Mapping philanthropic support of science.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
24 Apr 2024
Historique:
received: 27 08 2023
accepted: 28 03 2024
medline: 25 4 2024
pubmed: 25 4 2024
entrez: 24 4 2024
Statut: epublish

Résumé

While philanthropic support for science has increased in the past decade, there is limited quantitative knowledge about the patterns that characterize it and the mechanisms that drive its distribution. Here, we map philanthropic funding to universities and research institutions based on IRS tax forms from 685,397 non-profit organizations. We identify nearly one million grants supporting institutions involved in science and higher education, finding that in volume and scope, philanthropy is a significant source of funds, reaching an amount that rivals some of the key federal agencies like the NSF and NIH. Our analysis also reveals that philanthropic funders tend to focus locally, indicating that criteria beyond research excellence play an important role in funding decisions, and that funding relationships are stable, i.e. once a grant-giving relationship begins, it tends to continue in time. Finally, we show that the bipartite funder-recipient network displays a highly overrepresented motif indicating that funders who share one recipient also share other recipients and we show that this motif contains predictive power for future funding relationships. We discuss the policy implications of our findings on inequality in science, scientific progress, and the role of quantitative approaches to philanthropy.

Identifiants

pubmed: 38658598
doi: 10.1038/s41598-024-58367-2
pii: 10.1038/s41598-024-58367-2
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

9397

Subventions

Organisme : Horizon 2020
ID : 810115
Organisme : Eric and Wendy Schmidt Fund for Strategic Innovation
ID : G-22-63228
Organisme : John Templeton Foundation
ID : 62452
Organisme : Air Force Office of Scientific Research
ID : FA9550-19-1-035
Organisme : Division of Social and Economic Sciences
ID : SES-2219575

Informations de copyright

© 2024. The Author(s).

Références

Dunn, L. C. Organization and support of science in the United States. Science 102, 548–554 (1945).
pubmed: 21004254 doi: 10.1126/science.102.2657.548
Tachibana, C. Beyond government grants: Widening your funding net. Science https://doi.org/10.1126/science.opms.aav3708 (2018).
doi: 10.1126/science.opms.aav3708
Himanen, L., Auranen, O., Puuska, H.-M. & Nieminen, M. Influence of research funding and science policy on university research performance: A comparison of five countries. Sci. Public Policy 36, 419–430 (2009).
doi: 10.3152/030234209X461006
Kastner, M. (Science Philanthropy Alliance, 2018).
Foundation, N. N. S. Science and engineering indicators (2018).
Córdova, F. A. Envisioning Science for an Unknown Future. Issues in Science and Technology (2021).
Li, D., Azoulay, P. & Sampat, B. N. The applied value of public investments in biomedical research. Science 356, 78–81 (2017).
pubmed: 28360137 doi: 10.1126/science.aal0010
Wang, Y., Jones, B. F. & Wang, D. Early-career setback and future career impact. Nat. Commun. 10, 1–10 (2019).
Jacob, B. A. & Lefgren, L. The impact of research grant funding on scientific productivity. J. Public Econ. 95, 1168–1177 (2011).
pubmed: 21857758 pmcid: 3156466 doi: 10.1016/j.jpubeco.2011.05.005
Heggeness, M. L., Ginther, D. K., Larenas, M. I. & Carter-Johnson, F. D. The Impact of Postdoctoral Fellowships on a Future Independent Career in Federally Funded Biomedical Research (National Bureau of Economic Research, 2018).
doi: 10.3386/w24508
Laird, F. N. Sticky policies, dysfunctional systems: Path dependency and the problems of government funding for Science in the United States. Minerva 58, 513–533 (2020).
pubmed: 32836391 pmcid: 7286811 doi: 10.1007/s11024-020-09409-2
Wang, X., Liu, D., Ding, K. & Wang, X. Science funding and research output: A study on 10 countries. Scientometrics 91, 591–599 (2012).
doi: 10.1007/s11192-011-0576-6
Van Dalen, R., Mehmood, S., Verstraten, P. & van der Wiell, K. Public funding of science. Int. Comp. CPB Neth. Bureau Econ. Policy Anal. (2014).
Ostrower, F. Why the Wealthy Give (Princeton University Press, 1997).
doi: 10.1515/9781400821853
Nwakpuda, E. I. Major donors and higher education: Are STEM donors different from other donors?. Nonprofit Volunt. Sect. Q. 49, 969–988 (2020).
doi: 10.1177/0899764020907153
Chetlen, A. L. et al. Radiology research funding: Current state and future opportunities. Acad. Radiol. 25, 26–39 (2018).
pubmed: 30711054 doi: 10.1016/j.acra.2017.07.013
Murray, F. Evaluating the role of science philanthropy in American research universities. Innov. Policy Econ. 13, 23–60 (2013).
doi: 10.1086/668238
Ohman, E. M., Douglas, P. S., Dean, L. B. & Ginsburg, G. S. Philanthropy for science: Is it a viable option?. Circ. Res. 119, 1057–1059 (2016).
pubmed: 27789583 doi: 10.1161/CIRCRESAHA.116.309657
Osili, U. O., Ackerman, J., Kong, C. H., Light, R. P. & Börner, K. Philanthro-metrics: Mining multi-million-dollar gifts. PLoS One 12, e0176738 (2017).
pubmed: 28552937 pmcid: 5446121 doi: 10.1371/journal.pone.0176738
Mcconnaughey, H. & Shtylla, S. Stepping off the sidelines (2020).
Fiennes, C. We need a science of philanthropy. Nat. News 546, 187 (2017).
doi: 10.1038/546187a
Ma, J. et al. Computational social science for nonprofit studies: Developing a toolbox and knowledge base for the field. VOLUNTAS Int. J. Volunt. Nonprofit Org. 34, 1–12 (2021).
Ely, T. L., Calabrese, T. D. & Jung, J. Research implications of electronic filing of nonprofit information: Lessons from the United States’ internal revenue service form 990 series. VOLUNTAS Int. J. Volunt. Nonprofit Org. 34, 1–9 (2021).
Paarlberg, L. E., Hannibal, B. & McGinnis Johnson, J. Examining the mediating influence of interlocking board networks on grant making in public foundations. Nonprofit Volunt. Sect. Q. 49, 734–756 (2020).
doi: 10.1177/0899764019897845
Santamarina, F. J., Lecy, J. D. & van Holm, E. J. How to code a million missions: developing bespoke nonprofit activity codes using machine learning algorithms. VOLUNTAS Int. J. Volunt. Nonprofit Org. 34, 1–10 (2021).
Ma, J. Automated coding using machine learning and remapping the US nonprofit sector: A guide and benchmark. Nonprofit Volunt. Sect Q. 50, 662–687 (2021).
doi: 10.1177/0899764020968153
Morgan, A. C. et al. Socioeconomic roots of academic faculty. Nat. Hum. Behav. 6, 1–9 (2022).
doi: 10.1038/s41562-022-01425-4
Ginther, D. K. et al. Race, ethnicity, and NIH research awards. Science 333, 1015–1019 (2011).
pubmed: 21852498 pmcid: 3412416 doi: 10.1126/science.1196783
Kotok, A. Grant writing for tight times. Science (2007).
Murray, D. L. et al. Bias in research grant evaluation has dire consequences for small universities. PLoS One 11, e0155876 (2016).
pubmed: 27258385 pmcid: 4892638 doi: 10.1371/journal.pone.0155876
Ma, A., Mondragón, R. J. & Latora, V. Anatomy of funded research in science. Proc. Natl. Acad. Sci. 112, 14760–14765 (2015).
pubmed: 26504240 pmcid: 4672826 doi: 10.1073/pnas.1513651112
Huang, J., Gates, A. J., Sinatra, R. & Barabási, A.-L. Historical comparison of gender inequality in scientific careers across countries and disciplines. Proc. Natl. Acad. Sci. 117, 4609–4616 (2020).
pubmed: 32071248 pmcid: 7060730 doi: 10.1073/pnas.1914221117
Varma, R. US science and engineering workforce: Underrepresentation of women and minorities. Am. Behav. Sci. 62, 692–697 (2018).
doi: 10.1177/0002764218768847
Hayden, E. C. Racial bias haunts NIH grants. Nature 527, 286–287 (2015).
Althoff, T. & Leskovec, J. In Proceedings of the 24th International Conference on World Wide Web, 34–44.
Naskrent, J. & Siebelt, P. The influence of commitment, trust, satisfaction, and involvement on donor retention. Voluntas Int. J. Volunt. Nonprofit Org. 22, 757–778 (2011).
doi: 10.1007/s11266-010-9177-x
Robins, G. & Alexander, M. Small worlds among interlocking directors: Network structure and distance in bipartite graphs. Comput. Math. Org. Theory 10, 69–94 (2004).
doi: 10.1023/B:CMOT.0000032580.12184.c0
Latapy, M., Magnien, C. & Del Vecchio, N. Basic notions for the analysis of large two-mode networks. Soc. Netw. 30, 31–48 (2008).
doi: 10.1016/j.socnet.2007.04.006
Shirk, A. If You’ve Met One Foundation. You’ve Met One Foundation. Philanthropy News Digest (2018). https://philanthropynewsdigest.org/features/the-sustainable-nonprofit/if-you-ve-met-one-foundation-you-ve-met-one-foundation .
Introduction to finding grants. (2023). https://learning.candid.org/training/courses/introduction-to-finding-grants/ .
Lü, L. & Zhou, T. Link prediction in complex networks: A survey. Phys. A Stat. Mech. Appl. 390, 1150–1170 (2011).
doi: 10.1016/j.physa.2010.11.027
Adamic, L. A. & Adar, E. Friends and neighbors on the web. Soc. Netw. 25, 211–230 (2003).
doi: 10.1016/S0378-8733(03)00009-1
Davis, D., Lichtenwalter, R. & Chawla, N. V. In 2011 International Conference on Advances in Social Networks Analysis and Mining, 281–288 (IEEE).
Lorrain, F. & White, H. C. Structural equivalence of individuals in social networks. J. Math. Social. 1, 49–80 (1971).
doi: 10.1080/0022250X.1971.9989788
Benson, A. R., Abebe, R., Schaub, M. T., Jadbabaie, A. & Kleinberg, J. Simplicial closure and higher-order link prediction. Proc. Natl. Acad. Sci. 115, E11221–E11230 (2018).
pubmed: 30413619 pmcid: 6275482 doi: 10.1073/pnas.1800683115
Bekkers, R. & Wiepking, P. A literature review of empirical studies of philanthropy: Eight mechanisms that drive charitable giving. Nonprofit Volunt. Sect. Q. 40, 924–973 (2011).
doi: 10.1177/0899764010380927
Nesbit, R., Christensen, R., Tschirhart, M., Clerkin, R. & Paarlberg, L. Philanthropic mobility and the influence of duration of donor residency on donation choices. VOLUNTAS Int. J. Volunt. Nonprofit Org. 26, 267–287 (2015).
doi: 10.1007/s11266-013-9433-y
Ein-Gar, D. & Levontin, L. Giving from a distance: Putting the charitable organization at the center of the donation appeal. J. Consum. Psychol. 23, 197–211 (2013).
doi: 10.1016/j.jcps.2012.09.002
Jones, B. F., Wuchty, S. & Uzzi, B. Multi-university research teams: Shifting impact, geography, and stratification in science. Science 322, 1259–1262 (2008).
pubmed: 18845711 doi: 10.1126/science.1158357
Li, A. Y. Dramatic declines in higher education appropriations: State conditions for budget punctuations. Res. High. Educ. 58, 395–429 (2017).
doi: 10.1007/s11162-016-9432-0
Mitchell, M., Leachman, M. & Saenz, M. State higher education funding cuts have pushed costs to students, worsened inequality. Cent. Budget Policy Prior. 24, 9–15 (2019).
McNutt, M. Vol. 344, 9–9 (American Association for the Advancement of Science, 2014).
Ledford, H. Sponsor my science: Philanthropists will sometimes give large sums of money to support science–but researchers have to learn how to sell themselves first. Nature 481, 254–256 (2012).
pubmed: 22258588 doi: 10.1038/481254a
Eckel, C. C., Herberich, D. H. & Meer, J. A field experiment on directed giving at a public university. J. Behav. Exp. Econ. 66, 66–71 (2017).
doi: 10.1016/j.socec.2016.04.007
Kundu, O. & Matthews, N. E. The role of charitable funding in university research. Sci. Public Policy 46, 611–619 (2019).
doi: 10.1093/scipol/scz014
Gouwenberg, B. et al. Foundations supporting research and innovation in Europe: Results and lessons from the Eufori study. Found. Rev. 8, 11 (2016).
Gordon, T., Khumawala, S. B., Kraut, M. A. & Meade, J. A. The quality and reliability of form 990 data: Are users being misled. Acad. Account. Financ. Stud. J. 11, 27 (2007).
Tabakovic, H. & Wollmann, T. G. The impact of money on science: Evidence from unexpected NCAA football outcomes. J. Public Econ. 178, 104066 (2019).
doi: 10.1016/j.jpubeco.2019.104066
Fortunato, S. et al. Science of science. Science 359, eaao0185 (2018).
pubmed: 29496846 pmcid: 5949209 doi: 10.1126/science.aao0185
Wang, D. & Barabási, A.-L. The Science of Science (Cambridge University Press, 2021).
doi: 10.1017/9781108610834

Auteurs

Louis M Shekhtman (LM)

Network Science Institute, Northeastern University, Boston, MA, 02115, USA.

Alexander J Gates (AJ)

School of Data Science, University of Virginia, Charlottesville, VA, 22904, USA.

Albert-László Barabási (AL)

Network Science Institute, Northeastern University, Boston, MA, 02115, USA. alb@neu.edu.
Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA. alb@neu.edu.
Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA. alb@neu.edu.
Department of Network and Data Science, Central European University, Budapest, 1051, Hungary. alb@neu.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH