Virtual reality-empowered deep-learning analysis of brain cells.


Journal

Nature methods
ISSN: 1548-7105
Titre abrégé: Nat Methods
Pays: United States
ID NLM: 101215604

Informations de publication

Date de publication:
22 Apr 2024
Historique:
received: 03 06 2022
accepted: 12 03 2024
medline: 23 4 2024
pubmed: 23 4 2024
entrez: 22 4 2024
Statut: aheadofprint

Résumé

Automated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet image stacks is challenging. Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos

Identifiants

pubmed: 38649742
doi: 10.1038/s41592-024-02245-2
pii: 10.1038/s41592-024-02245-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB 824
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB 824
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB 824
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 390857198
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB 1052
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : TR 296
Organisme : Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
ID : 01KX2121
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 949017
Organisme : Else Kröner-Fresenius-Stiftung (Else Kroner-Fresenius Foundation)
ID : 2020 EKSE.23

Informations de copyright

© 2024. The Author(s).

Références

Ueda, H. R. et al. Tissue clearing and its applications in neuroscience. Nat. Rev. Neurosci. 21, 61–79 (2020).
doi: 10.1038/s41583-019-0250-1 pubmed: 31896771 pmcid: 8121164
Erturk, A. et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat. Protoc. 7, 1983–1995 (2012).
pubmed: 23060243 doi: 10.1038/nprot.2012.119
Cai, R. et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. Nat. Neurosci. 22, 317–327 (2019).
pubmed: 30598527 doi: 10.1038/s41593-018-0301-3
Belle, M. et al. Tridimensional visualization and analysis of early human development. Cell 169, 161–173 (2017).
pubmed: 28340341 doi: 10.1016/j.cell.2017.03.008
Bhatia, H. S. et al. Spatial proteomics in three-dimensional intact specimens. Cell 185, 5040–5058 (2022).
pubmed: 36563667 doi: 10.1016/j.cell.2022.11.021
Molbay, M., Kolabas, Z. I., Todorov, M. I., Ohn, T. L. & Erturk, A. A guidebook for DISCO tissue clearing. Mol. Syst. Biol. 17, e9807 (2021).
pubmed: 33769689 pmcid: 7995442 doi: 10.15252/msb.20209807
Renier, N. et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165, 1789–1802 (2016).
pubmed: 27238021 pmcid: 4912438 doi: 10.1016/j.cell.2016.05.007
Nectow, A. R. et al. Identification of a brainstem circuit controlling feeding. Cell 170, 429–442 (2017).
pubmed: 28753423 doi: 10.1016/j.cell.2017.06.045
Topilko, T. et al. Edinger-Westphal peptidergic neurons enable maternal preparatory nesting. Neuron 110, 1385–1399 (2022).
pubmed: 35123655 pmcid: 9090132 doi: 10.1016/j.neuron.2022.01.012
Zhao, S. et al. Cellular and molecular probing of intact human organs. Cell 180, 796–812 (2020).
pubmed: 32059778 pmcid: 7557154 doi: 10.1016/j.cell.2020.01.030
Yushkevich, P. A. & Gerig, G. ITK-SNAP: An intractive medical image segmentation tool to meet the need for expert-guided segmentation of complex medical images. IEEE Pulse 8, 54–57 (2017).
pubmed: 28715317 doi: 10.1109/MPUL.2017.2701493
Pidhorskyi, S., Morehead, M., Jones, Q., Spirou, G., & Doretto, G. syGlass: interactive exploration of multidimensional images using virtual reality head-mounted displays. Preprint at arXiv https://doi.org/10.48550/arXiv.1804.08197 (2018).
Silversmith, W. cc3d: Connected components on multilabel 3D & 2D images. Version 3.2.1. Zenodo https://doi.org/10.5281/zenodo.5719536 (2021).
Qu, L. et al. Cross-modal coherent registration of whole mouse brains. Nat. Methods 19, 111–118 (2022).
pubmed: 34887551 doi: 10.1038/s41592-021-01334-w
Hatamizadeh, A. et al. UNETR: Transformers for 3D Medical Image Segmentation. In IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 1748–1758 (2022)
Myronenko, A. 3D MRI brain tumor segmentation using autoencoder regularization. in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Part II, pp. 311–320 (Springer International Publishing, 2018).
Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J. & Maier-Hein, K. H. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021).
pubmed: 33288961 doi: 10.1038/s41592-020-01008-z
Kirst, C. et al. Mapping the fine-scale organization and plasticity of the brain vasculature. Cell 180, 780–795 (2020).
pubmed: 32059781 doi: 10.1016/j.cell.2020.01.028
Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).
pubmed: 31570887 doi: 10.1038/s41592-019-0582-9
Claudi, F. et al. Visualizing anatomically registered data with brainrender. eLife 10, e65751 (2021).
pubmed: 33739286 pmcid: 8079143 doi: 10.7554/eLife.65751
Merkel, D. Docker: lightweight Linux containers for consistent development and deployment. Linux J. 2014, 2 (2014).
Salter, M. W. & Stevens, B. Microglia emerge as central players in brain disease. Nat. Med. 23, 1018–1027 (2017).
pubmed: 28886007 doi: 10.1038/nm.4397
Kofler, F. et al. Approaching peak ground truth. in 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), 1–6 (IEEE, 2023).
Porporato, P. E. Understanding cachexia as a cancer metabolism syndrome. Oncogenesis 5, e200 (2016).
pubmed: 26900952 pmcid: 5154342 doi: 10.1038/oncsis.2016.3
Baracos, V. E., Martin, L., Korc, M., Guttridge, D. C. & Fearon, K. C. H. Cancer-associated cachexia. Nat. Rev. Dis. Prim. 4, 17105 (2018).
pubmed: 29345251 doi: 10.1038/nrdp.2017.105
Schmidt, S. F., Rohm, M., Herzig, S. & Berriel Diaz, M. Cancer cachexia: more than skeletal muscle wasting. Trends Cancer 4, 849–860 (2018).
pubmed: 30470306 doi: 10.1016/j.trecan.2018.10.001
Argiles, J. M., Stemmler, B., Lopez-Soriano, F. J. & Busquets, S. Inter-tissue communication in cancer cachexia. Nat. Rev. Endocrinol. 15, 9–20 (2018).
pubmed: 30464312 doi: 10.1038/s41574-018-0123-0
Morigny, P. et al. High levels of modified ceramides are a defining feature of murine and human cancer cachexia. J. Cachexia Sarcopenia Muscle 11, 1459–1475 (2020).
pubmed: 33090732 pmcid: 7749558 doi: 10.1002/jcsm.12626
Baker, A. et al. Specialized subpopulations of deep-layer pyramidal neurons in the neocortex: bridging cellular properties to functional consequences. J. Neurosci. 38, 5441–5455 (2018).
pubmed: 29798890 pmcid: 6001033 doi: 10.1523/JNEUROSCI.0150-18.2018
Alexander, A. S. et al. Egocentric boundary vector tuning of the retrosplenial cortex. Sci. Adv. 6, eaaz2322 (2020).
pubmed: 32128423 pmcid: 7035004 doi: 10.1126/sciadv.aaz2322
Carstensen, L. C., Alexander, A. S., Chapman, G. W., Lee, A. J. & Hasselmo, M. E. Neural responses in retrosplenial cortex associated with environmental alterations. iScience 24, 103377 (2021).
pubmed: 34825142 pmcid: 8605176 doi: 10.1016/j.isci.2021.103377
Kim, Y. et al. Mapping social behavior-induced brain activation at cellular resolution in the mouse. Cell Rep. 10, 292–305 (2015).
pubmed: 25558063 doi: 10.1016/j.celrep.2014.12.014
Jager, P. et al. Dual midbrain and forebrain origins of thalamic inhibitory interneurons. eLife https://doi.org/10.7554/eLife.59272 (2021).
Tyson, A. L. et al. A deep learning algorithm for 3D cell detection in whole mouse brain image datasets. PLoS Comput. Biol. 17, e1009074 (2021).
pubmed: 34048426 pmcid: 8191998 doi: 10.1371/journal.pcbi.1009074
Menegas, W. et al. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife 4, e10032 (2015).
pubmed: 26322384 pmcid: 4598831 doi: 10.7554/eLife.10032
Matsumoto, K. et al. Advanced CUBIC tissue clearing for whole-organ cell profiling. Nat. Protoc. 14, 3506–3537 (2019).
pubmed: 31748753 doi: 10.1038/s41596-019-0240-9
Nath, V., Yang, D., Landman, B. A., Xu, D. & Roth, H. R. Diminishing uncertainty within the training pool: active learning for medical image segmentation. IEEE Trans. Med. Imaging 40, 2534–2547 (2021).
pubmed: 33373298 doi: 10.1109/TMI.2020.3048055
Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. in International Conference on Machine Learning, 1050–1059. (PMLR, 2015).
Burfeind, K. G., Michaelis, K. A. & Marks, D. L. The central role of hypothalamic inflammation in the acute illness response and cachexia. Semin. Cell Dev. Biol. 54, 42–52 (2016).
pubmed: 26541482 doi: 10.1016/j.semcdb.2015.10.038
Campos, C. A. et al. Cancer-induced anorexia and malaise are mediated by CGRP neurons in the parabrachial nucleus. Nat. Neurosci. 20, 934–942 (2017).
pubmed: 28581479 pmcid: 5538581 doi: 10.1038/nn.4574
Winnard, P. T. Jr. et al. Brain metabolites in cholinergic and glutamatergic pathways are altered by pancreatic cancer cachexia. J. Cachexia Sarcopenia Muscle 11, 1487–1500 (2020).
pubmed: 33006443 pmcid: 7749557 doi: 10.1002/jcsm.12621
Rolls, E. T., Cheng, W. & Feng, J. The orbitofrontal cortex: reward, emotion and depression. Brain Commun. 2, fcaa196 (2020).
pubmed: 33364600 pmcid: 7749795 doi: 10.1093/braincomms/fcaa196
Basu, R. et al. The orbitofrontal cortex maps future navigational goals. Nature 599, 449–452 (2021).
pubmed: 34707289 pmcid: 8599015 doi: 10.1038/s41586-021-04042-9
Kann, O. The interneuron energy hypothesis: Implications for brain disease. Neurobiol. Dis. 90, 75–85 (2016).
pubmed: 26284893 doi: 10.1016/j.nbd.2015.08.005
Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).
pubmed: 19346324 pmcid: 2682522 doi: 10.1093/bioinformatics/btp184
Negwer, M. et al. FriendlyClearMap: an optimized toolkit for mouse brain mapping and analysis. Gigascience 12, giad035 (2022).
pubmed: 37222748 doi: 10.1093/gigascience/giad035
Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67–70 (2019).
pubmed: 30559429 doi: 10.1038/s41592-018-0261-2
Cardoso, J. M. et al. MONAI: an open-source framework for deep learning in healthcare. Preprint at arXiv https://doi.org/10.48550/arXiv.2211.02701 (2022).
Misra, D. A self regularized non-monotonic neural activation function. Preprint at arXiv https://doi.org/10.48550/arXiv.1908.08681 (2019).
Wright, L. & Demeure, N. Ranger21: a synergistic deep learning optimizer. Preprint at arXiv https://doi.org/10.48550/arXiv.2106.13731 (2021).
Jungo, A., Scheidegger, O., Reyes, M. & Balsiger, F. pymia: a Python package for data handling and evaluation in deep learning-based medical image analysis. Comput. Methods Prog. Biomed. 198, 105796 (2021).
doi: 10.1016/j.cmpb.2020.105796
Pan, C. et al. Deep learning reveals cancer metastasis and therapeutic antibody targeting in the entire body. Cell 179, 1661–1676 (2019).
pubmed: 31835038 pmcid: 7591821 doi: 10.1016/j.cell.2019.11.013
Kofler, F. et al. blob loss: instance imbalance aware loss functions for semantic segmentation. in Information Processing in Medical Imaging (Springer, 2023).
Peng, H., Ruan, Z., Long, F., Simpson, J. H. & Myers, E. W. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol. 28, 348–353 (2010).
pubmed: 20231818 pmcid: 2857929 doi: 10.1038/nbt.1612
Todorov, M. I. et al. Machine learning analysis of whole mouse brain vasculature. Nat. Methods 17, 442–449 (2020).
pubmed: 32161395 pmcid: 7591801 doi: 10.1038/s41592-020-0792-1
Bakker, R., Tiesinga, P. & Kotter, R. The scalable brain atlas: instant web-based access to public brain atlases and related content. Neuroinformatics 13, 353–366 (2015).
pubmed: 25682754 pmcid: 4469098 doi: 10.1007/s12021-014-9258-x
Bria, A. & Iannello, G. TeraStitcher: a tool for fast automatic 3D-stitching of teravoxel-sized microscopy images. BMC Bioinform. 13, 316 (2012).
doi: 10.1186/1471-2105-13-316
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772 doi: 10.1038/nmeth.2019
Morigny, P. et al. Association of circulating PLA2G7 levels with cancer cachexia and assessment of darapladib as a therapy. J. Cachexia Sarcopenia Muscle 12, 1333–1351 (2021).
pubmed: 34427055 pmcid: 8517355 doi: 10.1002/jcsm.12758
DELiVR pipeline. (GitHub, 2024); https://zenodo.org/doi/10.5281/zenodo.10908720
Training code. (GitHub, 2024); https://zenodo.org/doi/10.5281/zenodo.10909998

Auteurs

Doris Kaltenecker (D)

Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany.
Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany.
German Center for Diabetes Research (DZD), Neuherberg, Germany.
Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.

Rami Al-Maskari (R)

Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.
Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany.
Department of Computer Science, TUM Computation, Information and Technology, Technical University of Munich (TUM), Munich, Germany.
Center for Translational Cancer Research of the TUM (TranslaTUM), Munich, Germany.

Moritz Negwer (M)

Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany.

Luciano Hoeher (L)

Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany.

Florian Kofler (F)

Department of Computer Science, TUM Computation, Information and Technology, Technical University of Munich (TUM), Munich, Germany.
Center for Translational Cancer Research of the TUM (TranslaTUM), Munich, Germany.
Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
Helmholtz AI, Helmholtz Munich, Neuherberg, Germany.

Shan Zhao (S)

Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.
Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany.

Mihail Todorov (M)

Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.
Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany.

Zhouyi Rong (Z)

Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.
Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany.

Johannes Christian Paetzold (JC)

Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany.
Center for Translational Cancer Research of the TUM (TranslaTUM), Munich, Germany.
Department of Computing, Imperial College London, London, United Kingdom.

Benedikt Wiestler (B)

Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.

Marie Piraud (M)

Helmholtz AI, Helmholtz Munich, Neuherberg, Germany.

Daniel Rueckert (D)

Department of Computing, Imperial College London, London, United Kingdom.

Julia Geppert (J)

Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany.
Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany.
German Center for Diabetes Research (DZD), Neuherberg, Germany.

Pauline Morigny (P)

Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany.
Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany.
German Center for Diabetes Research (DZD), Neuherberg, Germany.

Maria Rohm (M)

Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany.
Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany.
German Center for Diabetes Research (DZD), Neuherberg, Germany.

Bjoern H Menze (BH)

Department of Computer Science, TUM Computation, Information and Technology, Technical University of Munich (TUM), Munich, Germany.
Department for Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.

Stephan Herzig (S)

Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany.
Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany.
German Center for Diabetes Research (DZD), Neuherberg, Germany.
Chair Molecular Metabolic Control, TU Munich, Munich, Germany.

Mauricio Berriel Diaz (M)

Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany. mauricio.berrieldiaz@helmholtz-munich.de.
Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany. mauricio.berrieldiaz@helmholtz-munich.de.
German Center for Diabetes Research (DZD), Neuherberg, Germany. mauricio.berrieldiaz@helmholtz-munich.de.

Ali Ertürk (A)

Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany. ali.erturk@helmholtz-munich.de.
Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany. ali.erturk@helmholtz-munich.de.
School of Medicine, Koç University, İstanbul, Turkey. ali.erturk@helmholtz-munich.de.
Munich Cluster for Systems Neurology (SyNergy), Munich, Germany. ali.erturk@helmholtz-munich.de.
Deep Piction, Munich, Germany. ali.erturk@helmholtz-munich.de.

Classifications MeSH