Catalytic Asymmetric Construction of α,α-Diaryl Aldehydes via Oxo-Hydroarylation of Terminal Alkynes.
chiral aldehydes
chiral phosphoric acid
oxo‐hydroarylation of alkynes
tertiary stereocenters
α,α‐diaryl aldehydes
Journal
Advanced science (Weinheim, Baden-Wurttemberg, Germany)
ISSN: 2198-3844
Titre abrégé: Adv Sci (Weinh)
Pays: Germany
ID NLM: 101664569
Informations de publication
Date de publication:
22 Apr 2024
22 Apr 2024
Historique:
revised:
01
03
2024
received:
11
12
2023
medline:
23
4
2024
pubmed:
23
4
2024
entrez:
23
4
2024
Statut:
aheadofprint
Résumé
Chiral aldehydes containing a tertiary stereogenic center are versatile building blocks in organic chemistry. In particular, such structural motifs bearing an α,α-diaryl moiety are very challenging scaffolds and their efficient asymmetric synthesis is not reported. In this work, a phosphoric acid-catalyzed enantioselective synthesis of α,α-diaryl aldehydes from simple terminal alkynes is presented. This approach yields a wide range of highly enolizable α,α-diaryl aldehydes in good yields with excellent enantioselectivities. Facile transformations of the products, as well as an efficient synthesis of bioactive molecules, including an effective anti-smallpox agent and an FDA-approved antidepressant drug (+)-sertraline, are demonstrated.
Identifiants
pubmed: 38650176
doi: 10.1002/advs.202309645
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2309645Informations de copyright
© 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
Références
a) M. B. Smith, Organic Synthesis, 4th ed., Academic Press, Cambridge, Massachusetts 2016;
b) I. Ojima, Catalytic Asymmetric Synthesis, 3rd ed, Wiley, New York 2010.
a) J. García‐Fortanet, S. L. Buchwald, Angew. Chem., Int. Ed. 2008, 47, 8108;
b) P. Nareddy, L. Mantilli, L. Guénée, C. Mazet, Angew. Chem., Int. Ed. 2012, 51, 3826;
c) Z. Pan, W. Li, S. Zhu, F. Liu, H.‐H. Wu, J. Zhang, Angew. Chem., Int. Ed. 2021, 60, 18542.
C. Mazet, Synlett 2012, 23, 1999.
a) N. Sakai, S. Mano, K. Nozaki, H. Takaya, J. Am. Chem. Soc. 1993, 115, 7033.
b) S. Chakrabortty, A. A. Almasalma, J. G. de Vries, Catal. Sci. Tech. 2021, 11, 5388.
a) K. C. Nicolaou, R. Reingruber, D. Sarlah, S. Bräse, J. Am. Chem. Soc. 2009, 131, 2086.
b) J. C. Conrad, J. Kong, B. N. Laforteza, D. W. C. MacMillan, J. Am. Chem. Soc. 2009, 131, 11640.
c) A. E. Allen, D. W. C. MacMillan, J. Am. Chem. Soc. 2011, 133, 4260.
M. Huang, L. Zhang, T. Pan, S. Luo, Science 2022, 375, 869.
Q. Yang, Y. Li, J.‐D. Yang, Y. Liu, L. Zhang, S. Luo, J.‐P. Cheng, Angew. Chem., Int. Ed. 2020, 59, 19282.
a) F. Alonso, I. P. Beletskaya, M. Yus, Chem. Rev. 2004, 104, 3079.
b) R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028.
a) W. Li, X. Xu, P. Zhang, P. Li, Chem Asian J 2018,13, 2350.
b) X. Li, Z. Li, J. Sun, Nat Synth 2022, 1, 426.
c) E. Bosch, S. M. Hubig, J. K. Kochi, J. Am. Chem. Soc. 1998, 120, 386.
d) J. Xue, Y. Zhang, X.‐l. Wang, H. K. Fun, J.‐H. Xu, Org. Lett. 2000, 2, 2583.
e) A. Sagadevan, V. P. Charpe, A. Ragupathi, K. C. Hwang, J. Am. Chem. Soc. 2017, 139, 2896.
f) L. Dai, J. Guo, Q. Huang, Y. Lu, Sci. Adv. 2022, 8, eadd2574.
g) Z.‐W. Qiu, L. Long, Z.‐Q. Zhu, H.‐F. Liu, H.‐P. Pan, A.‐J. Ma, J.‐B. Peng, Y.‐H. Wang, H. Gao, X.‐Z. Zhang, ACS Catal. 2022, 12, 13282;
h) L. Dai, X. Zhou, J. Guo, X. Dai, Q. Huang, Y. Lu, Nat. Commun. 2023, 14, 4813;
i) H.‐F. Liu, L. Long, Z.‐Q. Zhu, T.‐F. Wu, Y.‐R. Zhang, H.‐P. Pan, A.‐J. Ma, J.‐B. Peng, Y.‐H. Wang, H. Gao, X.‐Z. Zhang, Sci. Adv. 2023, 9, eadg7754;
j) X. Zhou, Q. Huang, J. Guo, L. Dai, Y. Lu, Angew. Chem. 2023, 135, e202310078.
C. Zheng, S.‐L. You, Chem. Soc. Rev. 2012, 41, 2498.
Deposition number 2298948 for 5e' contain the supplementary crystallographic data for this paper. These data are provided free of charge by the Cambridge Crystallographic Data Centre.
Deposition number 2298949 for 5t' contain the supplementary crystallographic data for this paper. These data are provided free of charge by the Cambridge Crystallographic Data Centre.
a) A. V. Cheltsov, M. Aoyagi, A. Aleshin, E. C.‐W. Yu, T. Gilliland, D. Zhai, A. A. Bobkov, J. C. Reed, R. C. Liddington, R. Abagyan, J. Med. Chem. 2010, 53, 3899;
b) L. Peng, Y. Li, Y. Li, W. Wang, H. Pang, G. Yin, ACS Catal. 2018, 8, 310;
c) Y. Li, K. Dong, Z. Wang, K. Ding, Angew. Chem., Int. Ed. 2013, 52, 6748.
a) H. Ohmiya, Y. Makida, D. Li, M. Tanabe, M. Sawamura, J. Am. Chem. Soc. 2010, 132, 879;
b) J. R. Clark, K. Feng, A. Sookezian, M. C. White, Nat. Chem. 2018, 10, 583;
c) C. Tang, M. Okumura, Y. Zhu, A. R. Hooper, Y. Zhou, Y.‐H. Lee, D. Sarlah, Angew. Chem., Int. Ed. 2019, 58, 10245.