Leukemia circulation kinetics revealed through blood exchange method.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
20 Apr 2024
Historique:
received: 13 09 2023
accepted: 10 04 2024
medline: 21 4 2024
pubmed: 21 4 2024
entrez: 20 4 2024
Statut: epublish

Résumé

Leukemias and their bone marrow microenvironments undergo dynamic changes over the course of disease. However, little is known about the circulation kinetics of leukemia cells, nor the impact of specific factors on the clearance of circulating leukemia cells (CLCs) from the blood. To gain a basic understanding of CLC dynamics over the course of disease progression and therapeutic response, we apply a blood exchange method to mouse models of acute leukemia. We find that CLCs circulate in the blood for 1-2 orders of magnitude longer than solid tumor circulating tumor cells. We further observe that: (i) leukemia presence in the marrow can limit the clearance of CLCs in a model of acute lymphocytic leukemia (ALL), and (ii) CLCs in a model of relapsed acute myeloid leukemia (AML) can clear faster than their untreated counterparts. Our approach can also directly quantify the impact of microenvironmental factors on CLC clearance properties. For example, data from two leukemia models suggest that E-selectin, a vascular adhesion molecule, alters CLC clearance. Our research highlights that clearance rates of CLCs can vary in response to tumor and treatment status and provides a strategy for identifying basic processes and factors that govern the kinetics of circulating cells.

Identifiants

pubmed: 38643279
doi: 10.1038/s42003-024-06181-x
pii: 10.1038/s42003-024-06181-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

483

Subventions

Organisme : EIF | Stand Up To Cancer (SU2C)
ID : 3.1416
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : P01 CA248384

Informations de copyright

© 2024. The Author(s).

Références

Whiteley, A. E., Price, T. T., Cantelli, G. & Sipkins, D. A. Leukaemia: a model metastatic disease. Nat. Rev. Cancer 21, 461 (2021).
doi: 10.1038/s41568-021-00355-z pubmed: 33953370 pmcid: 8722462
Mathews, E., Laurie, T., O’Riordan, K. & Nabhan, C. Liver involvement with acute myeloid leukemia. Case Rep. Gastroenterol. 2, 121 (2008).
doi: 10.1159/000120756 pubmed: 21490850 pmcid: 3075178
Doolittle, N. D. Brain metastases in hematologic malignancies. Cancer Treat. Res 136, 169–183 (2007).
doi: 10.1007/978-0-387-69222-7_9 pubmed: 18078270
Bross, I. D. J., Viadana, E. & Pickren, J. W. The metastatic spread of myeloma and leukemias in men. Virchows Arch. A Pathol. Anat. Histol. 365, 91–101 (1975).
Madden, R. E. & Malmgren, R. A. Quantitative Studies on Circulating Cancer Cells in the Mouse | Cancer Research | American Association for Cancer Research. Cancer Res. 22, 62–66 https://aacrjournals.org/cancerres/article/22/1_Part_1/62/474851/Quantitative-Studies-on-Circulating-Cancer-Cells (1962).
Fidler, I. J. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5-Iodo-2′ -deoxyuridine. JNCI: J. Natl Cancer Inst. 45, 773–782 (1970).
pubmed: 5513503
Aceto, N., Toner, M., Maheswaran, S. & Haber, D. A. En route to metastasis: circulating tumor cell clusters and epithelial-to-mesenchymal transition. Trends Cancer 1, 44–52 (2015).
doi: 10.1016/j.trecan.2015.07.006 pubmed: 28741562
Meng, S. et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res 10, 8152–8162 (2004).
doi: 10.1158/1078-0432.CCR-04-1110 pubmed: 15623589
Massagué, J. & Obenauf, A. C. Metastatic colonization by circulating tumour cells. Nature 529, 298–309 (2016).
doi: 10.1038/nature17038 pubmed: 26791720 pmcid: 5029466
Morgan-Parkes, J. H. Metastases: mechanisms, pathways, and cascades. Adv. Clin. Med. 164, 1075–1082 (1995).
Hamza, B. et al. Optofluidic real-time cell sorter for longitudinal CTC studies in mouse models of cancer. Proc. Natl Acad. Sci. USA 116, 2232–2236 (2019).
doi: 10.1073/pnas.1814102116 pubmed: 30674677 pmcid: 6369805
Hamza, B. et al. Measuring kinetics and metastatic propensity of CTCs by blood exchange between mice. Nat. Commun. 12, 1–11 (2021).
doi: 10.1038/s41467-021-25917-5
Chen, Y. et al. Acute myeloid leukemia–induced remodeling of the human bone marrow niche predicts clinical outcome. Blood Adv. 4, 5257–5268 (2020).
doi: 10.1182/bloodadvances.2020001808 pubmed: 33108453 pmcid: 7594397
Kim, J. A. et al. Microenvironmental remodeling as a parameter and prognostic factor of heterogeneous leukemogenesis in acute myelogenous leukemia. Cancer Res 75, 2222–2231 (2015).
doi: 10.1158/0008-5472.CAN-14-3379 pubmed: 25791383
Passaro, D. et al. Increased vascular permeability in the bone marrow microenvironment contributes to disease progression and drug response in acute myeloid leukemia. Cancer Cell 32, 324 (2017).
doi: 10.1016/j.ccell.2017.08.001 pubmed: 28870739 pmcid: 5598545
Kumar, B. et al. Exosome-driven lipolysis and bone marrow niche remodeling support leukemia expansion. Haematologica 106, 1484 (2021).
doi: 10.3324/haematol.2019.246058
Duarte, D. et al. Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML. Cell Stem Cell 22, 64–77.e6 (2018).
doi: 10.1016/j.stem.2017.11.006 pubmed: 29276143 pmcid: 5766835
Berrazouane, S. et al. Beta1 integrin blockade overcomes doxorubicin resistance in human T-cell acute lymphoblastic leukemia. Cell Death Dis. 10, 1–13 (2019).
doi: 10.1038/s41419-019-1593-2
Konopleva, M. et al. Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 16, 1713–1724 (2002).
doi: 10.1038/sj.leu.2402608 pubmed: 12200686
Scharff, B. F. S. S., Modvig, S., Marquart, H. V. & Christensen, C. Integrin-mediated adhesion and chemoresistance of acute lymphoblastic leukemia cells residing in the bone marrow or the central nervous system. Front Oncol. 10, 775 (2020).
doi: 10.3389/fonc.2020.00775 pubmed: 32528884 pmcid: 7256886
Zeng, Z. et al. Inhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias. Mol. Cancer Ther. 5, 3113–3121 (2006).
doi: 10.1158/1535-7163.MCT-06-0228 pubmed: 17172414
Barthel, S. R., Gavino, J. D., Descheny, L. & Dimitroff, C. J. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opinion on Therapeutic Targets 11, 1473–1491 (2007).
Erbani, J., Tay, J., Barbier, V., Levesque, J. P. & Winkler, I. G. Acute Myeloid Leukemia Chemo-Resistance Is Mediated by E-selectin Receptor CD162 in Bone Marrow Niches. Front Cell Dev Biol. 8, 668 (2020).
Barbier, V. et al. Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular niche-mediated chemoresistance. Nat. Commun. 11, 1–15 (2020).
doi: 10.1038/s41467-020-15817-5
DeAngelo, D. J. et al. Phase 1/2 study of uproleselan added to chemotherapy in patients with relapsed or refractory acute myeloid leukemia. Blood 139, 1135–1146 (2022).
doi: 10.1182/blood.2021010721 pubmed: 34543383
DeAngelo, D. J. et al. High E-Selectin Ligand Expression Contributes to Chemotherapy-Resistance in Poor Risk Relapsed and Refractory (R/R) Acute Myeloid Leukemia (AML) Patients and Can be Overcome with the Addition of Uproleselan. Blood 134, 2690 (2019).
DeAngelo, D. J. et al. A phase III trial to evaluate the efficacy of uproleselan (GMI-1271) with chemotherapy in patients with relapsed/refractory acute myeloid leukemia. J. Clin. Oncol. 37, https://doi.org/10.1200/JCO.2019.37.15_suppl.TPS7066 (2019).
Sison, E. A. R., McIntyre, E., Magoon, D. & Brown, P. Dynamic chemotherapy-induced upregulation of CXCR4 expression: A mechanism of therapeutic resistance in pediatric AML. Mol. Cancer Res. 11, 1004–1116 (2013).
Gruszka, A. M., Valli, D., Restelli, C. & Alcalay, M. Adhesion deregulation in acute myeloid Leukaemia. Cells 8, 66 (2019).
Meads, M. B., Gatenby, R. A. & Dalton, W. S. Environment-mediated drug resistance: A major contributor to minimal residual disease. Nature Reviews Cancer 9, 665–674 (2009).
Jacoby, E., Chien, C. D. & Fry, T. J. Murine Models of Acute Leukemia: Important Tools in Current Pediatric Leukemia Research. Front. Oncol. 4, 95 (2014).
Almosailleakh, M. & Schwaller, J. Murine Models of Acute Myeloid Leukaemia. Int. J. Mol. Sci. 20, 453 (2019).
doi: 10.3390/ijms20020453 pubmed: 30669675 pmcid: 6358780
Fiedler, E. R. C., Bhutkar, A., Lawler, E., Besada, R. & Hemann, M. T. In vivo RNAi screening identifies Pafah1b3 as a target for combination therapy with TKIs in BCR-ABL1+ BCP-ALL. Blood Adv. 2, 1229–1242 (2018).
doi: 10.1182/bloodadvances.2017015610 pubmed: 29853524 pmcid: 5998924
Wang, Y. et al. ALOX5 exhibits anti-tumor and drug-sensitizing effects in MLL-rearranged leukemia. Sci. Rep. 7, 1853 (2017).
doi: 10.1038/s41598-017-01913-y pubmed: 28500307 pmcid: 5431828
Meyer, C. et al. The MLL recombinome of acute leukemias in 2013. Leukemia 27, 2165–2176 (2013).
doi: 10.1038/leu.2013.135 pubmed: 23628958 pmcid: 3826032
Roumiantsev, S., De Aos, I. E., Varticovski, L., Maria, R. L. & Van Etten, R. A. The Src homology 2 domain of Bcr/Abl is required for efficient induction of chronic myeloid leukemia-like disease in mice but not for lymphoid leukemogenesis or activation of phosphatidylinositol 3-kinase. Blood 97, 4–13 (2001).
doi: 10.1182/blood.V97.1.4 pubmed: 11133737
Galbraith, P. R. Studies on the longevity, sequestration and release of the leukocytes in chronic myelogenous leukemia. Can. Med Assoc. J. 95, 511–521 (1966).
pubmed: 5225266 pmcid: 1935647
Zhang, B. et al. Treatment-induced arteriolar revascularization and miR-126 enhancement in bone marrow niche protect leukemic stem cells in AML. J. Hematol. Oncol. 14, 122 (2021).
doi: 10.1186/s13045-021-01133-y pubmed: 34372909 pmcid: 8351342
Jethava, Y. S. et al. Conditioning regimens for allogeneic hematopoietic stem cell transplants in acute myeloid leukemia. Bone. Marrow. Transplant. 52, 1504–1511 (2017).
Reshef, R. & Porter, D. L. Reduced-intensity conditioned allogeneic SCT in adults with AML. Bone. Marrow. Transplant. 50, 759–769 (2015).
Ales, E. & Sackstein, R. The biology of E-selectin ligands in leukemogenesis. Adv. Cancer Res 157, 229–250 (2023).
doi: 10.1016/bs.acr.2022.07.001 pubmed: 36725110
Chase, S. D., Magnani, J. L. & Simon, S. I. E-selectin ligands as mechanosensitive receptors on neutrophils in health and disease. Ann. Biomed. Eng. 40, 849 (2012).
doi: 10.1007/s10439-011-0507-y pubmed: 22271244 pmcid: 3680630
Shaw Bagnall, J. et al. Deformability-based cell selection with downstream immunofluorescence analysis. Integr. Biol. (U. Kingd.) 8, 654–664 (2016).
doi: 10.1039/c5ib00284b
Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nat. 446, 1066–1069 (2007).
doi: 10.1038/nature05741
Olcum, S., Cermak, N., Wasserman, S. C. & Manalis, S. R. High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions. Nat. Commun. 6, 1–8 (2015).
doi: 10.1038/ncomms8070
Stevens, M. M. et al. Drug sensitivity of single cancer cells is predicted by changes in mass accumulation rate. Nat. Biotechnol. 34, 1161–1167 (2016).
doi: 10.1038/nbt.3697 pubmed: 27723727 pmcid: 5142231
Hennigs, J. K., Matuszcak, C., Trepel, M. & Körbelin, J. Vascular Endothelial Cells: Heterogeneity and Targeting Approaches. Cells 10, 2712 (2021).
doi: 10.3390/cells10102712 pubmed: 34685692 pmcid: 8534745
Inoue, S. & Osmond, D. G. Basement membrane of mouse bone marrow sinusoids shows distinctive structure and proteoglycan composition: A high resolution ultrastructural study. Anat. Rec. 264, 294–304 (2001).
doi: 10.1002/ar.1166 pubmed: 11596011
Kulkarni, R. & Kale, V. Physiological Cues Involved in the Regulation of Adhesion Mechanisms in Hematopoietic Stem Cell Fate Decision. Front. Cell. Dev. Biol. 8, 611 (2020).
Moore, M. A. S. Waking up HSCs: A new role for E-selectin. Nat. Med. 18, 1613–1614 (2012).
Hassanshahi, M., Hassanshahi, A., Khabbazi, S., Su, Y. W. & Xian, C. J. Bone marrow sinusoidal endothelium as a facilitator/regulator of cell egress from the bone marrow. Crit. Rev. Oncol. Hematol. 137, 43–56 (2019).
doi: 10.1016/j.critrevonc.2019.01.024 pubmed: 31014515
Mosteo, L. et al. The Dynamic Interface Between the Bone Marrow Vascular Niche and Hematopoietic Stem Cells in Myeloid Malignancy. Front. Cell. Dev. Biol. 9, 635189 (2021).

Auteurs

Alex B Miller (AB)

Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA.
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

Felicia H Rodriguez (FH)

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Adam Langenbucher (A)

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Computation and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.

Lin Lin (L)

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

Christina Bray (C)

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

Sarah Duquette (S)

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Ye Zhang (Y)

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

Dan Goulet (D)

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

Andrew A Lane (AA)

Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.

David M Weinstock (DM)

Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
Merck and Co., Rahway, NJ, USA.

Michael T Hemann (MT)

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. hemann@mit.edu.
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. hemann@mit.edu.

Scott R Manalis (SR)

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. srm@mit.edu.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. srm@mit.edu.
Broad Institute of MIT and Harvard, Cambridge, MA, USA. srm@mit.edu.
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. srm@mit.edu.

Classifications MeSH