The α-tubulin acetyltransferase ATAT1: structure, cellular functions, and its emerging role in human diseases.


Journal

Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402

Informations de publication

Date de publication:
23 Apr 2024
Historique:
received: 30 12 2023
accepted: 03 04 2024
revised: 29 03 2024
medline: 23 4 2024
pubmed: 23 4 2024
entrez: 23 4 2024
Statut: epublish

Résumé

The acetylation of α-tubulin on lysine 40 is a well-studied post-translational modification which has been associated with the presence of long-lived stable microtubules that are more resistant to mechanical breakdown. The discovery of α-tubulin acetyltransferase 1 (ATAT1), the enzyme responsible for lysine 40 acetylation on α-tubulin in a wide range of species, including protists, nematodes, and mammals, dates to about a decade ago. However, the role of ATAT1 in different cellular activities and molecular pathways has been only recently disclosed. This review comprehensively summarizes the most recent knowledge on ATAT1 structure and substrate binding and analyses the involvement of ATAT1 in a variety of cellular processes such as cell motility, mitosis, cytoskeletal organization, and intracellular trafficking. Finally, the review highlights ATAT1 emerging roles in human diseases and discusses ATAT1 potential enzymatic and non-enzymatic roles and the current efforts in developing ATAT1 inhibitors.

Identifiants

pubmed: 38652325
doi: 10.1007/s00018-024-05227-x
pii: 10.1007/s00018-024-05227-x
doi:

Substances chimiques

Acetyltransferases EC 2.3.1.-
Tubulin 0
ATAT1 protein, human EC 2.3.1.108
alpha-tubulin acetylase EC 2.3.1.108
Microtubule Proteins 0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

193

Informations de copyright

© 2024. The Author(s).

Références

Chaaban S, Brouhard GJ (2017) A microtubule bestiary: structural diversity in tubulin polymers. Mol Biol Cell 28:2924–2931. https://doi.org/10.1091/MBC.E16-05-0271
doi: 10.1091/MBC.E16-05-0271 pubmed: 29084910 pmcid: 5662251
Loreng TD, Smith EF (2017) The Central Apparatus of Cilia and Eukaryotic Flagella. Cold Spring Harb Perspect Biol 9. https://doi.org/10.1101/CSHPERSPECT.A028118
Roll-Mecak A (2020) The Tubulin Code in Microtubule Dynamics and Information Encoding. Dev Cell 54:7–20. https://doi.org/10.1016/J.DEVCEL.2020.06.008
doi: 10.1016/J.DEVCEL.2020.06.008 pubmed: 32634400
Janke C, Magiera MM (2020) The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol 21:307–326. https://doi.org/10.1038/S41580-020-0214-3
doi: 10.1038/S41580-020-0214-3 pubmed: 32107477
Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Sci (1979) 325:834–840. https://doi.org/10.1126/SCIENCE.1175371
doi: 10.1126/SCIENCE.1175371
Chu CW, Hou F, Zhang J et al (2011) A novel acetylation of β-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation. Mol Biol Cell 22:448–456. https://doi.org/10.1091/MBC.E10-03-0203/ASSET/IMAGES/LARGE/448FIG7.JPEG
doi: 10.1091/MBC.E10-03-0203/ASSET/IMAGES/LARGE/448FIG7.JPEG pubmed: 21177827 pmcid: 3038643
Liu N, Xiong Y, Ren Y et al (2015) Proteomic profiling and functional characterization of multiple post-translational modifications of Tubulin. J Proteome Res 14:3292–3304. https://doi.org/10.1021/ACS.JPROTEOME.5B00308/SUPPL_FILE/PR5B00308_SI_004.PDF
doi: 10.1021/ACS.JPROTEOME.5B00308/SUPPL_FILE/PR5B00308_SI_004.PDF pubmed: 26165356
Liu N, Xiong Y, Li S et al (2015) New HDAC6-mediated deacetylation sites of tubulin in the mouse brain identified by quantitative mass spectrometry. Sci Rep 5. https://doi.org/10.1038/SREP16869
Nekooki-Machida Y, Hagiwara H (2020) Role of tubulin acetylation in cellular functions and diseases. Med Mol Morphol 53:191–197. https://doi.org/10.1007/S00795-020-00260-8
doi: 10.1007/S00795-020-00260-8 pubmed: 32632910
Weinert BT, Wagner SA, Horn H et al (2011) Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci Signal 4. https://doi.org/10.1126/SCISIGNAL.2001902
Lundby A, Lage K, Weinert BT et al (2012) Proteomic Analysis of Lysine Acetylation Sites in Rat tissues reveals Organ specificity and subcellular patterns. Cell Rep 2:419. https://doi.org/10.1016/J.CELREP.2012.07.006
doi: 10.1016/J.CELREP.2012.07.006 pubmed: 22902405 pmcid: 4103158
Saunders HAJ, Johnson-Schlitz DM, Jenkins BV et al (2022) Acetylated α-tubulin K394 regulates microtubule stability to shape the growth of axon terminals. Curr Biol 32:614–630e5. https://doi.org/10.1016/J.CUB.2021.12.012
doi: 10.1016/J.CUB.2021.12.012 pubmed: 35081332 pmcid: 8843987
Xu Z, Schaedel L, Portran D et al (2017) Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science (1979) 356:328–332. https://doi.org/10.1126/SCIENCE.AAI8764/SUPPL_FILE/MOVIES_S5-S10.ZIP
Piperno G, LeDizet M, Chang XJ (1987) Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J Cell Biol 104:289–302. https://doi.org/10.1083/JCB.104.2.289
doi: 10.1083/JCB.104.2.289 pubmed: 2879846
Portran D, Schaedel L, Xu Z et al (2017) Tubulin acetylation protects long-lived microtubules against mechanical aging. Nat Cell Biol 19:391. https://doi.org/10.1038/NCB3481
doi: 10.1038/NCB3481 pubmed: 28250419 pmcid: 5376231
Reed NA, Cai D, Blasius TL et al (2006) Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 16:2166–2172. https://doi.org/10.1016/J.CUB.2006.09.014
doi: 10.1016/J.CUB.2006.09.014 pubmed: 17084703
Dompierre JP, Godin JD, Charrin BC et al (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 27:3571–3583. https://doi.org/10.1523/JNEUROSCI.0037-07.2007
doi: 10.1523/JNEUROSCI.0037-07.2007 pubmed: 17392473 pmcid: 6672116
Yan C, Wang F, Peng Y et al (2018) Microtubule Acetylation is required for mechanosensation in Drosophila. Cell Rep 25:1051–1065e6. https://doi.org/10.1016/J.CELREP.2018.09.075
doi: 10.1016/J.CELREP.2018.09.075 pubmed: 30355484 pmcid: 6248335
Prokop A (2022) Microtubule regulation: transcending the tenet of K40 acetylation. Curr Biol 32:R126–R128. https://doi.org/10.1016/J.CUB.2021.12.018
doi: 10.1016/J.CUB.2021.12.018 pubmed: 35134360
Jenkins BV, Saunders HAJ, Record HL et al (2017) Effects of mutating α-tubulin lysine 40 on sensory dendrite development. J Cell Sci 130:4120–4131. http:///AM/EFFECTS-OF-MUTATING-TUBULIN-LYSINE-40-ON-SENSORY https://doi.org/10.1242/JCS.210203/265552 .
doi: 10.1242/JCS.210203/265552 pubmed: 29122984 pmcid: 5769580
Gaertig J, Cruz MA, Bowen J et al (1995) Acetylation of lysine 40 in alpha-tubulin is not essential in Tetrahymena Thermophila. J Cell Biol 129:1301–1310. https://doi.org/10.1083/JCB.129.5.1301
doi: 10.1083/JCB.129.5.1301 pubmed: 7775576
Shida T, Cueva JG, Xu Z et al (2010) The major α-tubulin K40 acetyltransferase αTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc Natl Acad Sci U S A 107:21517–21522. https://doi.org/10.1073/PNAS.1013728107/SUPPL_FILE/SD01.XLS
doi: 10.1073/PNAS.1013728107/SUPPL_FILE/SD01.XLS pubmed: 21068373 pmcid: 3003046
Kim G-W, Li L, Ghorbani M et al (2013) Mice lacking α-tubulin acetyltransferase 1 are viable but display α-tubulin acetylation deficiency and dentate gyrus distortion. J Biol Chem 288:20334–20350. https://doi.org/10.1074/jbc.M113.464792
doi: 10.1074/jbc.M113.464792 pubmed: 23720746 pmcid: 3711300
Janke C, Montagnac G (2017) Causes and consequences of Microtubule Acetylation. Curr Biol 27:R1287–R1292. https://doi.org/10.1016/J.CUB.2017.10.044
doi: 10.1016/J.CUB.2017.10.044 pubmed: 29207274
Bär J, Popp Y, Bucher M, Mikhaylova M (2022) Direct and indirect effects of tubulin post-translational modifications on microtubule stability: insights and regulations. Biochim Biophys Acta Mol Cell Res 1869. https://doi.org/10.1016/J.BBAMCR.2022.119241
Magiera MM, Singh P, Gadadhar S, Janke C (2018) Tubulin posttranslational modifications and emerging links to Human Disease. Cell 173:1323–1327. https://doi.org/10.1016/J.CELL.2018.05.018
doi: 10.1016/J.CELL.2018.05.018 pubmed: 29856952
Castro-Castro A, Janke C, Montagnac G et al (2012) ATAT1/MEC-17 acetyltransferase and HDAC6 deacetylase control a balance of acetylation of alpha-tubulin and cortactin and regulate MT1-MMP trafficking and breast tumor cell invasion. Eur J Cell Biol 91:950–960. https://doi.org/10.1016/J.EJCB.2012.07.001
doi: 10.1016/J.EJCB.2012.07.001 pubmed: 22902175
Kalebic N, Martinez C, Perlas E et al (2023) Tubulin Acetyltransferase αTAT1 Destabilizes Microtubules Independently of Its Acetylation Activity. https://doi.org/101128/MCB01044-12 33:1114–1123
Teoh JS, Vasudevan A, Wang W et al (2022) Synaptic branch stability is mediated by non-enzymatic functions of MEC-17/αTAT1 and ATAT-2. Sci Rep 12. https://doi.org/10.1038/S41598-022-18333-2
Coombes CE, Saunders HAJ, Mannava AG et al (2020) Non-enzymatic activity of the α-Tubulin acetyltransferase αTAT limits synaptic Bouton Growth in neurons. Curr Biol 30:610–623e5. https://doi.org/10.1016/J.CUB.2019.12.022
doi: 10.1016/J.CUB.2019.12.022 pubmed: 31928876 pmcid: 7047862
Topalidou I, Keller C, Kalebic N et al (2012) Genetically separable functions of the MEC-17 tubulin acetyltransferase affect Microtubule Organization. Curr Biol 22:1057–1065. https://doi.org/10.1016/J.CUB.2012.03.066
doi: 10.1016/J.CUB.2012.03.066 pubmed: 22658602 pmcid: 3382010
Akella JS, Wloga D, Kim J et al (2010) MEC-17 is an α-tubulin acetyltransferase. Nature 2010 467:7312 467:218–222. https://doi.org/10.1038/nature09324
Vetting MW, Luiz LP, Yu M et al (2005) Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys 433:212–226. https://doi.org/10.1016/J.ABB.2004.09.003
doi: 10.1016/J.ABB.2004.09.003 pubmed: 15581578
Friedmann DR, Aguilar A, Fan J et al (2012) Structure of the α-tubulin acetyltransferase, αTAT1, and implications for tubulin-specific acetylation. Proc Natl Acad Sci U S A 109:19655–19660. https://doi.org/10.1073/PNAS.1209357109/SUPPL_FILE/PNAS.201209357SI.PDF
doi: 10.1073/PNAS.1209357109/SUPPL_FILE/PNAS.201209357SI.PDF pubmed: 23071314 pmcid: 3511727
Roy AD, Gross EG, Pillai GS et al (2022) Non-catalytic allostery in α-TAT1 by a phospho-switch drives dynamic microtubule acetylation. J Cell Biol 221. https://doi.org/10.1083/JCB.202202100
Davenport AM, Collins LN, Chiu H et al (2014) Structural and functional characterization of the α-tubulin acetyltransferase MEC-17. J Mol Biol 426:2605. https://doi.org/10.1016/J.JMB.2014.05.009
doi: 10.1016/J.JMB.2014.05.009 pubmed: 24846647 pmcid: 4259157
Taschner M, Vetter M, Lorentzen E (2012) Atomic resolution structure of human α-tubulin acetyltransferase bound to acetyl-CoA. Proc Natl Acad Sci U S A 109:19649–19654. https://doi.org/10.1073/PNAS.1209343109
doi: 10.1073/PNAS.1209343109 pubmed: 23071318 pmcid: 3511736
Kormendi V, Szyk A, Piszczek G, Roll-Mecak A (2012) Crystal Structures of Tubulin Acetyltransferase Reveal a Conserved Catalytic Core and the plasticity of the essential N terminus. J Biol Chem 287:41569. https://doi.org/10.1074/JBC.C112.421222
doi: 10.1074/JBC.C112.421222 pubmed: 23105108 pmcid: 3516708
Yuzawa S, Kamakura S, Hayase J, Sumimoto H (2015) Structural basis of cofactor-mediated stabilization and substrate recognition of the α-tubulin acetyltransferase αTAT1. Biochem J 467:103–113. https://doi.org/10.1042/BJ20141193
doi: 10.1042/BJ20141193 pubmed: 25602620
Coombes C, Yamamoto A, McClellan M et al (2016) Mechanism of microtubule lumen entry for the α-tubulin acetyltransferase enzyme αTAT1. Proc Natl Acad Sci U S A 113:E7176–E7184. https://doi.org/10.1073/PNAS.1605397113/SUPPL_FILE/PNAS.1605397113.SM03.MOV
doi: 10.1073/PNAS.1605397113/SUPPL_FILE/PNAS.1605397113.SM03.MOV pubmed: 27803321 pmcid: 5135325
Howes SC, Alushin GM, Shida T et al (2014) Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. Mol Biol Cell 25:257–266. https://doi.org/10.1091/MBC.E13-07-0387
doi: 10.1091/MBC.E13-07-0387 pubmed: 24227885 pmcid: 3890346
Kalebic N, Sorrentino S, Perlas E et al (2013) αTAT1 is the major α-tubulin acetyltransferase in mice. Nature Communications 2013 4:1 4:1–10. https://doi.org/10.1038/ncomms2962
Zhang Y, Ma C, Delohery T et al (2002) Identification of genes expressed in C. Elegans touch receptor neurons. Nature 418:331–335. https://doi.org/10.1038/NATURE00891
doi: 10.1038/NATURE00891 pubmed: 12124626
Cueva JG, Hsin J, Huang KC, Goodman MB (2012) Posttranslational acetylation of α-Tubulin constrains protofilament number in native microtubules. Curr Biol 22:1066–1074. https://doi.org/10.1016/J.CUB.2012.05.012
doi: 10.1016/J.CUB.2012.05.012 pubmed: 22658592 pmcid: 3670109
Neumann B, Hilliard MA (2014) Loss of MEC-17 leads to microtubule instability and axonal degeneration. Cell Rep 6:93–103. https://doi.org/10.1016/J.CELREP.2013.12.004
doi: 10.1016/J.CELREP.2013.12.004 pubmed: 24373971
Dobbelaere J, Schmidt Cernohorska M, Huranova M et al (2020) Cep97 is required for Centriole Structural Integrity and Cilia formation in Drosophila. Curr Biol 30:3045–3056e7. https://doi.org/10.1016/J.CUB.2020.05.078
doi: 10.1016/J.CUB.2020.05.078 pubmed: 32589908
Niu X, Mao CX, Wang S et al (2023) α-Tubulin acetylation at lysine 40 regulates dendritic arborization and larval locomotion by promoting microtubule stability in Drosophila. PLoS ONE 18. https://doi.org/10.1371/JOURNAL.PONE.0280573
Yanai R, Yamashita Y, Umezu K et al (2021) Expression and localization of alpha-tubulin N-acetyltransferase 1 in the reproductive system of male mice. J Reprod Dev 67:59–66. https://doi.org/10.1262/JRD.2020-110
doi: 10.1262/JRD.2020-110 pubmed: 33390366
Li L, Jayabal S, Ghorbani M et al (2019) ATAT1 regulates forebrain development and stress-induced tubulin hyperacetylation. Cell Mol Life Sci 76:3621–3640. https://doi.org/10.1007/S00018-019-03088-3
doi: 10.1007/S00018-019-03088-3 pubmed: 30953095
Li L, Wei D, Wang Q et al (2012) MEC-17 deficiency leads to reduced α-tubulin acetylation and impaired migration of cortical neurons. J Neurosci 32:12673–12683. https://doi.org/10.1523/JNEUROSCI.0016-12.2012
doi: 10.1523/JNEUROSCI.0016-12.2012 pubmed: 22972992 pmcid: 6703811
Wei D, Gao N, Li L et al (2018) α-Tubulin Acetylation restricts Axon Overbranching by dampening Microtubule Plus-End dynamics in neurons. Cereb Cortex 28:3332–3346. https://doi.org/10.1093/CERCOR/BHX225
doi: 10.1093/CERCOR/BHX225
Morley SJ, Qi Y, Iovino L et al (2016) Acetylated tubulin is essential for touch sensation in mice. Elife 5:25. https://doi.org/10.7554/ELIFE.20813
doi: 10.7554/ELIFE.20813
Creppe C, Malinouskaya L, Volvert ML et al (2009) Elongator Controls the Migration and Differentiation of Cortical Neurons through Acetylation of α-Tubulin. Cell 136:551–564. https://doi.org/10.1016/J.CELL.2008.11.043
doi: 10.1016/J.CELL.2008.11.043 pubmed: 19185337
Ohkawa N, Sugisaki S, Tokunaga E et al (2008) N-acetyltransferase ARD1-NAT1 regulates neuronal dendritic development. Genes Cells 13:1171–1183. https://doi.org/10.1111/J.1365-2443.2008.01235.X
doi: 10.1111/J.1365-2443.2008.01235.X pubmed: 19090811
Lin G, Lin H, Zhuo R et al (2022) GCN5/KAT2A contributes to axon growth and neurogenesis. Neurosci Lett 784:136742. https://doi.org/10.1016/J.NEULET.2022.136742
doi: 10.1016/J.NEULET.2022.136742 pubmed: 35716963
Ouyang C, Mu J, Lu Q et al (2020) Autophagic degradation of KAT2A/GCN5 promotes directional migration of vascular smooth muscle cells by reducing TUBA/α-tubulin acetylation. Autophagy 16:1753–1770. https://doi.org/10.1080/15548627.2019.1707488
doi: 10.1080/15548627.2019.1707488 pubmed: 31878840
Fernández-Barrera J, Bernabé-Rubio M, Casares-Arias J et al (2018) The actin-MRTF-SRF transcriptional circuit controls tubulin acetylation via α-TAT1 gene expression. J Cell Biol 217:929–944. https://doi.org/10.1083/JCB.201702157
doi: 10.1083/JCB.201702157 pubmed: 29321169 pmcid: 5839776
Yin H, Ju Z, Zheng M et al (2023) Loss of the m6A methyltransferase METTL3 in monocyte-derived macrophages ameliorates Alzheimer’s disease pathology in mice. PLoS Biol 21:e3002017. https://doi.org/10.1371/JOURNAL.PBIO.3002017
doi: 10.1371/JOURNAL.PBIO.3002017 pubmed: 36881554 pmcid: 9990945
Mackeh R, Lorin S, Ratier A et al (2014) Reactive oxygen species, AMP-activated protein kinase, and the transcription cofactor p300 regulate α-Tubulin Acetyltransferase-1 (αTAT-1/MEC-17)-dependent Microtubule Hyperacetylation during cell stress. J Biol Chem 289:11816–11828. https://doi.org/10.1074/JBC.M113.507400
doi: 10.1074/JBC.M113.507400 pubmed: 24619423 pmcid: 4002089
Morelli G, Even A, Gladwyn-Ng I et al (2018) p27Kip1 Modulates Axonal Transport by regulating α-Tubulin acetyltransferase 1 Stability. Cell Rep 23:2429–2442. https://doi.org/10.1016/J.CELREP.2018.04.083
doi: 10.1016/J.CELREP.2018.04.083 pubmed: 29791853
Liu P, Zhang S, Ma J et al (2022) Vimentin inhibits α-tubulin acetylation via enhancing α-TAT1 degradation to suppress the replication of human parainfluenza virus type 3. PLoS Pathog 18:e1010856. https://doi.org/10.1371/JOURNAL.PPAT.1010856
doi: 10.1371/JOURNAL.PPAT.1010856 pubmed: 36108090 pmcid: 9524669
Zhang Y, Qiu J, Wang X et al (2011) AMP-activated protein kinase suppresses endothelial cell inflammation through phosphorylation of transcriptional coactivator p300. Arterioscler Thromb Vasc Biol 31:2897–2908. https://doi.org/10.1161/ATVBAHA.111.237453
doi: 10.1161/ATVBAHA.111.237453 pubmed: 21940946
Yang W, Hong YH, Shen XQ et al (2001) Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors. J Biol Chem 276:38341–38344. https://doi.org/10.1074/JBC.C100316200
doi: 10.1074/JBC.C100316200 pubmed: 11518699
Shah N, Kumar S, Zaman N et al (2018) TAK1 activation of alpha-TAT1 and microtubule hyperacetylation control AKT signaling and cell growth. Nat Commun 9. https://doi.org/10.1038/S41467-018-04121-Y
You E, Jeong J, Lee J et al (2022) Casein kinase 2 promotes the TGF-β-induced activation of α-tubulin acetyltransferase 1 in fibroblasts cultured on a soft matrix. BMB Rep 55:192. https://doi.org/10.5483/BMBREP.2022.55.4.021
doi: 10.5483/BMBREP.2022.55.4.021 pubmed: 35321783 pmcid: 9058472
Van Dijk J, Bompard G, Rabeharivelo G et al (2020) PAK1 regulates MEC-17 acetyltransferase activity and microtubule acetylation during Proplatelet Extension. Int J Mol Sci 21:1–17. https://doi.org/10.3390/IJMS21207531
doi: 10.3390/IJMS21207531
Nekooki-Machida Y, Nakakura T, Nishijima Y et al (2018) Dynamic localization of α-tubulin acetyltransferase ATAT1 through the cell cycle in human fibroblastic KD cells. Med Mol Morphol 51:217–226. https://doi.org/10.1007/S00795-018-0195-X/FIGURES/5
doi: 10.1007/S00795-018-0195-X/FIGURES/5 pubmed: 29869029
Aguilar A, Becker L, Tedeschi T et al (2014) α-tubulin K40 acetylation is required for contact inhibition of proliferation and cell-substrate adhesion. Mol Biol Cell 25:1854–1866. https://doi.org/10.1091/MBC.E13-10-0609/ASSET/IMAGES/LARGE/1854FIG4.JPEG
Rahimi AM, Cai M, Kılıҫ I et al (2021) Expression of α-Tubulin acetyltransferase 1 and Tubulin Acetylation as Selective forces in Cell Competition. Cells 10:1–20. https://doi.org/10.3390/CELLS10020390
doi: 10.3390/CELLS10020390
Rasamizafy SF, Delsert C, Rabeharivelo G et al (2021) Mitotic acetylation of Microtubules promotes centrosomal PLK1 recruitment and is required to maintain bipolar spindle homeostasis. https://doi.org/10.3390/CELLS10081859 . Cells 10:
Lopes D, Seabra AL, Orr B, Maiato H (2023) α-Tubulin detyrosination links the suppression of MCAK activity with taxol cytotoxicity. J Cell Biol 222. https://doi.org/10.1083/JCB.202205092/213730
Nishimura Y, Kasahara K, Shiromizu T et al (2018) Primary Cilia as Signaling hubs in Health and Disease. Adv Sci (Weinh) 6. https://doi.org/10.1002/ADVS.201801138
Rao Y, Hao R, Wang B, Yao TP (2014) A Mec17-Myosin II Effector Axis coordinates microtubule acetylation and Actin Dynamics to Control Primary Cilium Biogenesis. PLoS ONE 9. https://doi.org/10.1371/JOURNAL.PONE.0114087
Shellard A, Mayor R (2020) All roads lead to Directional Cell Migration. Trends Cell Biol 30:852–868. https://doi.org/10.1016/J.TCB.2020.08.002
doi: 10.1016/J.TCB.2020.08.002 pubmed: 32873438
Bance B, Seetharaman S, Leduc C et al (2019) Microtubule acetylation but not detyrosination promotes focal adhesion dynamics and astrocyte migration. J Cell Sci 132. https://doi.org/10.1242/JCS.225805
Seetharaman S, Vianay B, Roca V et al (2022) Microtubules tune mechanosensitive cell responses. Nat Mater 21:366–377. https://doi.org/10.1038/S41563-021-01108-X
doi: 10.1038/S41563-021-01108-X pubmed: 34663953
Wen D, Gao Y, Liu Y et al (2023) Matrix stiffness-induced α-tubulin acetylation is required for skin fibrosis formation through activation of yes-associated protein. MedComm (Beijing) 4. https://doi.org/10.1002/MCO2.319
Bhuwania R, Castro-Castro A, Linder S (2014) Microtubule acetylation regulates dynamics of KIF1C-powered vesicles and contact of microtubule plus ends with podosomes. Eur J Cell Biol 93:424–437. https://doi.org/10.1016/J.EJCB.2014.07.006
doi: 10.1016/J.EJCB.2014.07.006 pubmed: 25151635
Lavrsen K, Rajendraprasad G, Leda M et al (2023) Microtubule detyrosination drives symmetry breaking to polarize cells for directed cell migration. Proc Natl Acad Sci U S A 120. https://doi.org/10.1073/PNAS.2300322120
Barlan K, Gelfand VI (2010) Intracellular transport: ER and mitochondria meet and greet along designated tracks. Curr Biol 20. https://doi.org/10.1016/J.CUB.2010.08.058
Monteiro P, Yeon B, Wallis SS, Godinho SA (2023) Centrosome amplification fine tunes tubulin acetylation to differentially control intracellular organization. EMBO J 42. https://doi.org/10.15252/EMBJ.2022112812
Even A, Morelli G, Broix L et al (2019) ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. Sci Adv 5. https://doi.org/10.1126/sciadv.aax2705
Yang Y, Klionsky DJ (2020) Autophagy and disease: unanswered questions. Cell Death Differ 27:858–871. https://doi.org/10.1038/S41418-019-0480-9
doi: 10.1038/S41418-019-0480-9 pubmed: 31900427 pmcid: 7206137
Ragazzoni Y, Desideri M, Gabellini C et al (2013) The thiazole derivative CPTH6 impairs autophagy. Cell Death Dis. https://doi.org/10.1038/CDDIS.2013.53 . 4:
doi: 10.1038/CDDIS.2013.53 pubmed: 23470531 pmcid: 3613831
Nowosad A, Creff J, Jeannot P et al (2021) p27 controls autophagic vesicle trafficking in glucose-deprived cells via the regulation of ATAT1-mediated microtubule acetylation. Cell Death Dis 12. https://doi.org/10.1038/S41419-021-03759-9
Wu K, Wang L, Chen Y et al (2018) GCN5L1 interacts with αTAT1 and RanBP2 to regulate hepatic α-tubulin acetylation and lysosome trafficking. J Cell Sci 131. https://doi.org/10.1242/JCS.221036
Groebner JL, Girón-Bravo MT, Rothberg ML et al (2019) Alcohol-induced microtubule acetylation leads to the accumulation of large, immobile lipid droplets. Am J Physiol Gastrointest Liver Physiol 317:G373–G386. https://doi.org/10.1152/AJPGI.00026.2019
doi: 10.1152/AJPGI.00026.2019 pubmed: 31373507 pmcid: 6842993
Adhikari R, Mitra R, Bennett RG et al (2023) Alcohol-induced tubulin post-translational modifications directly alter hepatic protein trafficking. Hepatol Commun 7. https://doi.org/10.1097/HC9.0000000000000103
Kumar A, Larrea D, Pero ME et al (2023) MFN2-dependent recruitment of ATAT1 coordinates mitochondria motility with alpha-tubulin acetylation and is disrupted in CMT2A. https://doi.org/10.1101/2023.03.15.532838 . bioRxiv
Parker AL, Kavallaris M, McCarroll JA (2014) Microtubules and their role in cellular stress in cancer. Front Oncol 4. https://doi.org/10.3389/FONC.2014.00153
Ryu NM, Kim JM (2020) The role of the α-tubulin acetyltransferase αTAT1 in the DNA damage response. J Cell Sci 133. https://doi.org/10.1242/JCS.246702
Li G, Chen S, Zhang Y et al (2021) Matrix stiffness regulates α-TAT1-mediated acetylation of α-tubulin and promotes silica-induced epithelial-mesenchymal transition via DNA damage. J Cell Sci 134. https://doi.org/10.1242/JCS.243394
Coleman AK, Joca HC, Shi G et al (2021) Tubulin acetylation increases cytoskeletal stiffness to regulate mechanotransduction in striated muscle. J Gen Physiol 153. https://doi.org/10.1085/JGP.202012743
Xiaojun W, Yan L, Hong X et al (2016) Acetylated α-Tubulin regulated by N-Acetyl-seryl-aspartyl-Lysyl-Proline(Ac-SDKP) exerts the anti-fibrotic effect in Rat Lung Fibrosis Induced by Silica. Sci Rep 6. https://doi.org/10.1038/SREP32257
Baloh RH, Schmidt RE, Pestronk A, Milbrandt J (2007) Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-tooth disease from mitofusin 2 mutations. J Neurosci 27:422–430. https://doi.org/10.1523/JNEUROSCI.4798-06.2007
doi: 10.1523/JNEUROSCI.4798-06.2007 pubmed: 17215403 pmcid: 6672077
Fazal R, Boeynaems S, Swijsen A et al (2021) HDAC6 inhibition restores TDP-43 pathology and axonal transport defects in human motor neurons with TARDBP mutations. EMBO J 40. https://doi.org/10.15252/EMBJ.2020106177
Jeong J, Kim OH, Shim J et al (2023) Microtubule acetylation induced by oxidative stress regulates subcellular distribution of lysosomal vesicles for amyloid-beta secretion. J Cell Physiol. https://doi.org/10.1002/JCP.31131
doi: 10.1002/JCP.31131 pubmed: 37801327
Morena J, Gupta A, Hoyle JC (2019) Charcot-Marie-Tooth: from molecules to Therapy. Int J Mol Sci 20. https://doi.org/10.3390/IJMS20143419
Schiavon CR, Shadel GS, Manor U (2021) Impaired mitochondrial mobility in Charcot-Marie-tooth disease. Front Cell Dev Biol. https://doi.org/10.3389/FCELL.2021.624823 . 9:
doi: 10.3389/FCELL.2021.624823 pubmed: 33598463 pmcid: 7882694
Zimprich A, Biskup S, Leitner P et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44:601–607. https://doi.org/10.1016/j.neuron.2004.11.005
doi: 10.1016/j.neuron.2004.11.005 pubmed: 15541309
Godena VK, Brookes-Hocking N, Moller A et al (2014) Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat Commun 5. https://doi.org/10.1038/NCOMMS6245
Zhong Y, Wang C, Wang Y et al (2023) Suppression of alpha-tubulin acetylation potentiates therapeutic efficacy of Eribulin in liver cancer. Am J Cancer Res 13:5698–5718
pubmed: 38058833 pmcid: 10695797
Kwon A, Lee G, Bin, Park T et al (2020) Potent small-molecule inhibitors targeting acetylated microtubules as Anticancer agents against Triple-negative breast Cancer. https://doi.org/10.3390/BIOMEDICINES8090338 . Biomedicines 8:
Wattanathamsan O, Thararattanobon R, Rodsiri R et al (2021) Tubulin acetylation enhances lung cancer resistance to paclitaxel-induced cell death through Mcl-1 stabilization. Cell Death Discov 7. https://doi.org/10.1038/S41420-021-00453-9
Boggs AE, Vitolo MI, Whipple RA et al (2015) α-Tubulin acetylation elevated in metastatic and basal-like breast cancer cells promotes microtentacle formation, adhesion, and invasive migration. Cancer Res 75:203–215. https://doi.org/10.1158/0008-5472.CAN-13-3563
doi: 10.1158/0008-5472.CAN-13-3563 pubmed: 25503560
Montagnac G, Meas-Yedid V, Irondelle M et al (2013) αTAT1 catalyses microtubule acetylation at clathrin-coated pits. Nature 502:567–570. https://doi.org/10.1038/NATURE12571
doi: 10.1038/NATURE12571 pubmed: 24097348 pmcid: 3970258
Ko P, Choi JH, Song S et al (2021) Microtubule acetylation controls mda-mb-231 breast cancer cell invasion through the modulation of endoplasmic reticulum stress. Int J Mol Sci 22. https://doi.org/10.3390/ijms22116018
Yoshimoto S, Morita H, Okamura K et al (2022) αTAT1-induced tubulin acetylation promotes ameloblastoma migration and invasion. Lab Invest 102:80–89. https://doi.org/10.1038/S41374-021-00671-W
doi: 10.1038/S41374-021-00671-W pubmed: 34508164
Oh S, You E, Ko P et al (2017) Genetic disruption of tubulin acetyltransferase, αTAT1, inhibits proliferation and invasion of colon cancer cells through decreases in Wnt1/β-catenin signaling. Biochem Biophys Res Commun 482:8–14. https://doi.org/10.1016/J.BBRC.2016.11.039
doi: 10.1016/J.BBRC.2016.11.039 pubmed: 27836544
Chien JY, Tsen SD, Chien CC et al (2016) αTAT1 downregulation induces mitotic catastrophe in HeLa and A549 cells. Cell Death Discov 2. https://doi.org/10.1038/CDDISCOVERY.2016.6
Lee CC, Cheng YC, Chang CY et al (2018) Alpha-tubulin acetyltransferase/MEC-17 regulates cancer cell migration and invasion through epithelial-mesenchymal transition suppression and cell polarity disruption. Sci Rep 8. https://doi.org/10.1038/S41598-018-35392-6
Hsu NY, Pathak N, Chen YT et al (2021) Pharmacophore Anchor models of ATAT1 to discover potential inhibitors and lead optimization. Comput Biol Chem 93. https://doi.org/10.1016/J.COMPBIOLCHEM.2021.107513
Park IY, Powell RT, Tripathi DN et al (2016) Dual chromatin and cytoskeletal remodeling by SETD2. Cell 166:950–962. https://doi.org/10.1016/J.CELL.2016.07.005
doi: 10.1016/J.CELL.2016.07.005 pubmed: 27518565 pmcid: 5101839
Xie X, Wang S, Li M et al (2021) α-TubK40me3 is required for neuronal polarization and migration by promoting microtubule formation. Nat Commun 12. https://doi.org/10.1038/S41467-021-24376-2

Auteurs

Angela Iuzzolino (A)

IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy.

Francesca Romana Pellegrini (FR)

IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy.

Dante Rotili (D)

Department of Drug Chemistry & Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy.

Francesca Degrassi (F)

IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy. francesca.degrassi@cnr.it.

Daniela Trisciuoglio (D)

IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy. daniela.trisciuoglio@cnr.it.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH