
Koh, W. & Hoon, S. MapCell: learning a comparative cell type distance metric with Siamese neural nets with applications toward cell-type identification across experimental datasets. Front. Cell Dev. Biol. 9, 767897 (2021).
pubmed: 34796179 pmcid: 8593221 doi: 10.3389/fcell.2021.767897
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Andreatta, M. et al. Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nat. Commun. 12, 2965 (2021).
pubmed: 34017005 pmcid: 8137700 doi: 10.1038/s41467-021-23324-4
Andreatta, M., Berenstein, A. J. & Carmona, S. J. scGate: marker-based purification of cell types from heterogeneous single-cell RNA-seq datasets. Bioinformatics 38, 2642–2644 (2022).
pubmed: 35258562 pmcid: 9048671 doi: 10.1093/bioinformatics/btac141
Fu, R. et al. clustifyr: an R package for automated single-cell RNA sequencing cluster classification. F1000Res. 9, 223 (2020).
pubmed: 32765839 pmcid: 7383722 doi: 10.12688/f1000research.22969.2
Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).
pubmed: 27124452 pmcid: 4944528 doi: 10.1126/science.aad0501
Borcherding, N., Bormann, N. L. & Kraus, G. scRepertoire: an R-based toolkit for single-cell immune receptor analysis. F1000Res. 9, 47 (2020).
pubmed: 32789006 pmcid: 7400693 doi: 10.12688/f1000research.22139.1
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
pubmed: 31740819 pmcid: 6884693 doi: 10.1038/s41592-019-0619-0
Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).
pubmed: 34557778 pmcid: 8454663
Tickle, T., Tirosh, I., Brown, M. & Haas, B. InferCNV: inferring copy number alterations from tumor single cell RNA-seq data. GitHub https://github.com/broadinstitute/inferCNV/wiki (2023).
Wang, Y. et al. iTALK: an R package to characterize and illustrate intercellular communication. Preprint at bioRxiv https://doi.org/10.1101/507871 (2019).
Dimitrov, D. et al. Comparison of methods and resources for cell–cell communication inference from single-cell RNA-seq data. Nat. Commun. 13, 3224 (2022).
pubmed: 35680885 pmcid: 9184522 doi: 10.1038/s41467-022-30755-0
Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).
pubmed: 30787437 pmcid: 6434952 doi: 10.1038/s41586-019-0969-x
Blache, U. et al. Advanced flow cytometry assays for immune monitoring of CAR-T cell applications. Front. Immunol. 12, 658314 (2021).
pubmed: 34012442 pmcid: 8127837 doi: 10.3389/fimmu.2021.658314

Auteurs

Michael Rade (M)

Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.

Nora Grieb (N)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.
Innovation Center Computer Assisted Surgery, University Hospital of Leipzig, Leipzig, Germany.

Ronald Weiss (R)

Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.
Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany.

Jaren Sia (J)

Singleron Biotechnologies, Cologne, Germany.

Luise Fischer (L)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.

Patrick Born (P)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.

Andreas Boldt (A)

Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany.

Stephan Fricke (S)

Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany.

Paul Franz (P)

Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany.

Jonathan Scolnick (J)

Singleron Biotechnologies, Cologne, Germany.

Lakshmi Venkatraman (L)

Singleron Biotechnologies, Cologne, Germany.

Stacy Xu (S)

Singleron Biotechnologies, Cologne, Germany.

Christina Kloetzer (C)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.

Simone Heyn (S)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.

Anne Sophie Kubasch (AS)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.

Ronny Baber (R)

Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany.
Leipzig Medical Biobank, University Leipzig, Leipzig, Germany.

Song Yau Wang (SY)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.

Enrica Bach (E)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.

Sandra Hoffmann (S)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.

Jule Ussmann (J)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.

Birthe Schetschorke (B)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.

Saskia Hell (S)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.

Sebastian Schwind (S)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.

Klaus H Metzeler (KH)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.

Marco Herling (M)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.

Madlen Jentzsch (M)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.

Georg-Nikolaus Franke (GN)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.

Ulrich Sack (U)

Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany.

Ulrike Köhl (U)

Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.
Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany.

Uwe Platzbecker (U)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.

Kristin Reiche (K)

Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.
Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany.
Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden, Leipzig, Germany.

Vladan Vucinic (V)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany.

Maximilian Merz (M)

Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital of Leipzig, Leipzig, Germany. maximilian.merz@medizin.uni-leipzig.de.

Classifications MeSH