Single Cell Atlas: a single-cell multi-omics human cell encyclopedia.

Flow cytometry Human database Mass cytometry Multi-omics Single Cell Atlas Single-cell ATAC-sequencing Single-cell RNA-sequencing Single-cell immune profiling Single-cell omics Spatial transcriptomics

Journal

Genome biology
ISSN: 1474-760X
Titre abrégé: Genome Biol
Pays: England
ID NLM: 100960660

Informations de publication

Date de publication:
19 Apr 2024
Historique:
received: 16 11 2022
accepted: 12 04 2024
medline: 20 4 2024
pubmed: 20 4 2024
entrez: 19 4 2024
Statut: epublish

Résumé

Single-cell sequencing datasets are key in biology and medicine for unraveling insights into heterogeneous cell populations with unprecedented resolution. Here, we construct a single-cell multi-omics map of human tissues through in-depth characterizations of datasets from five single-cell omics, spatial transcriptomics, and two bulk omics across 125 healthy adult and fetal tissues. We construct its complement web-based platform, the Single Cell Atlas (SCA, www.singlecellatlas.org ), to enable vast interactive data exploration of deep multi-omics signatures across human fetal and adult tissues. The atlas resources and database queries aspire to serve as a one-stop, comprehensive, and time-effective resource for various omics studies.

Identifiants

pubmed: 38641842
doi: 10.1186/s13059-024-03246-2
pii: 10.1186/s13059-024-03246-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

104

Subventions

Organisme : Karolinska Institutet
ID : C62623013
Organisme : Karolinska Institutet
ID : C24401073
Organisme : Karolinska Institutet
ID : C331612602

Informations de copyright

© 2024. The Author(s).

Références

Aldridge S, Teichmann SA. Single cell transcriptomics comes of age. Nat Commun. 2020;11:4307.
pubmed: 32855414 pmcid: 7453005 doi: 10.1038/s41467-020-18158-5
Zhu C, Preissl S, Ren B. Single-cell multimodal omics: the power of many. Nat Methods. 2020;17:11–4.
pubmed: 31907462 doi: 10.1038/s41592-019-0691-5
Mimitou EP, Lareau CA, Chen KY, Zorzetto-Fernandes AL, Hao Y, Takeshima Y, Luo W, Huang T-S, Yeung BZ, Papalexi E, et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat Biotechnol. 2021;39:1246–58.
pubmed: 34083792 pmcid: 8763625 doi: 10.1038/s41587-021-00927-2
Li X. Harnessing the potential of spatial multiomics: a timely opportunity. Signal Transduct Target Ther. 2023;8:234.
pubmed: 37302998 pmcid: 10258193 doi: 10.1038/s41392-023-01507-3
Fawkner-Corbett D, Antanaviciute A, Parikh K, Jagielowicz M, Gerós AS, Gupta T, Ashley N, Khamis D, Fowler D, Morrissey E, et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell. 2021;184:810-826.e823.
pubmed: 33406409 pmcid: 7864098 doi: 10.1016/j.cell.2020.12.016
Miao Z, Humphreys BD, McMahon AP, Kim J. Multi-omics integration in the age of million single-cell data. Nat Rev Nephrol. 2021;17:710–24.
pubmed: 34417589 pmcid: 9191639 doi: 10.1038/s41581-021-00463-x
Chappell L, Russell AJC, Voet T. Single-Cell (Multi)omics Technologies. Annu Rev Genomics Hum Genet. 2018;19:15–41.
pubmed: 29727584 doi: 10.1146/annurev-genom-091416-035324
Li H, Qu L, Yang Y, Zhang H, Li X, Zhang X. Single-cell transcriptomic architecture unraveling the complexity of tumor heterogeneity in distal cholangiocarcinoma. Cell Mol Gastroenterol Hepatol. 2022;13(1592–1609): e1599.
Li M, Zhang X, Ang KS, Ling J, Sethi R, Lee NYS, Ginhoux F, Chen J. DISCO: a database of Deeply Integrated human Single-Cell Omics data. Nucleic Acids Res. 2022;50:D596-d602.
pubmed: 34791375 doi: 10.1093/nar/gkab1020
Pan L, Mou T, Huang Y, Hong W, Yu M, Li X. Ursa: A comprehensive multiomics toolbox for high-throughput single-cell analysis. Mol Biol Evol. 2023;40(12):msad267.
Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, Bodenmiller B, Campbell P, Carninci P, Clatworthy M, et al. The Human Cell Atlas eLife. 2017;6: e27041.
pubmed: 29206104
Clough E, Barrett T. The gene expression omnibus database. Statistical Genomics: Methods and Protocols. 2016:93–110.
Franzén O, Gan L-M, Björkegren JLM: PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database 2019, 2019.
Cummins C, Ahamed A, Aslam R, Burgin J, Devraj R, Edbali O, Gupta D, Harrison PW, Haseeb M, Holt S, et al. The European Nucleotide Archive in 2021. Nucleic Acids Res. 2022;50:D106-d110.
pubmed: 34850158 doi: 10.1093/nar/gkab1051
Pan L, Shan S, Tremmel R, Li W, Liao Z, Shi H, Chen Q, Zhang X, Li X. HTCA: a database with an in-depth characterization of the single-cell human transcriptome. Nucleic Acids Res. 2022;51:D1019–28.
pmcid: 9825435 doi: 10.1093/nar/gkac791
Elmentaite R, Domínguez Conde C, Yang L, Teichmann SA. Single-cell atlases: shared and tissue-specific cell types across human organs. Nat Rev Genet. 2022;23:395–410.
pubmed: 35217821 doi: 10.1038/s41576-022-00449-w
Quake SR: A decade of molecular cell atlases. Trends in Genetics 2022.
Zeng J, Zhang Y, Shang Y, Mai J, Shi S, Lu M, Bu C, Zhang Z, Zhang Z, Li Y, et al. CancerSCEM: a database of single-cell expression map across various human cancers. Nucleic Acids Res. 2022;50:D1147-d1155.
pubmed: 34643725 doi: 10.1093/nar/gkab905
Ner-Gaon H, Melchior A, Golan N, Ben-Haim Y, Shay T. JingleBells: A Repository of Immune-Related Single-Cell RNA-Sequencing Datasets. J Immunol. 2017;198:3375–9.
pubmed: 28416714 doi: 10.4049/jimmunol.1700272
Tarhan L, Bistline J, Chang J, Galloway B, Hanna E, Weitz E: Single Cell Portal: an interactive home for single-cell genomics data. bioRxiv 2023.
Kolodziejczyk Aleksandra A, Kim JK, Svensson V, Marioni John C, Teichmann Sarah A. The Technology and Biology of Single-Cell RNA Sequencing. Mol Cell. 2015;58:610–20.
pubmed: 26000846 doi: 10.1016/j.molcel.2015.04.005
Schwartzman O, Tanay A. Single-cell epigenomics: techniques and emerging applications. Nat Rev Genet. 2015;16:716–26.
pubmed: 26460349 doi: 10.1038/nrg3980
Gomes T, Teichmann SA, Talavera-López C. Immunology Driven by Large-Scale Single-Cell Sequencing. Trends Immunol. 2019;40:1011–21.
pubmed: 31645299 doi: 10.1016/j.it.2019.09.004
Cheung RK, Utz PJ. CyTOF—the next generation of cell detection. Nat Rev Rheumatol. 2011;7:502–3.
pubmed: 21788983 pmcid: 3387986 doi: 10.1038/nrrheum.2011.110
Spitzer Matthew H, Nolan Garry P. Mass Cytometry: Single Cells. Many Features Cell. 2016;165:780–91.
pubmed: 27153492
Tian Y, Carpp LN, Miller HER, Zager M, Newell EW, Gottardo R. Single-cell immunology of SARS-CoV-2 infection. Nat Biotechnol. 2022;40:30–41.
pubmed: 34931002 doi: 10.1038/s41587-021-01131-y
McKinnon KM: Flow Cytometry: An Overview. Current Protocols in Immunology 2018, 120:5.1.1–5.1.11.
Rao A, Barkley D, França GS, Yanai I. Exploring tissue architecture using spatial transcriptomics. Nature. 2021;596:211–20.
pubmed: 34381231 pmcid: 8475179 doi: 10.1038/s41586-021-03634-9
Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet. 2019;20:631–56.
pubmed: 31341269 doi: 10.1038/s41576-019-0150-2
Ng PC, Kirkness EF. Whole Genome Sequencing. In: Barnes MR, Breen G, editors. Genetic Variation: Methods and Protocols. Totowa, NJ: Humana Press; 2010. p. 215–26.
doi: 10.1007/978-1-60327-367-1_12
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. Febs j. 2018;285:2944–71.
pubmed: 29637711 pmcid: 6120486 doi: 10.1111/febs.14466
Stadler M, Pudelko K, Biermeier A, Walterskirchen N, Gaigneaux A, Weindorfer C, Harrer N, Klett H, Hengstschläger M, Schüler J, et al. Stromal fibroblasts shape the myeloid phenotype in normal colon and colorectal cancer and induce CD163 and CCL2 expression in macrophages. Cancer Lett. 2021;520:184–200.
pubmed: 34256095 doi: 10.1016/j.canlet.2021.07.006
Davidson S, Coles M, Thomas T, Kollias G, Ludewig B, Turley S, Brenner M, Buckley CD. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat Rev Immunol. 2021;21:704–17.
pubmed: 33911232 doi: 10.1038/s41577-021-00540-z
Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573-3587.e3529.
pubmed: 34062119 pmcid: 8238499 doi: 10.1016/j.cell.2021.04.048
Han X, Zhou Z, Fei L, Sun H, Wang R, Chen Y, Chen H, Wang J, Tang H, Ge W, et al. Construction of a human cell landscape at single-cell level. Nature. 2020;581:303–9.
pubmed: 32214235 doi: 10.1038/s41586-020-2157-4
Kariminekoo S, Movassaghpour A, Rahimzadeh A, Talebi M, Shamsasenjan K, Akbarzadeh A. Implications of mesenchymal stem cells in regenerative medicine. Artificial Cells, Nanomedicine, and Biotechnology. 2016;44:749–57.
pubmed: 26757594 doi: 10.3109/21691401.2015.1129620
Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow F, Marine J-C, Geurts P, Aerts J, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083–6.
pubmed: 28991892 pmcid: 5937676 doi: 10.1038/nmeth.4463
Cillo AR, Kürten CHL, Tabib T, Qi Z, Onkar S, Wang T, Liu A, Duvvuri U, Kim S, Soose RJ, et al. Immune Landscape of Viral- and Carcinogen-Driven Head and Neck Cancer. Immunity. 2020;52:183-199.e189.
pubmed: 31924475 pmcid: 7201194 doi: 10.1016/j.immuni.2019.11.014
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47–e47.
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49:D545-d551.
pubmed: 33125081 doi: 10.1093/nar/gkaa970
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.
pubmed: 10802651 pmcid: 3037419 doi: 10.1038/75556
The Gene Ontology resource. enriching a GOld mine. Nucleic Acids Res. 2021;49:D325-d334.
doi: 10.1093/nar/gkaa1113
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J Roy Stat Soc: Ser B (Methodol). 1995;57:289–300.
doi: 10.1111/j.2517-6161.1995.tb02031.x
Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, Paul DS, Freitag D, Burgess S, Danesh J, et al. PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics. 2016;32:3207–9.
pubmed: 27318201 pmcid: 5048068 doi: 10.1093/bioinformatics/btw373
Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, Butterworth AS, Staley JR. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 2019;35:4851–3.
pubmed: 31233103 pmcid: 6853652 doi: 10.1093/bioinformatics/btz469
Ballardini G, Bianchi F, Doniach D, Mirakian R, Pisi E, Bottazzo G. ABERRANT EXPRESSION OF HLA-DR ANTIGENS ON BILEDUCT EPITHELIUM IN PRIMARY BILIARY CIRRHOSIS: RELEVANCE TO PATHOGENESIS. The Lancet. 1984;324:1009–13.
doi: 10.1016/S0140-6736(84)91108-5
Hirschfield GM, Liu X, Xu C, Lu Y, Xie G, Lu Y, Gu X, Walker EJ, Jing K, Juran BD, et al. Primary Biliary Cirrhosis Associated with HLA, IL12A, and IL12RB2 Variants. N Engl J Med. 2009;360:2544–55.
pubmed: 19458352 pmcid: 2857316 doi: 10.1056/NEJMoa0810440
Peng A, Ke P, Zhao R, Lu X, Zhang C, Huang X, Tian G, Huang J, Wang J, Invernizzi P, et al. Elevated circulating CD14(low)CD16(+) monocyte subset in primary biliary cirrhosis correlates with liver injury and promotes Th1 polarization. Clin Exp Med. 2016;16:511–21.
pubmed: 26403460 doi: 10.1007/s10238-015-0381-2
Chen Y-Y, Arndtz K, Webb G, Corrigan M, Akiror S, Liaskou E, Woodward P, Adams DH, Weston CJ, Hirschfield GM. Intrahepatic macrophage populations in the pathophysiology of primary sclerosing cholangitis. JHEP Reports. 2019;1:369–76.
pubmed: 32039388 pmcid: 7005651 doi: 10.1016/j.jhepr.2019.10.003
Olmos JM, García JD, Jiménez A, de Castro S. Impaired monocyte function in primary biliary cirrhosis. Allergol Immunopathol (Madr). 1988;16:353–8.
pubmed: 3228054
Britanova OV, Putintseva EV, Shugay M, Merzlyak EM, Turchaninova MA, Staroverov DB, Bolotin DA, Lukyanov S, Bogdanova EA, Mamedov IZ, et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J Immunol. 2014;192:2689–98.
pubmed: 24510963 doi: 10.4049/jimmunol.1302064
Borcherding N, Bormann NL, Kraus G. scRepertoire: An R-based toolkit for single-cell immune receptor analysis. F1000Research. 2020;9.
Larbi A, Fulop T. From “truly naïve” to “exhausted senescent” T cells: When markers predict functionality. Cytometry A. 2014;85:25–35.
pubmed: 24124072 doi: 10.1002/cyto.a.22351
Lee S-W, Choi HY, Lee G-W, Kim T, Cho H-J, Oh I-J, Song SY, Yang DH, Cho J-H. CD8<sup>+</sup> TILs in NSCLC differentiate into TEMRA via a bifurcated trajectory: deciphering immunogenicity of tumor antigens. J Immunother Cancer. 2021;9: e002709.
pubmed: 34593620 pmcid: 8487216 doi: 10.1136/jitc-2021-002709
Chen K, Kolls JK. T Cell-Mediated Host Immune Defenses in the Lung. Annu Rev Immunol. 2013;31:605–33.
pubmed: 23516986 pmcid: 3912562 doi: 10.1146/annurev-immunol-032712-100019
Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14:667–85.
pubmed: 25234148 doi: 10.1038/nri3738
Godfrey DI, Koay H-F, McCluskey J, Gherardin NA. The biology and functional importance of MAIT cells. Nat Immunol. 2019;20:1110–28.
pubmed: 31406380 doi: 10.1038/s41590-019-0444-8
Nel I, Bertrand L, Toubal A, Lehuen A. MAIT cells, guardians of skin and mucosa? Mucosal Immunol. 2021;14:803–14.
pubmed: 33753874 pmcid: 7983967 doi: 10.1038/s41385-021-00391-w
Legoux F, Salou M, Lantz O. MAIT Cell Development and Functions: the Microbial Connection. Immunity. 2020;53:710–23.
pubmed: 33053329 doi: 10.1016/j.immuni.2020.09.009
van den Broek T, Borghans JAM, van Wijk F. The full spectrum of human naive T cells. Nat Rev Immunol. 2018;18:363–73.
pubmed: 29520044 doi: 10.1038/s41577-018-0001-y
Soundararajan M, Kannan S. Fibroblasts and mesenchymal stem cells: Two sides of the same coin? J Cell Physiol. 2018;233:9099–109.
pubmed: 29943820 doi: 10.1002/jcp.26860
Muzlifah AH, Matthew PC, Christopher DB, Francesco D. Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica. 2009;94:258–63.
doi: 10.3324/haematol.13699
Lendahl U, Muhl L, Betsholtz C. Identification, discrimination and heterogeneity of fibroblasts. Nat Commun. 2022;13:3409.
pubmed: 35701396 pmcid: 9192344 doi: 10.1038/s41467-022-30633-9
Steens J, Unger K, Klar L, Neureiter A, Wieber K, Hess J, Jakob HG, Klump H, Klein D. Direct conversion of human fibroblasts into therapeutically active vascular wall-typical mesenchymal stem cells. Cell Mol Life Sci. 2020;77:3401–22.
pubmed: 31712992 doi: 10.1007/s00018-019-03358-0
Ichim TE, O’Heeron P, Kesari S. Fibroblasts as a practical alternative to mesenchymal stem cells. J Transl Med. 2018;16:212.
pubmed: 30053821 pmcid: 6064181 doi: 10.1186/s12967-018-1536-1
Beumer J, Clevers H. Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol. 2021;22:39–53.
pubmed: 32958874 doi: 10.1038/s41580-020-0278-0
Moor AE, Harnik Y, Ben-Moshe S, Massasa EE, Rozenberg M, Eilam R, Bahar Halpern K, Itzkovitz S. Spatial Reconstruction of Single Enterocytes Uncovers Broad Zonation along the Intestinal Villus Axis. Cell. 2018;175:1156-1167.e1115.
pubmed: 30270040 doi: 10.1016/j.cell.2018.08.063
Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5:123.
pubmed: 24904424 pmcid: 4034148 doi: 10.3389/fphar.2014.00123
Oliver JR, Kushwah R, Wu J, Pan J, Cutz E, Yeger H, Waddell TK, Hu J. Elf3 plays a role in regulating bronchiolar epithelial repair kinetics following Clara cell-specific injury. Lab Invest. 2011;91:1514–29.
pubmed: 21709667 doi: 10.1038/labinvest.2011.100
Ng AYN, Waring P, Ristevski S, Wang C, Wilson T, Pritchard M, Hertzog P, Kola I. Inactivation of the transcription factor Elf3 in mice results in dysmorphogenesis and altered differentiation of intestinal epithelium. Gastroenterology. 2002;122:1455–66.
pubmed: 11984530 doi: 10.1053/gast.2002.32990
Chen R, Kang R, Tang D. The mechanism of HMGB1 secretion and release. Exp Mol Med. 2022;54:91–102.
pubmed: 35217834 pmcid: 8894452 doi: 10.1038/s12276-022-00736-w
Dai S, Sodhi C, Cetin S, Richardson W, Branca M, Neal MD, Prindle T, Ma C, Shapiro RA, Li B, et al. Extracellular High Mobility Group Box-1 (HMGB1) Inhibits Enterocyte Migration via Activation of Toll-like Receptor-4 and Increased Cell-Matrix Adhesiveness 2<sup></sup>. J Biol Chem. 2010;285:4995–5002.
pubmed: 20007974 doi: 10.1074/jbc.M109.067454
Klepsch V, Gerner RR, Klepsch S, Olson WJ, Tilg H, Moschen AR, Baier G, Hermann-Kleiter N. Nuclear orphan receptor NR2F6 as a safeguard against experimental murine colitis. Gut. 2018;67:1434–44.
pubmed: 28779026 doi: 10.1136/gutjnl-2016-313466
Klepsch V, Hermann-Kleiter N, Baier G. Beyond CTLA-4 and PD-1: Orphan nuclear receptor NR2F6 as T cell signaling switch and emerging target in cancer immunotherapy. Immunol Lett. 2016;178:31–6.
pubmed: 26992368 doi: 10.1016/j.imlet.2016.03.007
Sanz-Pamplona R, Berenguer A, Cordero D, Molleví DG, Crous-Bou M, Sole X, Paré-Brunet L, Guino E, Salazar R, Santos C, et al. Aberrant gene expression in mucosa adjacent to tumor reveals a molecular crosstalk in colon cancer. Mol Cancer. 2014;13:46.
pubmed: 24597571 pmcid: 4023701 doi: 10.1186/1476-4598-13-46
McPherson JP, Sarras H, Lemmers B, Tamblyn L, Migon E, Matysiak-Zablocki E, Hakem A, Azami SA, Cardoso R, Fish J, et al. Essential role for Bclaf1 in lung development and immune system function. Cell Death Differ. 2009;16:331–9.
pubmed: 19008920 doi: 10.1038/cdd.2008.167
Aw S. Sun H, Geng Y, Peng Q, Wang P, Chen J, Xiong T, Cao R, Tang J: Bclaf1 is an important NF-κB signaling transducer and C/EBPβ regulator in DNA damage-induced senescence. Cell Death Differ. 2016;23:865–75.
doi: 10.1038/cdd.2015.150
Zhou X, Li X, Cheng Y, Wu W, Xie Z, Xi Q, Han J, Wu G, Fang J, Feng Y. BCLAF1 and its splicing regulator SRSF10 regulate the tumorigenic potential of colon cancer cells. Nat Commun. 2014;5:4581.
pubmed: 25091051 doi: 10.1038/ncomms5581
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102:15545–50.
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Liberzon A, Subramanian A, Pinchback R. Thorvaldsdottir H, Tamayo P, Mesirov JP: Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40.
pubmed: 21546393 pmcid: 3106198 doi: 10.1093/bioinformatics/btr260
GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–30.
doi: 10.1126/science.aaz1776
Pan L, Parini P, Tremmel R, Loscalzo J, Lauschke VM, Maron BA, Paci P, Ernberg I, Tan NS, Liao Z, Yin W, Rengarajan S, Li X: Single Cell Atlas: a single-cell multi-omics human cell encyclopedia. Github. https://github.com/eudoraleer/sca/ ; 2024.
Pan L, Parini P, Tremmel R, Loscalzo J, Lauschke VM, Maron BA, Paci P, Ernberg I, Tan NS, Liao Z, Yin W, Rengarajan S, Wang ZN, Li X: Single Cell Atlas: a single-cell multi-omics human cell encyclopedia. Zenodo. https://zenodo.org/doi/10.5281/zenodo.10906053 ; 2024.

Auteurs

Lu Pan (L)

Institute of Environmental Medicine, Karolinska Institutet, 171 65, Solna, Sweden.

Paolo Parini (P)

Cardio Metabolic Unit, Department of Medicine, and, Department of Laboratory Medicine , Karolinska Institutet, 141 86, Stockholm, Sweden.
Theme Inflammation and Ageing, Medicine Unit, Karolinska University Hospital, 141 86, Stockholm, Sweden.

Roman Tremmel (R)

Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany.
University of Tuebingen, 72076, Tuebingen, Germany.

Joseph Loscalzo (J)

Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.

Volker M Lauschke (VM)

Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany.
University of Tuebingen, 72076, Tuebingen, Germany.
Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Solna, Sweden.

Bradley A Maron (BA)

Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.

Paola Paci (P)

Department of Computer, Control and Management Engineering, Sapienza University of Rome, 00185, Rome, Italy.

Ingemar Ernberg (I)

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Solna, Sweden.

Nguan Soon Tan (NS)

School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore.

Zehuan Liao (Z)

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Solna, Sweden.
School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.

Weiyao Yin (W)

Institute of Environmental Medicine, Karolinska Institutet, 171 65, Solna, Sweden.

Sundararaman Rengarajan (S)

Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, MA, 02115, USA.

Xuexin Li (X)

Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China. xuexin.li@ki.se.
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Solna, Sweden. xuexin.li@ki.se.

Classifications MeSH