A pancreatic cancer organoid-in-matrix platform shows distinct sensitivities to T cell killing.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
23 04 2024
23 04 2024
Historique:
received:
17
09
2023
accepted:
18
04
2024
medline:
24
4
2024
pubmed:
24
4
2024
entrez:
23
4
2024
Statut:
epublish
Résumé
Poor treatment responses of pancreatic ductal adenocarcinoma (PDAC) are in large part due to tumor heterogeneity and an immunosuppressive desmoplastic tumor stroma that impacts interactions with cells in the tumor microenvironment (TME). Thus, there is a pressing need for models to probe the contributions of cellular and noncellular crosstalk. Organoids are promising model systems with the potential to generate a plethora of data including phenotypic, transcriptomic and genomic characterization but still require improvements in culture conditions mimicking the TME. Here, we describe an INTERaction with Organoid-in-MatriX ("InterOMaX") model system, that presents a 3D co-culture-based platform for investigating matrix-dependent cellular crosstalk. We describe its potential to uncover new molecular mechanisms of T cell responses to murine KPC (LSL-Kras
Identifiants
pubmed: 38654067
doi: 10.1038/s41598-024-60107-5
pii: 10.1038/s41598-024-60107-5
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
9377Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : LI 2547/6-1
Informations de copyright
© 2024. The Author(s).
Références
Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).
doi: 10.3322/caac.21763
pubmed: 36633525
Beatty, G. L., Werba, G., Lyssiotis, C. A. & Simeone, D. M. The biological underpinnings of therapeutic resistance in pancreatic cancer. Gene Dev. 35, 940–962 (2021).
doi: 10.1101/gad.348523.121
pubmed: 34117095
pmcid: 8247606
Lin, Y.-N. et al. Impaired CXCL12 signaling contributes to resistance of pancreatic cancer subpopulations to T cell-mediated cytotoxicity. Oncoimmunology 11, 2027136 (2022).
doi: 10.1080/2162402X.2022.2027136
pubmed: 35127250
pmcid: 8816404
Li, J. et al. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity 49, 178-193.e7 (2018).
doi: 10.1016/j.immuni.2018.06.006
pubmed: 29958801
pmcid: 6707727
Spranger, S. & Gajewski, T. F. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat. Rev. Cancer 18, 139–147 (2018).
doi: 10.1038/nrc.2017.117
pubmed: 29326431
pmcid: 6685071
Li, J. et al. Tumor cell-intrinsic USP22 suppresses antitumor immunity in pancreatic cancer. Cancer Immunol. Res. 8, 282–291 (2020).
doi: 10.1158/2326-6066.CIR-19-0661
pubmed: 31871120
Morrison, A. H., Byrne, K. T. & Vonderheide, R. H. Immunotherapy and prevention of pancreatic cancer. Trends Cancer 4, 418–428 (2018).
doi: 10.1016/j.trecan.2018.04.001
pubmed: 29860986
pmcid: 6028935
Royal, R. E. et al. Phase 2 trial of single agent ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J. Immunother. 33, 828–833 (2010).
doi: 10.1097/CJI.0b013e3181eec14c
pubmed: 20842054
pmcid: 7322622
Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).
doi: 10.1056/NEJMoa1200694
pubmed: 22658128
pmcid: 3563263
Li, K. et al. Pancreatic ductal adenocarcinoma immune microenvironment and immunotherapy prospects. Chronic Dis. Transl. Med. 6, 6–17 (2020).
pubmed: 32226930
pmcid: 7096327
de Souza, N. Organoids. Nat. Methods 15, 23–23 (2018).
doi: 10.1038/nmeth.4576
Rossi, G., Manfrin, A. & Lutolf, M. P. Progress and potential in organoid research. Nat. Rev. Genet. 19, 671–687 (2018).
doi: 10.1038/s41576-018-0051-9
pubmed: 30228295
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 144, 646–674 (2011).
doi: 10.1016/j.cell.2011.02.013
pubmed: 21376230
Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).
doi: 10.1126/science.aaw6985
pubmed: 31171691
Homicsko, K. Organoid technology and applications in cancer immunotherapy and precision medicine. Curr. Opin. Biotech. 65, 242–247 (2020).
doi: 10.1016/j.copbio.2020.05.002
pubmed: 32603978
Lin, Y.-N. et al. Monitoring cancer cell invasion and T-cell cytotoxicity in 3D culture. J. Vis. Exp. https://doi.org/10.3791/61392 (2020).
doi: 10.3791/61392
pubmed: 33346186
Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).
doi: 10.1016/j.ccr.2005.04.023
pubmed: 15894267
Pickup, M. W., Mouw, J. K. & Weaver, V. M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15, 1243–1253 (2014).
doi: 10.15252/embr.201439246
pubmed: 25381661
pmcid: 4264927
Sadjadi, Z., Zhao, R., Hoth, M., Qu, B. & Rieger, H. Migration of cytotoxic T lymphocytes in 3D collagen matrices. Biophys. J. 119, 2141–2152 (2020).
doi: 10.1016/j.bpj.2020.10.020
pubmed: 33264597
pmcid: 7732778
Kuczek, D. E. et al. Collagen density regulates the activity of tumor-infiltrating T cells. J. Immunother. Cancer 7, 68 (2019).
doi: 10.1186/s40425-019-0556-6
pubmed: 30867051
pmcid: 6417085
Stifter, K. et al. IFN-γ treatment protocol for MHC-Ilo/PD-L1+ pancreatic tumor cells selectively restores their TAP-mediated presentation competence and CD8 T-cell priming potential. J. Immunother. Cancer 8, e000692 (2020).
doi: 10.1136/jitc-2020-000692
pubmed: 32868392
pmcid: 7462314
Lahusen, A. Effects of BMI1 on stemness and migration of cancer stem cells in primary human PDAC cell lines [Master Thesis]. Ulm University (2021).
Huang, L. et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat. Med. 21, 1364–1371 (2015).
doi: 10.1038/nm.3973
pubmed: 26501191
pmcid: 4753163
Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).
doi: 10.1016/j.cell.2014.12.021
pubmed: 25557080
Khandelwal, N. et al. A high-throughput RNAi screen for detection of immune-checkpoint molecules that mediate tumor resistance to cytotoxic T lymphocytes. Embo Mol. Med. 7, 450–463 (2015).
doi: 10.15252/emmm.201404414
pubmed: 25691366
pmcid: 4403046
Schall, T. J., Bacon, K., Toy, K. J. & Goeddel, D. V. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 347, 669–671 (1990).
doi: 10.1038/347669a0
pubmed: 1699135
Seo, W. et al. Runx-mediated regulation of CCL5 via antagonizing two enhancers influences immune cell function and anti-tumor immunity. Nat. Commun. 11, 1562 (2020).
doi: 10.1038/s41467-020-15375-w
pubmed: 32218434
pmcid: 7099032
Wang, Z. et al. Carcinomas assemble a filamentous CXCL12-keratin-19 coating that suppresses T cell-mediated immune attack. Proc. Natl. Acad. Sci. U. S. A. 119, e2119463119 (2022).
doi: 10.1073/pnas.2119463119
pubmed: 35046049
pmcid: 8794816
Breunig, M. et al. Modeling plasticity and dysplasia of pancreatic ductal organoids derived from human pluripotent stem cells. Cell Stem Cell 28, 1105–1124 (2021).
doi: 10.1016/j.stem.2021.03.005
pubmed: 33915078
pmcid: 8461636
Li, L. et al. CXCL17 expression predicts poor prognosis and correlates with adverse immune infiltration in hepatocellular carcinoma. PLoS One 9, e110064 (2014).
doi: 10.1371/journal.pone.0110064
pubmed: 25303284
pmcid: 4193880
Hiraoka, N. et al. CXCL17 and ICAM2 are associated with a potential anti-tumor immune response in early intraepithelial stages of human pancreatic carcinogenesis. Gastroenterology 140, 310–321 (2011).
doi: 10.1053/j.gastro.2010.10.009
pubmed: 20955708
Zhou, Z. et al. A T cell-engaging tumor organoid platform for pancreatic cancer immunotherapy. Adv. Sci. https://doi.org/10.1002/advs.202300548 (2023).
doi: 10.1002/advs.202300548
Melzer, M. K., Roger, E. & Kleger, A. State-matched organoid models to fight pancreatic cancer. Trends Cancer 8, 445–447 (2022).
doi: 10.1016/j.trecan.2022.03.003
pubmed: 35370114
Chen, C., Rengarajan, V., Kjar, A. & Huang, Y. A matrigel-free method to generate matured human cerebral organoids using 3D-Printed microwell arrays. Bioact. Mater. 6, 1130–1139 (2021).
pubmed: 33134606
Lazzari, G. et al. Multicellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexity. Acta Biomater. 78, 296–307 (2018).
doi: 10.1016/j.actbio.2018.08.008
pubmed: 30099198
Wiedenmann, S. et al. Single-cell-resolved differentiation of human induced pluripotent stem cells into pancreatic duct-like organoids on a microwell chip. Nat. Biomed. Eng. 5, 897–913 (2021).
doi: 10.1038/s41551-021-00757-2
pubmed: 34239116
pmcid: 7611572
Kakni, P. et al. Intestinal organoid culture in polymer film-based microwell arrays. Adv. Biosyst. 4, 2000126 (2020).
doi: 10.1002/adbi.202000126
Xiao, W. et al. Matrix stiffness mediates pancreatic cancer chemoresistance through induction of exosome hypersecretion in a cancer associated fibroblasts-tumor organoid biomimetic model. Matrix Biol. Plus 14, 100111 (2022).
doi: 10.1016/j.mbplus.2022.100111
pubmed: 35619988
pmcid: 9126837
Mathison, A. et al. Pancreatic stellate cell models for transcriptional studies of desmoplasia-associated genes. Pancreatol. Off. J. Int. Assoc. Pancreatol. Iap. 10, 505–516 (2010).
Stouten, I., van Montfoort, N. & Hawinkels, L. J. A. C. The Tango between cancer-associated fibroblasts (CAFs) and immune cells in affecting immunotherapy efficacy in pancreatic cancer. Int. J. Mol. Sci. 24, 8707 (2023).
doi: 10.3390/ijms24108707
pubmed: 37240052
pmcid: 10218125
Kpeglo, D. et al. Modeling the mechanical stiffness of pancreatic ductal adenocarcinoma. Matrix Biol. Plus 14, 100109 (2022).
doi: 10.1016/j.mbplus.2022.100109
pubmed: 35399702
pmcid: 8990173