A pancreatic cancer organoid-in-matrix platform shows distinct sensitivities to T cell killing.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
23 04 2024
Historique:
received: 17 09 2023
accepted: 18 04 2024
medline: 24 4 2024
pubmed: 24 4 2024
entrez: 23 4 2024
Statut: epublish

Résumé

Poor treatment responses of pancreatic ductal adenocarcinoma (PDAC) are in large part due to tumor heterogeneity and an immunosuppressive desmoplastic tumor stroma that impacts interactions with cells in the tumor microenvironment (TME). Thus, there is a pressing need for models to probe the contributions of cellular and noncellular crosstalk. Organoids are promising model systems with the potential to generate a plethora of data including phenotypic, transcriptomic and genomic characterization but still require improvements in culture conditions mimicking the TME. Here, we describe an INTERaction with Organoid-in-MatriX ("InterOMaX") model system, that presents a 3D co-culture-based platform for investigating matrix-dependent cellular crosstalk. We describe its potential to uncover new molecular mechanisms of T cell responses to murine KPC (LSL-Kras

Identifiants

pubmed: 38654067
doi: 10.1038/s41598-024-60107-5
pii: 10.1038/s41598-024-60107-5
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

9377

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : LI 2547/6-1

Informations de copyright

© 2024. The Author(s).

Références

Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).
doi: 10.3322/caac.21763 pubmed: 36633525
Beatty, G. L., Werba, G., Lyssiotis, C. A. & Simeone, D. M. The biological underpinnings of therapeutic resistance in pancreatic cancer. Gene Dev. 35, 940–962 (2021).
doi: 10.1101/gad.348523.121 pubmed: 34117095 pmcid: 8247606
Lin, Y.-N. et al. Impaired CXCL12 signaling contributes to resistance of pancreatic cancer subpopulations to T cell-mediated cytotoxicity. Oncoimmunology 11, 2027136 (2022).
doi: 10.1080/2162402X.2022.2027136 pubmed: 35127250 pmcid: 8816404
Li, J. et al. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity 49, 178-193.e7 (2018).
doi: 10.1016/j.immuni.2018.06.006 pubmed: 29958801 pmcid: 6707727
Spranger, S. & Gajewski, T. F. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat. Rev. Cancer 18, 139–147 (2018).
doi: 10.1038/nrc.2017.117 pubmed: 29326431 pmcid: 6685071
Li, J. et al. Tumor cell-intrinsic USP22 suppresses antitumor immunity in pancreatic cancer. Cancer Immunol. Res. 8, 282–291 (2020).
doi: 10.1158/2326-6066.CIR-19-0661 pubmed: 31871120
Morrison, A. H., Byrne, K. T. & Vonderheide, R. H. Immunotherapy and prevention of pancreatic cancer. Trends Cancer 4, 418–428 (2018).
doi: 10.1016/j.trecan.2018.04.001 pubmed: 29860986 pmcid: 6028935
Royal, R. E. et al. Phase 2 trial of single agent ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J. Immunother. 33, 828–833 (2010).
doi: 10.1097/CJI.0b013e3181eec14c pubmed: 20842054 pmcid: 7322622
Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).
doi: 10.1056/NEJMoa1200694 pubmed: 22658128 pmcid: 3563263
Li, K. et al. Pancreatic ductal adenocarcinoma immune microenvironment and immunotherapy prospects. Chronic Dis. Transl. Med. 6, 6–17 (2020).
pubmed: 32226930 pmcid: 7096327
de Souza, N. Organoids. Nat. Methods 15, 23–23 (2018).
doi: 10.1038/nmeth.4576
Rossi, G., Manfrin, A. & Lutolf, M. P. Progress and potential in organoid research. Nat. Rev. Genet. 19, 671–687 (2018).
doi: 10.1038/s41576-018-0051-9 pubmed: 30228295
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 144, 646–674 (2011).
doi: 10.1016/j.cell.2011.02.013 pubmed: 21376230
Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).
doi: 10.1126/science.aaw6985 pubmed: 31171691
Homicsko, K. Organoid technology and applications in cancer immunotherapy and precision medicine. Curr. Opin. Biotech. 65, 242–247 (2020).
doi: 10.1016/j.copbio.2020.05.002 pubmed: 32603978
Lin, Y.-N. et al. Monitoring cancer cell invasion and T-cell cytotoxicity in 3D culture. J. Vis. Exp. https://doi.org/10.3791/61392 (2020).
doi: 10.3791/61392 pubmed: 33346186
Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).
doi: 10.1016/j.ccr.2005.04.023 pubmed: 15894267
Pickup, M. W., Mouw, J. K. & Weaver, V. M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15, 1243–1253 (2014).
doi: 10.15252/embr.201439246 pubmed: 25381661 pmcid: 4264927
Sadjadi, Z., Zhao, R., Hoth, M., Qu, B. & Rieger, H. Migration of cytotoxic T lymphocytes in 3D collagen matrices. Biophys. J. 119, 2141–2152 (2020).
doi: 10.1016/j.bpj.2020.10.020 pubmed: 33264597 pmcid: 7732778
Kuczek, D. E. et al. Collagen density regulates the activity of tumor-infiltrating T cells. J. Immunother. Cancer 7, 68 (2019).
doi: 10.1186/s40425-019-0556-6 pubmed: 30867051 pmcid: 6417085
Stifter, K. et al. IFN-γ treatment protocol for MHC-Ilo/PD-L1+ pancreatic tumor cells selectively restores their TAP-mediated presentation competence and CD8 T-cell priming potential. J. Immunother. Cancer 8, e000692 (2020).
doi: 10.1136/jitc-2020-000692 pubmed: 32868392 pmcid: 7462314
Lahusen, A. Effects of BMI1 on stemness and migration of cancer stem cells in primary human PDAC cell lines [Master Thesis]. Ulm University (2021).
Huang, L. et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat. Med. 21, 1364–1371 (2015).
doi: 10.1038/nm.3973 pubmed: 26501191 pmcid: 4753163
Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).
doi: 10.1016/j.cell.2014.12.021 pubmed: 25557080
Khandelwal, N. et al. A high-throughput RNAi screen for detection of immune-checkpoint molecules that mediate tumor resistance to cytotoxic T lymphocytes. Embo Mol. Med. 7, 450–463 (2015).
doi: 10.15252/emmm.201404414 pubmed: 25691366 pmcid: 4403046
Schall, T. J., Bacon, K., Toy, K. J. & Goeddel, D. V. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 347, 669–671 (1990).
doi: 10.1038/347669a0 pubmed: 1699135
Seo, W. et al. Runx-mediated regulation of CCL5 via antagonizing two enhancers influences immune cell function and anti-tumor immunity. Nat. Commun. 11, 1562 (2020).
doi: 10.1038/s41467-020-15375-w pubmed: 32218434 pmcid: 7099032
Wang, Z. et al. Carcinomas assemble a filamentous CXCL12-keratin-19 coating that suppresses T cell-mediated immune attack. Proc. Natl. Acad. Sci. U. S. A. 119, e2119463119 (2022).
doi: 10.1073/pnas.2119463119 pubmed: 35046049 pmcid: 8794816
Breunig, M. et al. Modeling plasticity and dysplasia of pancreatic ductal organoids derived from human pluripotent stem cells. Cell Stem Cell 28, 1105–1124 (2021).
doi: 10.1016/j.stem.2021.03.005 pubmed: 33915078 pmcid: 8461636
Li, L. et al. CXCL17 expression predicts poor prognosis and correlates with adverse immune infiltration in hepatocellular carcinoma. PLoS One 9, e110064 (2014).
doi: 10.1371/journal.pone.0110064 pubmed: 25303284 pmcid: 4193880
Hiraoka, N. et al. CXCL17 and ICAM2 are associated with a potential anti-tumor immune response in early intraepithelial stages of human pancreatic carcinogenesis. Gastroenterology 140, 310–321 (2011).
doi: 10.1053/j.gastro.2010.10.009 pubmed: 20955708
Zhou, Z. et al. A T cell-engaging tumor organoid platform for pancreatic cancer immunotherapy. Adv. Sci. https://doi.org/10.1002/advs.202300548 (2023).
doi: 10.1002/advs.202300548
Melzer, M. K., Roger, E. & Kleger, A. State-matched organoid models to fight pancreatic cancer. Trends Cancer 8, 445–447 (2022).
doi: 10.1016/j.trecan.2022.03.003 pubmed: 35370114
Chen, C., Rengarajan, V., Kjar, A. & Huang, Y. A matrigel-free method to generate matured human cerebral organoids using 3D-Printed microwell arrays. Bioact. Mater. 6, 1130–1139 (2021).
pubmed: 33134606
Lazzari, G. et al. Multicellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexity. Acta Biomater. 78, 296–307 (2018).
doi: 10.1016/j.actbio.2018.08.008 pubmed: 30099198
Wiedenmann, S. et al. Single-cell-resolved differentiation of human induced pluripotent stem cells into pancreatic duct-like organoids on a microwell chip. Nat. Biomed. Eng. 5, 897–913 (2021).
doi: 10.1038/s41551-021-00757-2 pubmed: 34239116 pmcid: 7611572
Kakni, P. et al. Intestinal organoid culture in polymer film-based microwell arrays. Adv. Biosyst. 4, 2000126 (2020).
doi: 10.1002/adbi.202000126
Xiao, W. et al. Matrix stiffness mediates pancreatic cancer chemoresistance through induction of exosome hypersecretion in a cancer associated fibroblasts-tumor organoid biomimetic model. Matrix Biol. Plus 14, 100111 (2022).
doi: 10.1016/j.mbplus.2022.100111 pubmed: 35619988 pmcid: 9126837
Mathison, A. et al. Pancreatic stellate cell models for transcriptional studies of desmoplasia-associated genes. Pancreatol. Off. J. Int. Assoc. Pancreatol. Iap. 10, 505–516 (2010).
Stouten, I., van Montfoort, N. & Hawinkels, L. J. A. C. The Tango between cancer-associated fibroblasts (CAFs) and immune cells in affecting immunotherapy efficacy in pancreatic cancer. Int. J. Mol. Sci. 24, 8707 (2023).
doi: 10.3390/ijms24108707 pubmed: 37240052 pmcid: 10218125
Kpeglo, D. et al. Modeling the mechanical stiffness of pancreatic ductal adenocarcinoma. Matrix Biol. Plus 14, 100109 (2022).
doi: 10.1016/j.mbplus.2022.100109 pubmed: 35399702 pmcid: 8990173

Auteurs

Anton Lahusen (A)

Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany.

Jierui Cai (J)

Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany.

Reinhold Schirmbeck (R)

Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany.

Anton Wellstein (A)

Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, Washington, DC, 20007, USA.

Alexander Kleger (A)

Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany.
Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, 89081, Ulm, Germany.
Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, 89081, Ulm, Germany.
Organoid Core Facility, Ulm University Hospital, 89081, Ulm, Germany.

Thomas Seufferlein (T)

Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany.

Tim Eiseler (T)

Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany.

Yuan-Na Lin (YN)

Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany. yuanna.lin@uni-ulm.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH