TAD boundary deletion causes PITX2-related cardiac electrical and structural defects.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
20 Apr 2024
Historique:
received: 17 02 2023
accepted: 08 04 2024
medline: 21 4 2024
pubmed: 21 4 2024
entrez: 20 4 2024
Statut: epublish

Résumé

While 3D chromatin organization in topologically associating domains (TADs) and loops mediating regulatory element-promoter interactions is crucial for tissue-specific gene regulation, the extent of their involvement in human Mendelian disease is largely unknown. Here, we identify 7 families presenting a new cardiac entity associated with a heterozygous deletion of 2 CTCF binding sites on 4q25, inducing TAD fusion and chromatin conformation remodeling. The CTCF binding sites are located in a gene desert at 1 Mb from the Paired-like homeodomain transcription factor 2 gene (PITX2). By introducing the ortholog of the human deletion in the mouse genome, we recapitulate the patient phenotype and characterize an opposite dysregulation of PITX2 expression in the sinoatrial node (ectopic activation) and ventricle (reduction), respectively. Chromatin conformation assay performed in human induced pluripotent stem cell-derived cardiomyocytes harboring the minimal deletion identified in family#1 reveals a conformation remodeling and fusion of TADs. We conclude that TAD remodeling mediated by deletion of CTCF binding sites causes a new autosomal dominant Mendelian cardiac disorder.

Identifiants

pubmed: 38643172
doi: 10.1038/s41467-024-47739-x
pii: 10.1038/s41467-024-47739-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3380

Subventions

Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : R21006NN, RPV21014NNA

Informations de copyright

© 2024. The Author(s).

Références

Moyon, L., Berthelot, C., Louis, A., Nguyen, N. T. T. & Crollius, H. R. Classification of non-coding variants with high pathogenic impact. PLoS Genet. 18, e1010191 (2022).
pubmed: 35486646 pmcid: 9094564
Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018).
pubmed: 30262496 pmcid: 6986801
Bolt, C. C. & Duboule, D. The regulatory landscapes of developmental genes. Development 147, dev171736 (2020).
pubmed: 32014867 pmcid: 7033717
Beagan, J. A. & Phillips-Cremins, J. E. On the existence and functionality of topologically associating domains. Nat. Genet. 52, 8–16 (2020).
pubmed: 31925403 pmcid: 7567612
Ibrahim, D. M. & Mundlos, S. The role of 3D chromatin domains in gene regulation: a multi-facetted view on genome organization. Curr. Opin. Genet. Dev. 61, 1–8 (2020).
pubmed: 32199341
Rajderkar, S. et al. Topologically associating domain boundaries are required for normal genome function. Commun. Biol. 6, 435 (2023).
pubmed: 37081156 pmcid: 10119121
Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944.e22 (2017).
pubmed: 28525758 pmcid: 5538188
Rosa-Garrido, M. et al. High-resolution mapping of chromatin conformation in cardiac myocytes reveals structural remodeling of the epigenome in heart failure. Circulation 136, 1613–1625 (2017).
pubmed: 28802249 pmcid: 5648689
Hernandez-Torres, F., Rodríguez-Outeiriño, L., Franco, D. & Aranega, A. E. Pitx2 in embryonic and adult myogenesis. Front. Cell Dev. Biol. 5, 46 (2017).
pubmed: 28507987 pmcid: 5410577
Ryan, A. K. et al. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 394, 545–551 (1998).
pubmed: 9707115
Mommersteeg, M. T. M. et al. Molecular pathway for the localized formation of the sinoatrial node. Circ. Res. 100, 354–362 (2007).
pubmed: 17234970
Roselli, C. et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat. Genet. 50, 1225–1233 (2018).
pubmed: 29892015 pmcid: 6136836
Franco, D., Sedmera, D. & Lozano-Velasco, E. Multiple roles of Pitx2 in cardiac development and disease. J. Cardiovasc. Dev. Dis. 4, 16 (2017).
pubmed: 29367545 pmcid: 5753117
Le Scouarnec, S. et al. Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease. Proc. Natl Acad. Sci. USA 105, 15617–15622 (2008).
pubmed: 18832177 pmcid: 2563133
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
pubmed: 32461654 pmcid: 7334197
MacDonald, J. R., Ziman, R., Yuen, R. K. C., Feuk, L. & Scherer, S. W. The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 42, D986–D992 (2014).
pubmed: 24174537
Hocker, J. D. et al. Cardiac cell type–specific gene regulatory programs and disease risk association. Sci. Adv. 7, eabf1444 (2021).
pubmed: 33990324 pmcid: 8121433
Welsh, I. C. et al. Chromatin architecture of the Pitx2 locus requires CTCF- and Pitx2-dependent asymmetry that mirrors embryonic gut laterality. Cell Rep. 13, 337–349 (2015).
pubmed: 26411685 pmcid: 4617833
Yu, H. et al. LARP7 protects against heart failure by enhancing mitochondrial biogenesis. Circulation 143, 2007–2022 (2021).
pubmed: 33663221
Vedantham, V., Galang, G., Evangelista, M., Deo, R. C. & Srivastava, D. RNA sequencing of mouse sinoatrial node reveals an upstream regulatory role for Islet-1 in cardiac pacemaker cells. Circ. Res. 116, 797–803 (2015).
pubmed: 25623957 pmcid: 4344860
van Eif, V. W. W., Devalla, H. D., Boink, G. J. J. & Christoffels, V. M. Transcriptional regulation of the cardiac conduction system. Nat. Rev. Cardiol. 15, 617–630 (2018).
pubmed: 29875439
Goodyer, W. R. et al. Transcriptomic profiling of the developing cardiac conduction system at single-cell resolution. Circ. Res. 125, 379–397 (2019).
pubmed: 31284824 pmcid: 6675655
Bhattacharyya, S. & Munshi, N. V. Development of the cardiac conduction system. Cold Spring Harb. Perspect. Biol. 12, a037408 (2020).
pubmed: 31988140 pmcid: 7706568
Mandla, R., Jung, C. & Vedantham, V. Transcriptional and epigenetic landscape of cardiac pacemaker cells: insights into cellular specialization in the sinoatrial node. Front. Physiol. 12, 712666 (2021).
pubmed: 34335313 pmcid: 8322687
Hoogaars, W. M. H. et al. Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev. 21, 1098–1112 (2007).
pubmed: 17473172 pmcid: 1855235
Liang, X. et al. Transcription factor ISL1 is essential for pacemaker development and function. J. Clin. Invest. 125, 3256–3268 (2015).
pubmed: 26193633 pmcid: 4563735
Wallace, M. J. et al. Genetic complexity of sinoatrial node dysfunction. Front. Genet. 12, 654925 (2021).
pubmed: 33868385 pmcid: 8047474
van Eif, V. W. W. et al. Genome-wide analysis identifies an essential human TBX3 pacemaker enhancer. Circ. Res. 127, 1522–1535 (2020).
pubmed: 33040635 pmcid: 8153223
Hammal, F., de Langen, P., Bergon, A., Lopez, F. & Ballester, B. ReMap 2022: a database of Human, Mouse, Drosophila and Arabidopsis regulatory regions from an integrative analysis of DNA-binding sequencing experiments. Nucleic Acids Res. 50, D316–D325 (2022).
pubmed: 34751401
Maitra, M. et al. Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Dev. Biol. 326, 368–377 (2009).
pubmed: 19084512
Gonzalez-Teran, B. et al. Transcription factor protein interactomes reveal genetic determinants in heart disease. Cell 185, 794–814.e30 (2022).
pubmed: 35182466 pmcid: 8923057
Bompadre, O. & Andrey, G. Chromatin topology in development and disease. Curr. Opin. Genet. Dev. 55, 32–38 (2019).
pubmed: 31125724
Ushiki, A. et al. Deletion of CTCF sites in the SHH locus alters enhancer-promoter interactions and leads to acheiropodia. Nat. Commun. 12, 2282 (2021).
pubmed: 33863876 pmcid: 8052326
Boltsis, I., Grosveld, F., Giraud, G. & Kolovos, P. Chromatin conformation in development and disease. Front. Cell Dev. Biol. 9, 723859 (2021).
pubmed: 34422840 pmcid: 8371409
Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).
pubmed: 33568819 pmcid: 7875770
Seifi, M. & Walter, M. A. Axenfeld-Rieger syndrome. Clin. Genet. 93, 1123–1130 (2018).
pubmed: 28972279
Liu, C., Liu, W., Lu, M. F., Brown, N. A. & Martin, J. F. Regulation of left-right asymmetry by thresholds of Pitx2c activity. Development 128, 2039–2048 (2001).
pubmed: 11493526
Mommersteeg, M. T. M. et al. Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ. Res. 101, 902–909 (2007).
pubmed: 17823370
Ammirabile, G. et al. Pitx2 confers left morphological, molecular, and functional identity to the sinus venosus myocardium. Cardiovasc Res. 93, 291–301 (2012).
pubmed: 22116619
Wang, J. et al. Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemaker specification. Proc. Natl Acad. Sci. USA 107, 9753–9758 (2010).
pubmed: 20457925 pmcid: 2906838
Stieber, J. et al. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc. Natl Acad. Sci. USA 100, 15235–15240 (2003).
pubmed: 14657344 pmcid: 299971
Baruscotti, M. et al. Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4. Proc. Natl Acad. Sci. USA 108, 1705–1710 (2011).
pubmed: 21220308 pmcid: 3029742
Nadadur, R. D. et al. Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm. Sci. Transl. Med. 8, 354ra115 (2016).
pubmed: 27582060 pmcid: 5266594
Gudbjartsson, D. F. et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature 448, 353–357 (2007).
pubmed: 17603472
Zhang, M. et al. Long-range Pitx2c enhancer-promoter interactions prevent predisposition to atrial fibrillation. Proc. Natl Acad. Sci. USA 116, 22692–22698 (2019).
pubmed: 31636200 pmcid: 6842642
Aguirre, L. A. et al. Long-range regulatory interactions at the 4q25 atrial fibrillation risk locus involve PITX2c and ENPEP. BMC Biol. 13, 26 (2015).
pubmed: 25888893 pmcid: 4416339
Long, H. K., Prescott, S. L. & Wysocka, J. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167, 1170–1187 (2016).
pubmed: 27863239 pmcid: 5123704
Panigrahi, A. & O’Malley, B. W. Mechanisms of enhancer action: the known and the unknown. Genome Biol. 22, 108 (2021).
pubmed: 33858480 pmcid: 8051032
de Laat, W. & Duboule, D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502, 499–506 (2013).
pubmed: 24153303
Bravo, E. et al. Developing a guideline to standardize the citation of bioresources in journal articles (CoBRA). BMC Med. 13, 33 (2015).
pubmed: 25855867 pmcid: 4331335
Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 15, R84 (2014).
pubmed: 24970577 pmcid: 4197822
Zarate, S. et al. Parliament2: accurate structural variant calling at scale. Gigascience 9, giaa145 (2020).
pubmed: 33347570 pmcid: 7751401
Jeffares, D. C. et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8, 14061 (2017).
pubmed: 28117401 pmcid: 5286201
Chiang, C. et al. SpeedSeq: ultra-fast personal genome analysis and interpretation. Nat. Methods 12, 966–968 (2015).
pubmed: 26258291 pmcid: 4589466
Jurgens, S. J. et al. Analysis of rare genetic variation underlying cardiometabolic diseases and traits among 200,000 individuals in the UK Biobank. Nat. Genet. 54, 240–250 (2022).
pubmed: 35177841 pmcid: 8930703
Ruijter, J. M. et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 37, e45 (2009).
pubmed: 19237396 pmcid: 2665230
Ruiz-Villalba, A., van Pelt-Verkuil, E., Gunst, Q. D., Ruijter, J. M. & van den Hoff, M. J. Amplification of nonspecific products in quantitative polymerase chain reactions (qPCR). Biomol. Detect Quantif. 14, 7–18 (2017).
pubmed: 29255685 pmcid: 5727009
Girardeau, A. et al. Generation of human induced pluripotent stem cell lines from four unrelated healthy control donors carrying European genetic background. Stem Cell Res. 59, 102647 (2021).
pubmed: 34999420
Zhang, J. et al. Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ. Res. 111, 1125–1136 (2012).
pubmed: 22912385 pmcid: 3482164
Sharma, A. et al. Derivation of highly purified cardiomyocytes from human induced pluripotent stem cells using small molecule-modulated differentiation and subsequent glucose starvation. J. Vis. Exp. 52628 https://doi.org/10.3791/52628 (2015).
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).
pubmed: 18035408
Wuriyanghai, Y. et al. Complex aberrant splicing in the induced pluripotent stem cell–derived cardiomyocytes from a patient with long QT syndrome carrying KCNQ1-A344Aspl mutation. Heart Rhythm 15, 1566–1574 (2018).
pubmed: 29857160
Protze, S. I. et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 35, 56–68 (2017).
pubmed: 27941801
Caillaud, A. et al. FACS-assisted CRISPR-Cas9 genome editing of human induced pluripotent stem cells. STAR Protoc. 3, 101680 (2022).
pubmed: 36115027 pmcid: 9490201
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381
Faust, G. G. & Hall, I. M. SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics 30, 2503–2505 (2014).
pubmed: 24812344 pmcid: 4147885
Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).
pubmed: 27079975 pmcid: 4987876
Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).
pubmed: 22955991 pmcid: 3431496
ENCODE ATAC-seq pipeline. ENCODE DCC. https://github.com/ENCODE-DCC/atac-seq-pipeline (2021).
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
Meers, M. P., Tenenbaum, D. & Henikoff, S. Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling. Epigenet. Chromatin 12, 42 (2019).
Machanick, P. & Bailey, T. L. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27, 1696–1697 (2011).
pubmed: 21486936 pmcid: 3106185
Melo, U. S. et al. Hi-C identifies complex genomic rearrangements and TAD-shuffling in developmental diseases. Am. J. Hum. Genet. 106, 872–884 (2020).
pubmed: 32470376 pmcid: 7273525
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).
pubmed: 27467249 pmcid: 5846465
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).
pubmed: 20080505 pmcid: 2828108
Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).
pubmed: 27467250 pmcid: 5596920
Knight, P. & Ruiz, D. A fast algorithm for matrix balancing. IMA J. Numer. Anal. 33, 1029–1047 (2013).
Mölder, F. et al. Sustainable data analysis with Snakemake. F1000Res 10, 33 (2021).
pubmed: 34035898 pmcid: 8114187
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049
Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).
pubmed: 34557778 pmcid: 8454663
Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
pubmed: 22455463 pmcid: 3339379

Auteurs

Manon Baudic (M)

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, F-44000, Nantes, France.

Hiroshige Murata (H)

The Department of Cardiovascular Medicine, Nippon Medical School Hospital, Tokyo, Japan.

Fernanda M Bosada (FM)

Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.

Uirá Souto Melo (US)

Max Planck Institute for Molecular Genetics, RG Development and Disease, 13353, Berlin, Germany.

Takanori Aizawa (T)

Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.

Pierre Lindenbaum (P)

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, F-44000, Nantes, France.

Lieve E van der Maarel (LE)

Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.

Amaury Guedon (A)

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, F-44000, Nantes, France.

Estelle Baron (E)

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, F-44000, Nantes, France.

Enora Fremy (E)

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, F-44000, Nantes, France.

Adrien Foucal (A)

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, F-44000, Nantes, France.

Taisuke Ishikawa (T)

Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan.

Hiroya Ushinohama (H)

Department of Cardiology, Fukuoka Children's Hospital, Fukuoka, Japan.

Sean J Jurgens (SJ)

Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.

Seung Hoan Choi (SH)

Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.

Florence Kyndt (F)

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, F-44000, Nantes, France.

Solena Le Scouarnec (S)

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, F-44000, Nantes, France.

Vincent Wakker (V)

Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.

Aurélie Thollet (A)

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, F-44000, Nantes, France.

Annabelle Rajalu (A)

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, F-44000, Nantes, France.

Tadashi Takaki (T)

Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
Takeda-CiRA Joint Program for iPS Cell Applications, Fujisawa, Japan.
Department of Pancreatic Islet Cell Transplantation, National Center for Global Health and Medicine, Tokyo, Japan.

Seiko Ohno (S)

Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.

Wataru Shimizu (W)

The Department of Cardiovascular Medicine, Nippon Medical School Hospital, Tokyo, Japan.

Minoru Horie (M)

Department of Cardiovascular Medicine, Shiga University of Medical Science, Ohtsu, Japan.

Takeshi Kimura (T)

Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.

Patrick T Ellinor (PT)

Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.

Florence Petit (F)

Service de Génétique Clinique, CHU Lille, Hôpital Jeanne de Flandre, F-59000, Lille, France.
University of Lille, EA 7364-RADEME, F-59000, Lille, France.

Yves Dulac (Y)

Unité de Cardiologie Pédiatrique, Hôpital des Enfants, F-31000, Toulouse, France.

Paul Bru (P)

Service de Cardiologie, GH La Rochelle, F-17019, La Rochelle, France.

Anne Boland (A)

Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France.

Jean-François Deleuze (JF)

Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France.

Richard Redon (R)

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, F-44000, Nantes, France.

Hervé Le Marec (H)

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, F-44000, Nantes, France.

Thierry Le Tourneau (T)

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, F-44000, Nantes, France.

Jean-Baptiste Gourraud (JB)

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, F-44000, Nantes, France.
European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart, Amsterdam, The Netherlands.

Yoshinori Yoshida (Y)

Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.

Naomasa Makita (N)

Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan.
Department of Cardiology, Sapporo Teishinkai Hospital, Sapporo, Japan.

Claude Vieyres (C)

Cabinet Cardiologique, Clinique St. Joseph, F-16000, Angoulême, France.

Takeru Makiyama (T)

Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Department of Community Medicine Supporting System, Kyoto University Graduate School of Medicine, Kyoto, Japan.

Stephan Mundlos (S)

Max Planck Institute for Molecular Genetics, RG Development and Disease, 13353, Berlin, Germany.

Vincent M Christoffels (VM)

Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.

Vincent Probst (V)

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, F-44000, Nantes, France.
European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart, Amsterdam, The Netherlands.

Jean-Jacques Schott (JJ)

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, F-44000, Nantes, France. Jean-Jacques.Schott@univ-nantes.fr.
European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart, Amsterdam, The Netherlands. Jean-Jacques.Schott@univ-nantes.fr.

Julien Barc (J)

Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, F-44000, Nantes, France. julien.barc@univ-nantes.fr.
European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart, Amsterdam, The Netherlands. julien.barc@univ-nantes.fr.

Classifications MeSH