Proceedings of the first global meeting of the Posterior Fossa Society: state of the art in cerebellar mutism syndrome.
Cerebellar
Cerebellar cognitive affective syndrome
Mutism
Posterior fossa
Tumor
Journal
Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery
ISSN: 1433-0350
Titre abrégé: Childs Nerv Syst
Pays: Germany
ID NLM: 8503227
Informations de publication
Date de publication:
22 Apr 2024
22 Apr 2024
Historique:
received:
29
11
2023
accepted:
13
04
2024
medline:
22
4
2024
pubmed:
22
4
2024
entrez:
22
4
2024
Statut:
aheadofprint
Résumé
The Posterior Fossa Society, an international multidisciplinary group, hosted its first global meeting designed to share the current state of the evidence across the multidisciplinary elements of pediatric post-operative cerebellar mutism syndrome (pCMS). The agenda included keynote talks from world-leading speakers, compelling abstract presentations and engaging discussions led by members of the PFS special interest groups. This paper is a synopsis of the first global meeting, a 3-day program held in Liverpool, England, UK, in September 2022. Topics included nosology, patient and family experience, cerebellar modulation of cognition, and cerebellar cognitive affective syndrome. In addition, updates from large-scale studies were shared as well as abstracts across neuroradiology, neurosurgery, diagnosis/scoring, ataxia, and rehabilitation. Based on data-driven evidence and discussions, each special interest group created research priorities to target before the second global meeting, in the spring of 2024.
Identifiants
pubmed: 38647662
doi: 10.1007/s00381-024-06411-x
pii: 10.1007/s00381-024-06411-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Gudrunardottir T, Morgan AT, Lux AL et al (2016) Consensus paper on post-operative pediatric cerebellar mutism syndrome: the Iceland Delphi results. Childs Nerv Syst 32:1195–1203. https://doi.org/10.1007/s00381-016-3093-3
doi: 10.1007/s00381-016-3093-3
pubmed: 27142103
Bae D, Mlc VV, Catsman-Berrevoets C (2020) Pre-operative prediction of post-operative cerebellar mutism syndrome. Validation of existing MRI models and proposal of the new Rotterdam pCMS prediction model. Childs Nerv Syst 36:1471–1480. https://doi.org/10.1007/s00381-020-04535-4
doi: 10.1007/s00381-020-04535-4
pubmed: 32072230
pmcid: 7299925
Wells EM, Khademian ZP, Walsh KS, Vezina G, Sposto R, Keating RF, Packer RJ (2010) Post-operative cerebellar mutism syndrome following treatment of medulloblastoma: neuroradiographic features and origin. J Neurosurg Pediatr 5:329–334. https://doi.org/10.3171/2009.11.PEDS09131
doi: 10.3171/2009.11.PEDS09131
pubmed: 20367335
Liu J-F, Dineen RA, Avula S et al (2018) Development of a pre-operative scoring system for predicting risk of post-operative paediatric cerebellar mutism syndrome. Br J Neurosurg 32:18–27. https://doi.org/10.1080/02688697.2018.1431204
doi: 10.1080/02688697.2018.1431204
pubmed: 29433337
Bailey P (1939) Concerning the technique of operation for acoustic neurinoma. Zentralbl Neurochir 4:1–5
Hirsch JF, Renier D, Czernichow P, Benveniste L, Pierre-Kahn A (1979) Medulloblastoma in childhood. Survival and functional results. Acta Neurochirurgica 48:1–15
doi: 10.1007/BF01406016
pubmed: 495234
Wisoff JH, Epstein FJ (1984) Pseudobulbar palsy after posterior fossa operation in children. Neurosurgery 15:707–709. https://doi.org/10.1227/00006123-198411000-00014
doi: 10.1227/00006123-198411000-00014
pubmed: 6504288
Rekate HL, Grubb RL, Aram DM et al (1985) Muteness of cerebellar origin. Arch Neurol 42:697–698. https://doi.org/10.1001/archneur.1985.04060070091023
doi: 10.1001/archneur.1985.04060070091023
pubmed: 4015467
Kirk EA, Howard VC, Scott CA (1995) Description of posterior fossa syndrome in children after posterior fossa brain tumor surgery. J Pediatr Oncol Nurs 12:181–187. https://doi.org/10.1177/104345429501200402
doi: 10.1177/104345429501200402
pubmed: 7495523
Robertson PL, Muraszko KM, Holmes EJ et al (2006) Incidence and severity of post-operative cerebellar mutism syndrome in children with medulloblastoma: a prospective study by the Children’s Oncology Group. J Neurosurg 105:444–451. https://doi.org/10.3171/ped.2006.105.6.444
doi: 10.3171/ped.2006.105.6.444
pubmed: 17184075
Cobourn K, Marayati F, Tsering D et al (2020) Cerebellar mutism syndrome: current approaches to minimize risk for CMS. Childs Nerv Syst 36:1171–1179. https://doi.org/10.1007/s00381-019-04240-x
doi: 10.1007/s00381-019-04240-x
pubmed: 31273496
Albazron FM, Bruss J, Jones RM et al (2019) Pediatric post-operative cerebellar cognitive affective syndrome follows outflow pathway lesions. Neurology 93:e1561–e1571. https://doi.org/10.1212/WNL.0000000000008326
doi: 10.1212/WNL.0000000000008326
pubmed: 31527284
pmcid: 6815203
McAfee SS, Zhang S, Zou P et al (2023) Fastigial nuclei surgical damage and focal midbrain disruption implicate PAG survival circuits in cerebellar mutism syndrome. Neuro Oncol 25:375–385. https://doi.org/10.1093/neuonc/noac168
doi: 10.1093/neuonc/noac168
pubmed: 35789275
Boisgontier J, Fillon L, Rutten C et al (2021) A CBF decrease in the left supplementary motor areas: new insight into post-operative pediatric cerebellar mutism syndrome using arterial spin labeling perfusion MRI. J Cereb Blood Flow Metab 41:3339–3349. https://doi.org/10.1177/0271678X211031321
doi: 10.1177/0271678X211031321
pubmed: 34259072
pmcid: 8669281
Ji Q, Edwards A, Glass JO et al (2019) Measurement of projections between dentate nucleus and contralateral frontal cortex in human brain via diffusion tensor tractography. Cerebellum 18:761–769. https://doi.org/10.1007/s12311-019-01035-3
doi: 10.1007/s12311-019-01035-3
pubmed: 31062283
Toescu SM, Hales PW, Kaden E, Lacerda LM, Aquilina K, Clark CA (2021) Tractographic and microstructural analysis of the dentato-rubro-thalamo-cortical tracts in children using diffusion MRI. Cereb Cortex 31:2595–2609. https://doi.org/10.1093/cercor/bhaa377
doi: 10.1093/cercor/bhaa377
pubmed: 33338201
Spiteri M, Guillemaut J-Y, Windridge D et al (2020) Fully-automated identification of imaging biomarkers for post-operative cerebellar mutism syndrome using longitudinal paediatric MRI. Neuroinform 18:151–162. https://doi.org/10.1007/s12021-019-09427-w
doi: 10.1007/s12021-019-09427-w
Zhang H, Liao Z, Hao X, Han Z, Li C, Gong J, Liu W, Tian Y (2019) Establishing reproducible predictors of cerebellar mutism syndrome based on pre-operative imaging. Childs Nerv Syst 35:795–800. https://doi.org/10.1007/s00381-019-04075-6
doi: 10.1007/s00381-019-04075-6
pubmed: 30726524
Sidpra J, Marcus AP, Löbel U et al (2022) Improved prediction of post-operative pediatric cerebellar mutism syndrome using an artificial neural network. Neuro Oncol Adv 4:vdac003. https://doi.org/10.1093/noajnl/vdac003
doi: 10.1093/noajnl/vdac003
Grønbæk JK, Wibroe M, Toescu S et al (2021) Post-operative speech impairment and surgical approach to posterior fossa tumours in children: a prospective European multicentre cohort study. Lancet Child Adolesc Health 5:814–824. https://doi.org/10.1016/S2352-4642(21)00274-1
doi: 10.1016/S2352-4642(21)00274-1
pubmed: 34624241
Grønbæk JK, Toescu S, Frič R et al (2022) Post-operative speech impairment and cranial nerve deficits after secondary surgery of posterior fossa tumours in childhood: a prospective European multicentre study. Childs Nerv Syst 38:747–758. https://doi.org/10.1007/s00381-022-05464-0
doi: 10.1007/s00381-022-05464-0
pubmed: 35157109
Grønbæk JK, Laustsen AF, Toescu S et al (2022) Left-handedness should not be overrated as a risk factor for post-operative speech impairment in children after posterior fossa tumour surgery: a prospective European multicentre study. Childs Nerv Syst 38:1479–1485. https://doi.org/10.1007/s00381-022-05567-8
doi: 10.1007/s00381-022-05567-8
pubmed: 35759029
Molinari E, Pizer B, Catsman-Berrevoets C, Avula S, Keating R, Paquier P, Wisoff JH, Walsh KS, Posterior Fossa Society (2020) Posterior fossa society consensus meeting 2018: a synopsis. Childs Nerv Syst 36:1145–1151. https://doi.org/10.1007/s00381-019-04220-1
doi: 10.1007/s00381-019-04220-1
Hoche F, Guell X, Vangel MG et al (2018) The cerebellar cognitive affective/Schmahmann syndrome scale. Brain 141:248–270. https://doi.org/10.1093/brain/awx317
doi: 10.1093/brain/awx317
pubmed: 29206893
Khan RB, Patay Z, Klimo P et al (2021) Clinical features, neurologic recovery, and risk factors of post-operative posterior fossa syndrome and delayed recovery: a prospective study. Neuro Oncol 23:1586–1596. https://doi.org/10.1093/neuonc/noab030
doi: 10.1093/neuonc/noab030
pubmed: 33823018
pmcid: 8408840
Wickenhauser ME, Khan RB, Raches D, Ashford JM, Russell KMW, Lyons K, Robinson GW, Gajjar A, Klimo P Jr, Conklin HM (2022) The posterior fossa syndrome questionnaire: using science to inform practice. J Neurooncol 157:465–473. https://doi.org/10.1007/s11060-022-03990-0
doi: 10.1007/s11060-022-03990-0
pubmed: 35380295
pmcid: 10146631
Schmahmann JD (1998) Dysmetria of thought: clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Sci 2:362–371. https://doi.org/10.1016/S1364-6613(98)01218-2
doi: 10.1016/S1364-6613(98)01218-2
pubmed: 21227233
Schmahmann JD (1991) An emerging concept: the cerebellar contribution to higher function. Arch Neurol 48:1178. https://doi.org/10.1001/archneur.1991.00530230086029
doi: 10.1001/archneur.1991.00530230086029
pubmed: 1953406
Schmahmann JD, Guell X, Stoodley CJ, Halko MA (2019) The theory and neuroscience of cerebellar cognition. Annu Rev Neurosci 42:337–364. https://doi.org/10.1146/annurev-neuro-070918-050258
doi: 10.1146/annurev-neuro-070918-050258
pubmed: 30939101
Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121(4):561–579. https://doi.org/10.1093/brain/121.4.561
doi: 10.1093/brain/121.4.561
pubmed: 9577385
Argyropoulos GPD, Van Dun K, Adamaszek M et al (2020) The cerebellar cognitive affective/Schmahmann syndrome: a task force paper. Cerebellum 19:102–125. https://doi.org/10.1007/s12311-019-01068-8
doi: 10.1007/s12311-019-01068-8
pubmed: 31522332
Levisohn L, Cronin-Golomb A, Schmahmann JD (2000) Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain 123:1041–1050. https://doi.org/10.1093/brain/123.5.1041
doi: 10.1093/brain/123.5.1041
pubmed: 10775548
Manto M, Mariën P (2015) Schmahmann’s syndrome - identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias 2:2. https://doi.org/10.1186/s40673-015-0023-1
doi: 10.1186/s40673-015-0023-1
pubmed: 26331045
pmcid: 4552302
Buckner RL, Krienen FM, Castellanos A et al (2011) The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106:2322–2345. https://doi.org/10.1152/jn.00339.2011
doi: 10.1152/jn.00339.2011
pubmed: 21795627
pmcid: 3214121
Guell X, Gabrieli JDE, Schmahmann JD (2018) Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. Neuroimage 172:437–449. https://doi.org/10.1016/j.neuroimage.2018.01.082
doi: 10.1016/j.neuroimage.2018.01.082
pubmed: 29408539
King M, Hernandez-Castillo CR, Poldrack RA et al (2019) Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci 22:1371–1378. https://doi.org/10.1038/s41593-019-0436-x
doi: 10.1038/s41593-019-0436-x
pubmed: 31285616
pmcid: 8312478
Stoodley CJ, Valera EM, Schmahmann JD (2012) Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 59:1560–1570. https://doi.org/10.1016/j.neuroimage.2011.08.065
doi: 10.1016/j.neuroimage.2011.08.065
pubmed: 21907811
Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501
doi: 10.1016/j.neuroimage.2008.08.039
pubmed: 18835452
Hoche F, Guell X, Sherman JC et al (2016) Cerebellar contribution to social cognition. Cerebellum 15:732–743. https://doi.org/10.1007/s12311-015-0746-9
doi: 10.1007/s12311-015-0746-9
pubmed: 26585120
pmcid: 5157127
Schmahmann JD, Pierce S, MacMore J, L’Italien GJ (2021) Development and validation of a Patient-reported outcome measure of ataxia. Mov Disord 36:2367–2377. https://doi.org/10.1002/mds.28670
doi: 10.1002/mds.28670
pubmed: 34115419
Cattaneo Z, Ferrari C, Ciricugno A et al (2021) New horizons on non-invasive brain stimulation of the social and affective cerebellum. Cerebellum 21:482–496. https://doi.org/10.1007/s12311-021-01300-4
doi: 10.1007/s12311-021-01300-4
pubmed: 34270081
Halko MA, Farzan F, Eldaief MC et al (2014) Intermittent theta-burst stimulation of the lateral cerebellum increases functional connectivity of the default network. J Neurosci 34:12049–12056. https://doi.org/10.1523/JNEUROSCI.1776-14.2014
doi: 10.1523/JNEUROSCI.1776-14.2014
pubmed: 25186750
pmcid: 4152606
Stoodley CJ, D’Mello AM, Ellegood J et al (2017) Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci 20:1744–1751. https://doi.org/10.1038/s41593-017-0004-1
doi: 10.1038/s41593-017-0004-1
pubmed: 29184200
pmcid: 5867894
Brady RO, Gonsalvez I, Lee I et al (2019) Cerebellar-prefrontal network connectivity and negative symptoms in schizophrenia. AJP 176:512–520. https://doi.org/10.1176/appi.ajp.2018.18040429
doi: 10.1176/appi.ajp.2018.18040429
Hoffmann-Lamplmair D, Leiss U, Peyrl A et al (2022) Evaluating the diagnostic validity of the cerebellar cognitive affective syndrome (CCAS) in pediatric posterior fossa tumor patients. Neuro Oncol Adv 4:vdac065. https://doi.org/10.1093/noajnl/vdac065
doi: 10.1093/noajnl/vdac065
Bianchi F, Chieffo DPR, Frassanito P et al (2020) Cerebellar mutism: the predictive role of pre-operative language evaluation. Childs Nerv Syst 36:1153–1157. https://doi.org/10.1007/s00381-019-04252-7
doi: 10.1007/s00381-019-04252-7
pubmed: 31201497
Hartley H, Pizer B, Lane S et al (2019) Incidence and prognostic factors of ataxia in children with posterior fossa tumors. Neurooncol Pract 6:185–193. https://doi.org/10.1093/nop/npy033
doi: 10.1093/nop/npy033
pubmed: 31386000
Piscione PJ, Bouffet E, Mabbott DJ et al (2014) Physical functioning in pediatric survivors of childhood posterior fossa brain tumors. Neuro Oncol 16:147–155. https://doi.org/10.1093/neuonc/not138
doi: 10.1093/neuonc/not138
pubmed: 24305707
Schouwstra KJ, Polet SS, Hbrahimgel S et al (2022) Application of the scale for assessment and rating of ataxia in toddlers. Eur J Paediatr Neurol 40:28–33. https://doi.org/10.1016/j.ejpn.2022.07.001
doi: 10.1016/j.ejpn.2022.07.001
pubmed: 35931015
Baque E, Barber L, Sakzewski L, Boyd RN (2017) Randomized controlled trial of web-based multimodal therapy for children with acquired brain injury to improve gross motor capacity and performance. Clin Rehabil 31:722–732. https://doi.org/10.1177/0269215516651980
doi: 10.1177/0269215516651980
pubmed: 27271374
Khaleqi-Sohi M, Sadria G, Ghalibafian M, Khademi-Kalantari K, Irannejad S (2022) The effects of physical activity and exercise therapy on pediatric brain tumor survivors: a systematic review. J Bodyw Mov Ther 30:1–9. https://doi.org/10.1016/j.jbmt.2021.11.003
doi: 10.1016/j.jbmt.2021.11.003
pubmed: 35500954
Sharma B, Allison D, Tucker P et al (2021) Exercise trials in pediatric brain tumor: a systematic review of randomized studies. J Pediatr Hematol Oncol 43:59–67. https://doi.org/10.1097/MPH.0000000000001844
doi: 10.1097/MPH.0000000000001844
pubmed: 32604333
Ayoub R, Ruddy RM, Cox E et al (2020) Assessment of cognitive and neural recovery in survivors of pediatric brain tumors in a pilot clinical trial using metformin. Nat Med 26:1285–1294. https://doi.org/10.1038/s41591-020-0985-2
doi: 10.1038/s41591-020-0985-2
pubmed: 32719487
pmcid: 8176964
Sharkey CM, Mullins LL, Clawson AH et al (2021) Assessing neuropsychological phenotypes of pediatric brain tumor survivors. Psychooncology 30:1366–1374. https://doi.org/10.1002/pon.5692
doi: 10.1002/pon.5692
pubmed: 33823083
Silveri MC (2021) Contribution of the cerebellum and the basal ganglia to language production: speech, word fluency, and sentence construction—evidence from pathology. Cerebellum 20:282–294. https://doi.org/10.1007/s12311-020-01207-6
doi: 10.1007/s12311-020-01207-6
pubmed: 33120434
Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844. https://doi.org/10.1016/j.cortex.2009.11.008
doi: 10.1016/j.cortex.2009.11.008
pubmed: 20152963
pmcid: 2873095