Catalytic Asymmetric Construction of α,α-Diaryl Aldehydes via Oxo-Hydroarylation of Terminal Alkynes.

chiral aldehydes chiral phosphoric acid oxo‐hydroarylation of alkynes tertiary stereocenters α,α‐diaryl aldehydes

Journal

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
ISSN: 2198-3844
Titre abrégé: Adv Sci (Weinh)
Pays: Germany
ID NLM: 101664569

Informations de publication

Date de publication:
22 Apr 2024
Historique:
revised: 01 03 2024
received: 11 12 2023
medline: 23 4 2024
pubmed: 23 4 2024
entrez: 23 4 2024
Statut: aheadofprint

Résumé

Chiral aldehydes containing a tertiary stereogenic center are versatile building blocks in organic chemistry. In particular, such structural motifs bearing an α,α-diaryl moiety are very challenging scaffolds and their efficient asymmetric synthesis is not reported. In this work, a phosphoric acid-catalyzed enantioselective synthesis of α,α-diaryl aldehydes from simple terminal alkynes is presented. This approach yields a wide range of highly enolizable α,α-diaryl aldehydes in good yields with excellent enantioselectivities. Facile transformations of the products, as well as an efficient synthesis of bioactive molecules, including an effective anti-smallpox agent and an FDA-approved antidepressant drug (+)-sertraline, are demonstrated.

Identifiants

pubmed: 38650176
doi: 10.1002/advs.202309645
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2309645

Informations de copyright

© 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.

Références

a) M. B. Smith, Organic Synthesis, 4th ed., Academic Press, Cambridge, Massachusetts 2016;
b) I. Ojima, Catalytic Asymmetric Synthesis, 3rd ed, Wiley, New York 2010.
a) J. García‐Fortanet, S. L. Buchwald, Angew. Chem., Int. Ed. 2008, 47, 8108;
b) P. Nareddy, L. Mantilli, L. Guénée, C. Mazet, Angew. Chem., Int. Ed. 2012, 51, 3826;
c) Z. Pan, W. Li, S. Zhu, F. Liu, H.‐H. Wu, J. Zhang, Angew. Chem., Int. Ed. 2021, 60, 18542.
C. Mazet, Synlett 2012, 23, 1999.
a) N. Sakai, S. Mano, K. Nozaki, H. Takaya, J. Am. Chem. Soc. 1993, 115, 7033.
b) S. Chakrabortty, A. A. Almasalma, J. G. de Vries, Catal. Sci. Tech. 2021, 11, 5388.
a) K. C. Nicolaou, R. Reingruber, D. Sarlah, S. Bräse, J. Am. Chem. Soc. 2009, 131, 2086.
b) J. C. Conrad, J. Kong, B. N. Laforteza, D. W. C. MacMillan, J. Am. Chem. Soc. 2009, 131, 11640.
c) A. E. Allen, D. W. C. MacMillan, J. Am. Chem. Soc. 2011, 133, 4260.
M. Huang, L. Zhang, T. Pan, S. Luo, Science 2022, 375, 869.
Q. Yang, Y. Li, J.‐D. Yang, Y. Liu, L. Zhang, S. Luo, J.‐P. Cheng, Angew. Chem., Int. Ed. 2020, 59, 19282.
a) F. Alonso, I. P. Beletskaya, M. Yus, Chem. Rev. 2004, 104, 3079.
b) R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028.
a) W. Li, X. Xu, P. Zhang, P. Li, Chem Asian J 2018,13, 2350.
b) X. Li, Z. Li, J. Sun, Nat Synth 2022, 1, 426.
c) E. Bosch, S. M. Hubig, J. K. Kochi, J. Am. Chem. Soc. 1998, 120, 386.
d) J. Xue, Y. Zhang, X.‐l. Wang, H. K. Fun, J.‐H. Xu, Org. Lett. 2000, 2, 2583.
e) A. Sagadevan, V. P. Charpe, A. Ragupathi, K. C. Hwang, J. Am. Chem. Soc. 2017, 139, 2896.
f) L. Dai, J. Guo, Q. Huang, Y. Lu, Sci. Adv. 2022, 8, eadd2574.
g) Z.‐W. Qiu, L. Long, Z.‐Q. Zhu, H.‐F. Liu, H.‐P. Pan, A.‐J. Ma, J.‐B. Peng, Y.‐H. Wang, H. Gao, X.‐Z. Zhang, ACS Catal. 2022, 12, 13282;
h) L. Dai, X. Zhou, J. Guo, X. Dai, Q. Huang, Y. Lu, Nat. Commun. 2023, 14, 4813;
i) H.‐F. Liu, L. Long, Z.‐Q. Zhu, T.‐F. Wu, Y.‐R. Zhang, H.‐P. Pan, A.‐J. Ma, J.‐B. Peng, Y.‐H. Wang, H. Gao, X.‐Z. Zhang, Sci. Adv. 2023, 9, eadg7754;
j) X. Zhou, Q. Huang, J. Guo, L. Dai, Y. Lu, Angew. Chem. 2023, 135, e202310078.
C. Zheng, S.‐L. You, Chem. Soc. Rev. 2012, 41, 2498.
Deposition number 2298948 for 5e' contain the supplementary crystallographic data for this paper. These data are provided free of charge by the Cambridge Crystallographic Data Centre.
Deposition number 2298949 for 5t' contain the supplementary crystallographic data for this paper. These data are provided free of charge by the Cambridge Crystallographic Data Centre.
a) A. V. Cheltsov, M. Aoyagi, A. Aleshin, E. C.‐W. Yu, T. Gilliland, D. Zhai, A. A. Bobkov, J. C. Reed, R. C. Liddington, R. Abagyan, J. Med. Chem. 2010, 53, 3899;
b) L. Peng, Y. Li, Y. Li, W. Wang, H. Pang, G. Yin, ACS Catal. 2018, 8, 310;
c) Y. Li, K. Dong, Z. Wang, K. Ding, Angew. Chem., Int. Ed. 2013, 52, 6748.
a) H. Ohmiya, Y. Makida, D. Li, M. Tanabe, M. Sawamura, J. Am. Chem. Soc. 2010, 132, 879;
b) J. R. Clark, K. Feng, A. Sookezian, M. C. White, Nat. Chem. 2018, 10, 583;
c) C. Tang, M. Okumura, Y. Zhu, A. R. Hooper, Y. Zhou, Y.‐H. Lee, D. Sarlah, Angew. Chem., Int. Ed. 2019, 58, 10245.

Auteurs

Xueting Zhou (X)

Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.

Qingqin Huang (Q)

Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.

Jiami Guo (J)

Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.

Lei Dai (L)

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.

Yixin Lu (Y)

Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.

Classifications MeSH