Gingival proteomics reveals the role of TGF beta and YAP/TAZ signaling in Raine syndrome fibrosis.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
25 04 2024
Historique:
received: 24 10 2023
accepted: 15 04 2024
medline: 26 4 2024
pubmed: 26 4 2024
entrez: 25 4 2024
Statut: epublish

Résumé

Raine syndrome (RNS) is a rare autosomal recessive osteosclerotic dysplasia. RNS is caused by loss-of-function disease-causative variants of the FAM20C gene that encodes a kinase that phosphorylates most of the secreted proteins found in the body fluids and extracellular matrix. The most common RNS clinical features are generalized osteosclerosis, facial dysmorphism, intracerebral calcifications and respiratory defects. In non-lethal RNS forms, oral traits include a well-studied hypoplastic amelogenesis imperfecta (AI) and a much less characterized gingival phenotype. We used immunomorphological, biochemical, and siRNA approaches to analyze gingival tissues and primary cultures of gingival fibroblasts of two unrelated, previously reported RNS patients. We showed that fibrosis, pathological gingival calcifications and increased expression of various profibrotic and pro-osteogenic proteins such as POSTN, SPARC and VIM were common findings. Proteomic analysis of differentially expressed proteins demonstrated that proteins involved in extracellular matrix (ECM) regulation and related to the TGFβ/SMAD signaling pathway were increased. Functional analyses confirmed the upregulation of TGFβ/SMAD signaling and subsequently uncovered the involvement of two closely related transcription cofactors important in fibrogenesis, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Knocking down of FAM20C confirmed the TGFβ-YAP/TAZ interplay indicating that a profibrotic loop enabled gingival fibrosis in RNS patients. In summary, our in vivo and in vitro data provide a detailed description of the RNS gingival phenotype. They show that gingival fibrosis and calcifications are associated with, and most likely caused by excessed ECM production and disorganization. They furthermore uncover the contribution of increased TGFβ-YAP/TAZ signaling in the pathogenesis of the gingival fibrosis.

Identifiants

pubmed: 38664418
doi: 10.1038/s41598-024-59713-0
pii: 10.1038/s41598-024-59713-0
doi:

Substances chimiques

Transforming Growth Factor beta 0
YAP-Signaling Proteins 0
Adaptor Proteins, Signal Transducing 0
Transcription Factors 0
YAP1 protein, human 0
FAM20C protein, human EC 2.7.11.1
WWTR1 protein, human 0
Transcriptional Coactivator with PDZ-Binding Motif Proteins 0
Trans-Activators 0
Intracellular Signaling Peptides and Proteins 0
Casein Kinase I EC 2.7.11.1
Extracellular Matrix Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

9497

Subventions

Organisme : Université de Rouen , France
ID : Université de Rouen Normandie
Organisme : Université de Paris, AP-HP, INSERM
ID : FHU-DDS ParisNet
Organisme : ECOS_NORD
ID : CS21501
Organisme : AP-HP
ID : TETECOU
Organisme : CAPES/COFECUB
ID : 918/2018

Informations de copyright

© 2024. The Author(s).

Références

Koike, T., Izumikawa, T., Tamura, J.-I. & Kitagawa, H. FAM20B is a kinase that phosphorylates xylose in the glycosaminoglycan-protein linkage region. Biochem. J. 421, 157–162 (2009).
pubmed: 19473117 doi: 10.1042/BJ20090474
Kuroda, Y. et al. A novel gene (FAM20B encoding glycosaminoglycan xylosylkinase) for neonatal short limb dysplasia resembling Desbuquois dysplasia. Clin. Genet. 95, 713–717 (2019).
pubmed: 30847897 doi: 10.1111/cge.13530
Cui, J. et al. A secretory kinase complex regulates extracellular protein phosphorylation. Elife 4, e06120 (2015).
pubmed: 25789606 pmcid: 4421793 doi: 10.7554/eLife.06120
Martelli-Júnior, H. et al. Case reports of a new syndrome associating gingival fibromatosis and dental abnormalities in a consanguineous family. J. Periodontol. 79, 1287–1296 (2008).
pubmed: 18597613 doi: 10.1902/jop.2008.070520
Jaureguiberry, G. et al. Nephrocalcinosis (enamel renal syndrome) caused by autosomal recessive FAM20A mutations. Nephron. Physiol. 122, 1–6 (2012).
pubmed: 23434854 doi: 10.1159/000349989
Wang, S.-K. et al. FAM20A mutations can cause enamel-renal syndrome (ERS). PLoS Genet. 9, e1003302 (2013).
pubmed: 23468644 pmcid: 3585120 doi: 10.1371/journal.pgen.1003302
Kantaputra, P. N. et al. Enamel-renal-gingival syndrome and FAM20A mutations. Am. J. Med. Genet. A 164A, 1–9 (2014).
pubmed: 24259279 doi: 10.1002/ajmg.a.36187
Simancas Escorcia, V. et al. Lack of FAM20A, ectopic gingival mineralization and chondro/osteogenic modifications in enamel renal syndrome. Front. Cell Dev. Biol. 8, 605084 (2020).
pubmed: 33425910 pmcid: 7793853 doi: 10.3389/fcell.2020.605084
Cho, S. H. et al. Novel FAM20A mutations in hypoplastic amelogenesis imperfecta. Hum. Mutat. 33, 91–94 (2012).
pubmed: 21990045 doi: 10.1002/humu.21621
Nitayavardhana, I. et al. Four novel mutations of FAM20A in amelogenesis imperfecta type IG and review of literature for its genotype and phenotype spectra. Mol. Genet. Genom. 295, 923–931 (2020).
doi: 10.1007/s00438-020-01668-8
Tagliabracci, V. S. et al. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science 336, 1150–1153 (2012).
pubmed: 22582013 pmcid: 3754843 doi: 10.1126/science.1217817
Bingham, E. W., Farrell, H. M. & Basch, J. J. Phosphorylation of casein. Role of the golgi apparatus. J. Biol. Chem. 247, 8193–8194 (1972).
pubmed: 4629742 doi: 10.1016/S0021-9258(20)81827-4
Lietz, C. B. et al. Phosphopeptidomics reveals differential phosphorylation states and novel SxE phosphosite motifs of neuropeptides in dense core secretory vesicles. J. Am. Soc. Mass Spectrom. 29, 935–947 (2018).
pubmed: 29556927 pmcid: 5943185 doi: 10.1007/s13361-018-1915-0
Nalbant, D. et al. FAM20: An evolutionarily conserved family of secreted proteins expressed in hematopoietic cells. BMC Genom. 6, 11 (2005).
doi: 10.1186/1471-2164-6-11
Tagliabracci, V. S. et al. A single kinase generates the majority of the secreted phosphoproteome. Cell 161, 1619–1632 (2015).
pubmed: 26091039 pmcid: 4963185 doi: 10.1016/j.cell.2015.05.028
Zhang, H. et al. Structure and evolution of the Fam20 kinases. Nat. Commun. 9, 1218 (2018).
pubmed: 29572475 pmcid: 5865150 doi: 10.1038/s41467-018-03615-z
Du, E.-X. et al. Characterization of Fam20C expression in odontogenesis and osteogenesis using transgenic mice. Int. J. Oral Sci. 7, 89–94 (2015).
pubmed: 25537657 doi: 10.1038/ijos.2014.67
Wang, X. et al. FAM20C plays an essential role in the formation of murine teeth. J. Biol. Chem. 287, 35934–35942 (2012).
pubmed: 22936805 pmcid: 3476261 doi: 10.1074/jbc.M112.386862
Liu, C. et al. FAM20C regulates osteoblast behaviors and intracellular signaling pathways in a cell-autonomous manner. J. Cell. Physiol. 233, 3476–3486 (2018).
pubmed: 28926103 doi: 10.1002/jcp.26200
Ma, P. et al. The importance of serine phosphorylation of ameloblastin on enamel formation. J. Dent. Res. 95, 1408–1414 (2016).
pubmed: 27470066 pmcid: 5076749 doi: 10.1177/0022034516661513
Zhang, J. et al. Secretory kinase Fam20C tunes endoplasmic reticulum redox state via phosphorylation of Ero1α. EMBO J. https://doi.org/10.15252/embj.201798699 (2018).
doi: 10.15252/embj.201798699 pubmed: 30591555 pmcid: 6356068
Yu, J. et al. Phosphorylation switches protein disulfide isomerase activity to maintain proteostasis and attenuate ER stress. EMBO J. 39, e103841 (2020).
pubmed: 32149426 pmcid: 7232009 doi: 10.15252/embj.2019103841
Hecht, T.K.-H. et al. Fam20C regulates protein secretion by Cab45 phosphorylation. J. Cell. Biol. 219, e201910089 (2020).
pubmed: 32422653 pmcid: 7265331 doi: 10.1083/jcb.201910089
Pollak, A. J. et al. A secretory pathway kinase regulates sarcoplasmic reticulum Ca2+ homeostasis and protects against heart failure. Elife 7, e41378 (2018).
pubmed: 30520731 pmcid: 6298778 doi: 10.7554/eLife.41378
Ben Djoudi Ouadda, A. et al. Ser-phosphorylation of pcsk9 (proprotein convertase subtilisin-kexin 9) by Fam20C (family with sequence similarity 20, member C) kinase enhances its ability to degrade the LDLR (low-density lipoprotein receptor). Arterioscler. Thromb. Vasc. Biol. 39, 1996–2013 (2019).
pubmed: 31553664 doi: 10.1161/ATVBAHA.119.313247
Tagliabracci, V. S. et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc. Natl. Acad. Sci. U. S. A. 111, 5520–5525 (2014).
pubmed: 24706917 pmcid: 3992636 doi: 10.1073/pnas.1402218111
Raine, J., Winter, R. M., Davey, A. & Tucker, S. M. Unknown syndrome: Microcephaly, hypoplastic nose, exophthalmos, gum hyperplasia, cleft palate, low set ears, and osteosclerosis. J. Med. Genet. 26, 786–788 (1989).
pubmed: 2614802 pmcid: 1015765 doi: 10.1136/jmg.26.12.786
Simpson, M. A. et al. Mutations in FAM20C are associated with lethal osteosclerotic bone dysplasia (Raine syndrome), highlighting a crucial molecule in bone development. Am. J. Hum. Genet. 81, 906–912 (2007).
pubmed: 17924334 pmcid: 2265657 doi: 10.1086/522240
Simpson, M. A. et al. Mutations in FAM20C also identified in non-lethal osteosclerotic bone dysplasia. Clin. Genet. 75, 271–276 (2009).
pubmed: 19250384 doi: 10.1111/j.1399-0004.2008.01118.x
Fradin, M. et al. Osteosclerotic bone dysplasia in siblings with a Fam20C mutation. Clin. Genet. 80, 177–183 (2011).
pubmed: 20825432 doi: 10.1111/j.1399-0004.2010.01516.x
Ishikawa, H. O., Xu, A., Ogura, E., Manning, G. & Irvine, K. D. The Raine syndrome protein FAM20C is a Golgi kinase that phosphorylates bio-mineralization proteins. PLoS One 7, e42988 (2012).
pubmed: 22900076 pmcid: 3416761 doi: 10.1371/journal.pone.0042988
Acevedo, A. C. et al. Variability of systemic and oro-dental phenotype in two families with non-lethal Raine syndrome with FAM20C mutations. BMC Med. Genet. 16, 8 (2015).
pubmed: 25928877 pmcid: 4422040 doi: 10.1186/s12881-015-0154-5
Sheth, J., Bhavsar, R., Gandhi, A., Sheth, F. & Pancholi, D. A case of Raine syndrome presenting with facial dysmorphy and review of literature. BMC Med. Genet. 19, 76 (2018).
pubmed: 29751744 pmcid: 5948820 doi: 10.1186/s12881-018-0593-x
Elalaoui, S. C. et al. Non lethal Raine syndrome and differential diagnosis. Eur. J. Med. Genet. 59, 577–583 (2016).
pubmed: 27667191 doi: 10.1016/j.ejmg.2016.09.018
Mameli, C. et al. Natural history of non-lethal Raine syndrome during childhood. Orphanet J. Rare Dis. 15, 93 (2020).
pubmed: 32299476 pmcid: 7164176 doi: 10.1186/s13023-020-01373-0
Palma-Lara, I. et al. FAM20C overview: Classic and novel targets, pathogenic variants and raine syndrome phenotypes. Int. J. Mol. Sci. 22, 8039 (2021).
pubmed: 34360805 pmcid: 8348777 doi: 10.3390/ijms22158039
Hung, C. Y. et al. A novel FAM20C mutation causes a rare form of neonatal lethal Raine syndrome. Am. J. Med. Genet. A 179, 1866–1871 (2019).
pubmed: 31297960 doi: 10.1002/ajmg.a.61291
Mamedova, E. et al. Non-lethal raine syndrome in a middle-aged woman caused by a novel FAM20C Mutation. Calcif. Tissue Int. 105, 567–572 (2019).
pubmed: 31471673 doi: 10.1007/s00223-019-00599-w
Vogel, P. et al. Amelogenesis imperfecta and other biomineralization defects in Fam20a and Fam20c null mice. Vet. Pathol. 49, 998–1017 (2012).
pubmed: 22732358 doi: 10.1177/0300985812453177
Wang, X. et al. The specific role of FAM20C in amelogenesis. J. Dent. Res. 92, 995–999 (2013).
pubmed: 24026952 pmcid: 3797537 doi: 10.1177/0022034513504588
Dong, C. et al. The phosphorylation of serine55 in enamelin is essential for murine amelogenesis. Matrix Biol. 111, 245–263 (2022).
pubmed: 35820561 doi: 10.1016/j.matbio.2022.07.001
Simancas Escorcia, V. et al. Pathogenesis of enamel-renal syndrome associated gingival fibromatosis: A proteomic approach. Front. Endocrinol. (Lausanne) 12, 752568 (2021).
pubmed: 34777248 doi: 10.3389/fendo.2021.752568
Osaka, H. et al. Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum. Mol. Genet. 12, 1945–1958 (2003).
pubmed: 12913066 doi: 10.1093/hmg/ddg211
Shibata, S. & Ishiyama, J. Secreted protein acidic and rich in cysteine (SPARC) is upregulated by transforming growth factor (TGF)-β and is required for TGF-β-induced hydrogen peroxide production in fibroblasts. Fibrogenes. Tissue Repair 6, 6 (2013).
doi: 10.1186/1755-1536-6-6
Worby, C. A., Mayfield, J. E., Pollak, A. J., Dixon, J. E. & Banerjee, S. The ABCs of the atypical Fam20 secretory pathway kinases. J. Biol. Chem. 296, 100267 (2021).
pubmed: 33759783 pmcid: 7948968 doi: 10.1016/j.jbc.2021.100267
Dzamukova, M. et al. Mechanical forces couple bone matrix mineralization with inhibition of angiogenesis to limit adolescent bone growth. Nat. Commun. 13, 3059 (2022).
pubmed: 35650194 pmcid: 9160028 doi: 10.1038/s41467-022-30618-8
Chung, Y. et al. Role of Shh and TGF in cyclosporine-enhanced expression of collagen and α-SMA by gingival fibroblast. J. Clin. Periodontol. 42, 29–36 (2015).
pubmed: 25385493 doi: 10.1111/jcpe.12333
Marconi, G. D. et al. Transforming growth factor-beta1 and human gingival fibroblast-to-myofibroblast differentiation: Molecular and morphological modifications. Front. Physiol. 12, 676512 (2021).
pubmed: 34093237 pmcid: 8176099 doi: 10.3389/fphys.2021.676512
Wright, H. J., Chapple, I. L. & Matthews, J. B. TGF-beta isoforms and TGF-beta receptors in drug-induced and hereditary gingival overgrowth. J. Oral Pathol. Med. 30, 281–289 (2001).
pubmed: 11334464 doi: 10.1034/j.1600-0714.2001.300505.x
Wang, Z. et al. Periostin: An emerging activator of multiple signaling pathways. J. Cell Commun. Signal. 16, 515–530 (2022).
pubmed: 35412260 pmcid: 9733775 doi: 10.1007/s12079-022-00674-2
Kim, S. S., Jackson-Boeters, L., Darling, M. R., Rieder, M. J. & Hamilton, D. W. Nifedipine induces periostin expression in gingival fibroblasts through TGF-beta. J. Dent. Res. 92, 1022–1028 (2013).
pubmed: 24004653 doi: 10.1177/0022034513503659
Shinde, A. V., Humeres, C. & Frangogiannis, N. G. The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 298–309 (2017).
pubmed: 27825850 doi: 10.1016/j.bbadis.2016.11.006
Trombetta-Esilva, J. & Bradshaw, A. D. The function of SPARC as a mediator of fibrosis. Open Rheumatol. J. 6, 146–155 (2012).
pubmed: 22802913 pmcid: 3395844 doi: 10.2174/1874312901206010146
Massagué, J. & Chen, Y. G. Controlling TGF-beta signaling. Genes Dev. 14, 627–644 (2000).
pubmed: 10733523 doi: 10.1101/gad.14.6.627
Varelas, X. et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat. Cell. Biol. 10, 837–848 (2008).
pubmed: 18568018 doi: 10.1038/ncb1748
Piersma, B., Bank, R. A. & Boersema, M. Signaling in fibrosis: TGF-β, WNT, and YAP/TAZ converge. Front. Med. (Lausanne) 2, 59 (2015).
pubmed: 26389119
Szeto, S. G. et al. YAP/TAZ are mechanoregulators of TGF-β-Smad signaling and renal fibrogenesis. J. Am. Soc. Nephrol. 27, 3117–3128 (2016).
pubmed: 26961347 pmcid: 5042658 doi: 10.1681/ASN.2015050499
Xiang, D. et al. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and YAP signaling. Phytomedicine 78, 153294 (2020).
pubmed: 32771890 doi: 10.1016/j.phymed.2020.153294
Zhao, B., Li, L., Tumaneng, K., Wang, C.-Y. & Guan, K.-L. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 24, 72–85 (2010).
pubmed: 20048001 pmcid: 2802193 doi: 10.1101/gad.1843810
Mannaerts, I. et al. The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J. Hepatol. 63, 679–688 (2015).
pubmed: 25908270 doi: 10.1016/j.jhep.2015.04.011
Zhang, J. et al. Secretory kinase Fam20C tunes endoplasmic reticulum redox state via phosphorylation of Ero1α. EMBO J. 37, e98699 (2018).
pubmed: 29858230 pmcid: 6043849 doi: 10.15252/embj.201798699
Pollak, A. J. et al. Phosphorylation of serine96 of histidine-rich calcium-binding protein by the Fam20C kinase functions to prevent cardiac arrhythmia. Proc.. Natl. Acad. Sci. U. S. A. 114, 9098–9103 (2017).
pubmed: 28784772 pmcid: 5576816 doi: 10.1073/pnas.1706441114
Chen, X. et al. Proteolytic processing of secretory pathway kinase Fam20C by site-1 protease promotes biomineralization. Proc. Natl. Acad. Sci. U. S. A. 118, e2100133118 (2021).
pubmed: 34349020 pmcid: 8364200 doi: 10.1073/pnas.2100133118
Sehgal, P. et al. Inhibition of the sarco/endoplasmic reticulum (ER) Ca2+-ATPase by thapsigargin analogs induces cell death via ER Ca2+ depletion and the unfolded protein response. J. Biol. Chem. 292, 19656–19673 (2017).
pubmed: 28972171 pmcid: 5712609 doi: 10.1074/jbc.M117.796920
Kinoshita, Y., Hori, M., Taguchi, M. & Fukumoto, S. Functional analysis of mutant FAM20C in Raine syndrome with FGF23-related hypophosphatemia. Bone 67, 145–151 (2014).
pubmed: 25026495 doi: 10.1016/j.bone.2014.07.009
Saigoh, K. et al. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat. Genet. 23, 47–51 (1999).
pubmed: 10471497 doi: 10.1038/12647
Mohanan, A., Washimkar, K. R. & Mugale, M. N. Unraveling the interplay between vital organelle stress and oxidative stress in idiopathic pulmonary fibrosis. Biochim. Biophys. Acta Mol. Cell Res. 1871, 119676 (2024).
pubmed: 38242330 doi: 10.1016/j.bbamcr.2024.119676
Yuan, Q. et al. MiR-185-5p ameliorates endoplasmic reticulum stress and renal fibrosis by downregulation of ATF6. Lab. Investig. 100, 1436–1446 (2020).
pubmed: 32514126 doi: 10.1038/s41374-020-0447-y
Wang, H. et al. Diosmetin-7-O-β-D-glucopyranoside suppresses endothelial-mesenchymal transformation through endoplasmic reticulum stress in cardiac fibrosis. Clin. Exp. Pharmacol. Physiol. 50, 789–805 (2023).
pubmed: 37430476 doi: 10.1111/1440-1681.13802
Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).
pubmed: 12471243 doi: 10.1126/science.1075762
Al-Mane, K., Al-Dayel, F. & McDonald, P. Intracranial calcification in Raine syndrome: Radiological pathological correlation. Pediatr. Radiol. 28, 820–823 (1998).
pubmed: 9799309 doi: 10.1007/s002470050473
Tarbit, E., Singh, I., Peart, J. N. & RoseMeyer, R. B. Biomarkers for the identification of cardiac fibroblast and myofibroblast cells. Heart Fail. Rev. 24, 1–15 (2019).
pubmed: 29987445 doi: 10.1007/s10741-018-9720-1
Venugopal, H., Hanna, A., Humeres, C. & Frangogiannis, N. G. Properties and functions of fibroblasts and myofibroblasts in myocardial infarction. Cells 11, 1386 (2022).
pubmed: 35563692 pmcid: 9102016 doi: 10.3390/cells11091386
Zhang, H., Zhou, Y., Wen, D. & Wang, J. Noncoding RNAs: Master regulator of fibroblast to myofibroblast transition in fibrosis. Int. J. Mol. Sci. 24, 1801 (2023).
pubmed: 36675315 pmcid: 9861037 doi: 10.3390/ijms24021801
Kong, P., Christia, P. & Frangogiannis, N. G. The pathogenesis of cardiac fibrosis. Cell. Mol. Life Sci. 71, 549–574 (2014).
pubmed: 23649149 doi: 10.1007/s00018-013-1349-6
Li, L., Fu, H. & Liu, Y. The fibrogenic niche in kidney fibrosis: Components and mechanisms. Nat. Rev. Nephrol. 18, 545–557 (2022).
pubmed: 35788561 doi: 10.1038/s41581-022-00590-z
Nikoloudaki, G., Snider, P., Simmons, O., Conway, S. J. & Hamilton, D. W. Periostin and matrix stiffness combine to regulate myofibroblast differentiation and fibronectin synthesis during palatal healing. Matrix Biol. 94, 31–56 (2020).
pubmed: 32777343 pmcid: 8922408 doi: 10.1016/j.matbio.2020.07.002
Farbehi, N. et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife 8, e43882 (2019).
pubmed: 30912746 pmcid: 6459677 doi: 10.7554/eLife.43882
Gallucci, R. M., Lee, E. G. & Tomasek, J. J. IL-6 modulates alpha-smooth muscle actin expression in dermal fibroblasts from IL-6-deficient mice. J Invest Dermatol 126, 561–568 (2006).
pubmed: 16397521 doi: 10.1038/sj.jid.5700109
Morton, R. S. & Dongari-Bagtzoglou, A. I. Regulation of gingival fibroblast interleukin-6 secretion by cyclosporine A. J. Periodontol. 70, 1464–1471 (1999).
pubmed: 10632522 doi: 10.1902/jop.1999.70.12.1464
Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).
pubmed: 27447449 pmcid: 5512625 doi: 10.1038/ncomms12260
Li, C. & Kuemmerle, J. F. The fate of myofibroblasts during the development of fibrosis in Crohn’s disease. J. Dig. Dis. 21, 326–331 (2020).
pubmed: 32092217 doi: 10.1111/1751-2980.12852
Gagliano, N. et al. Differential effect of cyclosporin A and FK506 on SPARC mRNA expression by human gingival fibroblasts. Biomed. Pharmacother. 59, 249–252 (2005).
pubmed: 15890490 doi: 10.1016/j.biopha.2004.06.005
Takeuchi, H. et al. Nicotine-induced CCN2: From smoking to periodontal fibrosis. J. Dent. Res. 89, 34–39 (2010).
pubmed: 19966042 doi: 10.1177/0022034509353403
Kiuchi, M. et al. An assessment of mast cells and myofibroblasts in denture-induced fibrous hyperplasia. J. Oral Pathol. Med. 43, 53–60 (2014).
pubmed: 23627608 doi: 10.1111/jop.12072
Riley, H. J. et al. SPARC production by bone marrow-derived cells contributes to myocardial fibrosis in pressure overload. Am. J. Physiol. Heart Circ. Physiol. 320, H604–H612 (2021).
pubmed: 33306449 doi: 10.1152/ajpheart.00552.2020
Kozumi, K. et al. Transcriptomics identify thrombospondin-2 as a biomarker for NASH and advanced liver fibrosis. Hepatology 74, 2452–2466 (2021).
pubmed: 34105780 doi: 10.1002/hep.31995
Li, F. J. et al. Citrullinated vimentin mediates development and progression of lung fibrosis. Sci. Transl. Med. 13, eaba2927 (2021).
pubmed: 33731433 pmcid: 8594069 doi: 10.1126/scitranslmed.aba2927
Ghosh, A. K. & Vaughan, D. E. PAI-1 in tissue fibrosis. J. Cell. Physiol. 227, 493–507 (2012).
pubmed: 21465481 pmcid: 3204398 doi: 10.1002/jcp.22783
Bauer, A. & Habior, A. Concentration of serum matrix metalloproteinase-3 in patients with primary biliary cholangitis. Front. Immunol. 13, 885229 (2022).
pubmed: 35529854 pmcid: 9072739 doi: 10.3389/fimmu.2022.885229
Gawron, K. et al. TIMP-1 association with collagen type I overproduction in hereditary gingival fibromatosis. Oral Dis. 24, 1581–1590 (2018).
pubmed: 29989318 doi: 10.1111/odi.12938
Strzelec, K. et al. Clinics and genetic background of hereditary gingival fibromatosis. Orphanet J. Rare Dis. 16, 492 (2021).
pubmed: 34819125 pmcid: 8611899 doi: 10.1186/s13023-021-02104-9
Zhang, X., Chen, C. T., Bhargava, M. & Torzilli, P. A. A comparative study of fibronectin cleavage by MMP-1, -3, -13, and -14. Cartilage 3, 267–277 (2012).
pubmed: 26069638 pmcid: 4297120 doi: 10.1177/1947603511435273
Das, D. K. et al. miR-1207-3p regulates the androgen receptor in prostate cancer via FNDC1/fibronectin. Exp. Cell Res. 348, 190–200 (2016).
pubmed: 27693493 pmcid: 5077722 doi: 10.1016/j.yexcr.2016.09.021
Das, D. K. & Ogunwobi, O. O. A novel microRNA-1207-3p/FNDC1/FN1/AR regulatory pathway in prostate cancer. RNA Dis. 4, e1503 (2017).
pubmed: 28251177 pmcid: 5328418
Ibelli, A. M. G. et al. Downregulation of growth plate genes involved with the onset of femoral head separation in young broilers. Front. Physiol. 13, 941134 (2022).
pubmed: 36003650 pmcid: 9393217 doi: 10.3389/fphys.2022.941134
Chin, Y.-T. et al. Antioxidants protect against gingival overgrowth induced by cyclosporine A. J Periodontal. Res. 56, 397–407 (2021).
pubmed: 33448057 doi: 10.1111/jre.12832
Meng, X.-M., Nikolic-Paterson, D. J. & Lan, H. Y. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325–338 (2016).
pubmed: 27108839 doi: 10.1038/nrneph.2016.48
Lee, M.-J., Byun, M. R., Furutani-Seiki, M., Hong, J.-H. & Jung, H.-S. YAP and TAZ regulate skin wound healing. J. Investig. Dermatol. 134, 518–525 (2014).
pubmed: 24108406 doi: 10.1038/jid.2013.339
Beyer, T. A. et al. Switch enhancers interpret TGF-β and Hippo signaling to control cell fate in human embryonic stem cells. Cell Rep. 5, 1611–1624 (2013).
pubmed: 24332857 doi: 10.1016/j.celrep.2013.11.021
Aragona, M. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047–1059 (2013).
pubmed: 23954413 doi: 10.1016/j.cell.2013.07.042
Wang, S.-K. et al. FAM20A mutations and transcriptome analyses of dental pulp tissues of enamel renal syndrome. Int. Endod. J. 56, 943–954 (2023).
pubmed: 37159186 doi: 10.1111/iej.13928
Yin, M. et al. The effect and mechanism of gene Fam20a on the development and function of salivary glands in mice. Arch. Oral Biol. 137, 105367 (2022).
pubmed: 35278791 doi: 10.1016/j.archoralbio.2022.105367
Li, L. et al. Ablation of FAM20C caused short root defects via suppressing the BMP signaling pathway in mice. J. Orofac. Orthop. https://doi.org/10.1007/s00056-022-00386-7 (2022).
doi: 10.1007/s00056-022-00386-7 pubmed: 36102945
Szklarczyk, D. et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).
pubmed: 30476243 doi: 10.1093/nar/gky1131

Auteurs

Cláudio Rodrigues Rezende Costa (CRR)

Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France.
Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil.
Department of Dentistry, Health Group of Natal (GSAU-NT), Brazilian Air Force, Natal, Parnamirim, Brazil.

Rym Chalgoumi (R)

Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France.

Amina Baker (A)

Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France.

Clément Guillou (C)

Rouen University, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, 76000, Rouen, France.
Rouen University, INSERM US51, CNRS UAR 2026, HeRacles PISSARO, 76000, Rouen, France.

Paulo Marcio Yamaguti (PM)

Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil.

Victor Simancas Escorcia (V)

Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France.
Grupo de Investigación GENOMA, Universidad del Sinú, Cartagena, Colombia.

Lilia Abbad (L)

MRS1155, INSERM, Sorbonne Université, 75020, Paris, France.

Bruna Rabelo Amorin (BR)

Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil.

Caroline Lourenço de Lima (CL)

Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil.

Vidjea Cannaya (V)

Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France.

Mourad Benassarou (M)

Service de Chirurgie Maxillo-Faciale et Stomatologie, Hôpital de La Pitié Salpétrière, Sorbonne Université, 75006, Paris, France.

Ariane Berdal (A)

Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France.
CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris Cité, 75012, Paris, France.

Christos Chatziantoniou (C)

MRS1155, INSERM, Sorbonne Université, 75020, Paris, France.

Olivier Cases (O)

Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France.

Pascal Cosette (P)

Rouen University, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, 76000, Rouen, France.
Rouen University, INSERM US51, CNRS UAR 2026, HeRacles PISSARO, 76000, Rouen, France.

Renata Kozyraki (R)

Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France. renata.kozyraki@inserm.fr.
CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris Cité, 75012, Paris, France. renata.kozyraki@inserm.fr.
Rouen University, UFR SANTE ROUEN NORMANDIE, Inserm 1096, 76000, Rouen, France. renata.kozyraki@inserm.fr.

Ana Carolina Acevedo (AC)

Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France.
Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH