Gingival proteomics reveals the role of TGF beta and YAP/TAZ signaling in Raine syndrome fibrosis.
Humans
Transforming Growth Factor beta
/ metabolism
Gingiva
/ metabolism
Signal Transduction
Proteomics
/ methods
Fibrosis
/ metabolism
YAP-Signaling Proteins
/ metabolism
Osteosclerosis
/ metabolism
Adaptor Proteins, Signal Transducing
/ metabolism
Transcription Factors
/ metabolism
Dental Enamel Hypoplasia
/ metabolism
Fibroblasts
/ metabolism
Microcephaly
/ metabolism
Female
Transcriptional Coactivator with PDZ-Binding Motif Proteins
/ metabolism
Male
Trans-Activators
/ metabolism
Intracellular Signaling Peptides and Proteins
/ metabolism
Casein Kinase I
/ metabolism
Extracellular Matrix Proteins
/ metabolism
Amelogenesis Imperfecta
/ metabolism
Cells, Cultured
Abnormalities, Multiple
Cleft Palate
Exophthalmos
Collagen
Ectopic mineralization
FAM20A
FAM20C
Fibrosis
Gingival fibroblast
Gingival fibromatosis
Periostin
Proteome
Raine syndrome
Secretome
TGF beta
YAP/TAZ
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
25 04 2024
25 04 2024
Historique:
received:
24
10
2023
accepted:
15
04
2024
medline:
26
4
2024
pubmed:
26
4
2024
entrez:
25
4
2024
Statut:
epublish
Résumé
Raine syndrome (RNS) is a rare autosomal recessive osteosclerotic dysplasia. RNS is caused by loss-of-function disease-causative variants of the FAM20C gene that encodes a kinase that phosphorylates most of the secreted proteins found in the body fluids and extracellular matrix. The most common RNS clinical features are generalized osteosclerosis, facial dysmorphism, intracerebral calcifications and respiratory defects. In non-lethal RNS forms, oral traits include a well-studied hypoplastic amelogenesis imperfecta (AI) and a much less characterized gingival phenotype. We used immunomorphological, biochemical, and siRNA approaches to analyze gingival tissues and primary cultures of gingival fibroblasts of two unrelated, previously reported RNS patients. We showed that fibrosis, pathological gingival calcifications and increased expression of various profibrotic and pro-osteogenic proteins such as POSTN, SPARC and VIM were common findings. Proteomic analysis of differentially expressed proteins demonstrated that proteins involved in extracellular matrix (ECM) regulation and related to the TGFβ/SMAD signaling pathway were increased. Functional analyses confirmed the upregulation of TGFβ/SMAD signaling and subsequently uncovered the involvement of two closely related transcription cofactors important in fibrogenesis, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Knocking down of FAM20C confirmed the TGFβ-YAP/TAZ interplay indicating that a profibrotic loop enabled gingival fibrosis in RNS patients. In summary, our in vivo and in vitro data provide a detailed description of the RNS gingival phenotype. They show that gingival fibrosis and calcifications are associated with, and most likely caused by excessed ECM production and disorganization. They furthermore uncover the contribution of increased TGFβ-YAP/TAZ signaling in the pathogenesis of the gingival fibrosis.
Identifiants
pubmed: 38664418
doi: 10.1038/s41598-024-59713-0
pii: 10.1038/s41598-024-59713-0
doi:
Substances chimiques
Transforming Growth Factor beta
0
YAP-Signaling Proteins
0
Adaptor Proteins, Signal Transducing
0
Transcription Factors
0
YAP1 protein, human
0
FAM20C protein, human
EC 2.7.11.1
WWTR1 protein, human
0
Transcriptional Coactivator with PDZ-Binding Motif Proteins
0
Trans-Activators
0
Intracellular Signaling Peptides and Proteins
0
Casein Kinase I
EC 2.7.11.1
Extracellular Matrix Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
9497Subventions
Organisme : Université de Rouen , France
ID : Université de Rouen Normandie
Organisme : Université de Paris, AP-HP, INSERM
ID : FHU-DDS ParisNet
Organisme : ECOS_NORD
ID : CS21501
Organisme : AP-HP
ID : TETECOU
Organisme : CAPES/COFECUB
ID : 918/2018
Informations de copyright
© 2024. The Author(s).
Références
Koike, T., Izumikawa, T., Tamura, J.-I. & Kitagawa, H. FAM20B is a kinase that phosphorylates xylose in the glycosaminoglycan-protein linkage region. Biochem. J. 421, 157–162 (2009).
pubmed: 19473117
doi: 10.1042/BJ20090474
Kuroda, Y. et al. A novel gene (FAM20B encoding glycosaminoglycan xylosylkinase) for neonatal short limb dysplasia resembling Desbuquois dysplasia. Clin. Genet. 95, 713–717 (2019).
pubmed: 30847897
doi: 10.1111/cge.13530
Cui, J. et al. A secretory kinase complex regulates extracellular protein phosphorylation. Elife 4, e06120 (2015).
pubmed: 25789606
pmcid: 4421793
doi: 10.7554/eLife.06120
Martelli-Júnior, H. et al. Case reports of a new syndrome associating gingival fibromatosis and dental abnormalities in a consanguineous family. J. Periodontol. 79, 1287–1296 (2008).
pubmed: 18597613
doi: 10.1902/jop.2008.070520
Jaureguiberry, G. et al. Nephrocalcinosis (enamel renal syndrome) caused by autosomal recessive FAM20A mutations. Nephron. Physiol. 122, 1–6 (2012).
pubmed: 23434854
doi: 10.1159/000349989
Wang, S.-K. et al. FAM20A mutations can cause enamel-renal syndrome (ERS). PLoS Genet. 9, e1003302 (2013).
pubmed: 23468644
pmcid: 3585120
doi: 10.1371/journal.pgen.1003302
Kantaputra, P. N. et al. Enamel-renal-gingival syndrome and FAM20A mutations. Am. J. Med. Genet. A 164A, 1–9 (2014).
pubmed: 24259279
doi: 10.1002/ajmg.a.36187
Simancas Escorcia, V. et al. Lack of FAM20A, ectopic gingival mineralization and chondro/osteogenic modifications in enamel renal syndrome. Front. Cell Dev. Biol. 8, 605084 (2020).
pubmed: 33425910
pmcid: 7793853
doi: 10.3389/fcell.2020.605084
Cho, S. H. et al. Novel FAM20A mutations in hypoplastic amelogenesis imperfecta. Hum. Mutat. 33, 91–94 (2012).
pubmed: 21990045
doi: 10.1002/humu.21621
Nitayavardhana, I. et al. Four novel mutations of FAM20A in amelogenesis imperfecta type IG and review of literature for its genotype and phenotype spectra. Mol. Genet. Genom. 295, 923–931 (2020).
doi: 10.1007/s00438-020-01668-8
Tagliabracci, V. S. et al. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science 336, 1150–1153 (2012).
pubmed: 22582013
pmcid: 3754843
doi: 10.1126/science.1217817
Bingham, E. W., Farrell, H. M. & Basch, J. J. Phosphorylation of casein. Role of the golgi apparatus. J. Biol. Chem. 247, 8193–8194 (1972).
pubmed: 4629742
doi: 10.1016/S0021-9258(20)81827-4
Lietz, C. B. et al. Phosphopeptidomics reveals differential phosphorylation states and novel SxE phosphosite motifs of neuropeptides in dense core secretory vesicles. J. Am. Soc. Mass Spectrom. 29, 935–947 (2018).
pubmed: 29556927
pmcid: 5943185
doi: 10.1007/s13361-018-1915-0
Nalbant, D. et al. FAM20: An evolutionarily conserved family of secreted proteins expressed in hematopoietic cells. BMC Genom. 6, 11 (2005).
doi: 10.1186/1471-2164-6-11
Tagliabracci, V. S. et al. A single kinase generates the majority of the secreted phosphoproteome. Cell 161, 1619–1632 (2015).
pubmed: 26091039
pmcid: 4963185
doi: 10.1016/j.cell.2015.05.028
Zhang, H. et al. Structure and evolution of the Fam20 kinases. Nat. Commun. 9, 1218 (2018).
pubmed: 29572475
pmcid: 5865150
doi: 10.1038/s41467-018-03615-z
Du, E.-X. et al. Characterization of Fam20C expression in odontogenesis and osteogenesis using transgenic mice. Int. J. Oral Sci. 7, 89–94 (2015).
pubmed: 25537657
doi: 10.1038/ijos.2014.67
Wang, X. et al. FAM20C plays an essential role in the formation of murine teeth. J. Biol. Chem. 287, 35934–35942 (2012).
pubmed: 22936805
pmcid: 3476261
doi: 10.1074/jbc.M112.386862
Liu, C. et al. FAM20C regulates osteoblast behaviors and intracellular signaling pathways in a cell-autonomous manner. J. Cell. Physiol. 233, 3476–3486 (2018).
pubmed: 28926103
doi: 10.1002/jcp.26200
Ma, P. et al. The importance of serine phosphorylation of ameloblastin on enamel formation. J. Dent. Res. 95, 1408–1414 (2016).
pubmed: 27470066
pmcid: 5076749
doi: 10.1177/0022034516661513
Zhang, J. et al. Secretory kinase Fam20C tunes endoplasmic reticulum redox state via phosphorylation of Ero1α. EMBO J. https://doi.org/10.15252/embj.201798699 (2018).
doi: 10.15252/embj.201798699
pubmed: 30591555
pmcid: 6356068
Yu, J. et al. Phosphorylation switches protein disulfide isomerase activity to maintain proteostasis and attenuate ER stress. EMBO J. 39, e103841 (2020).
pubmed: 32149426
pmcid: 7232009
doi: 10.15252/embj.2019103841
Hecht, T.K.-H. et al. Fam20C regulates protein secretion by Cab45 phosphorylation. J. Cell. Biol. 219, e201910089 (2020).
pubmed: 32422653
pmcid: 7265331
doi: 10.1083/jcb.201910089
Pollak, A. J. et al. A secretory pathway kinase regulates sarcoplasmic reticulum Ca2+ homeostasis and protects against heart failure. Elife 7, e41378 (2018).
pubmed: 30520731
pmcid: 6298778
doi: 10.7554/eLife.41378
Ben Djoudi Ouadda, A. et al. Ser-phosphorylation of pcsk9 (proprotein convertase subtilisin-kexin 9) by Fam20C (family with sequence similarity 20, member C) kinase enhances its ability to degrade the LDLR (low-density lipoprotein receptor). Arterioscler. Thromb. Vasc. Biol. 39, 1996–2013 (2019).
pubmed: 31553664
doi: 10.1161/ATVBAHA.119.313247
Tagliabracci, V. S. et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc. Natl. Acad. Sci. U. S. A. 111, 5520–5525 (2014).
pubmed: 24706917
pmcid: 3992636
doi: 10.1073/pnas.1402218111
Raine, J., Winter, R. M., Davey, A. & Tucker, S. M. Unknown syndrome: Microcephaly, hypoplastic nose, exophthalmos, gum hyperplasia, cleft palate, low set ears, and osteosclerosis. J. Med. Genet. 26, 786–788 (1989).
pubmed: 2614802
pmcid: 1015765
doi: 10.1136/jmg.26.12.786
Simpson, M. A. et al. Mutations in FAM20C are associated with lethal osteosclerotic bone dysplasia (Raine syndrome), highlighting a crucial molecule in bone development. Am. J. Hum. Genet. 81, 906–912 (2007).
pubmed: 17924334
pmcid: 2265657
doi: 10.1086/522240
Simpson, M. A. et al. Mutations in FAM20C also identified in non-lethal osteosclerotic bone dysplasia. Clin. Genet. 75, 271–276 (2009).
pubmed: 19250384
doi: 10.1111/j.1399-0004.2008.01118.x
Fradin, M. et al. Osteosclerotic bone dysplasia in siblings with a Fam20C mutation. Clin. Genet. 80, 177–183 (2011).
pubmed: 20825432
doi: 10.1111/j.1399-0004.2010.01516.x
Ishikawa, H. O., Xu, A., Ogura, E., Manning, G. & Irvine, K. D. The Raine syndrome protein FAM20C is a Golgi kinase that phosphorylates bio-mineralization proteins. PLoS One 7, e42988 (2012).
pubmed: 22900076
pmcid: 3416761
doi: 10.1371/journal.pone.0042988
Acevedo, A. C. et al. Variability of systemic and oro-dental phenotype in two families with non-lethal Raine syndrome with FAM20C mutations. BMC Med. Genet. 16, 8 (2015).
pubmed: 25928877
pmcid: 4422040
doi: 10.1186/s12881-015-0154-5
Sheth, J., Bhavsar, R., Gandhi, A., Sheth, F. & Pancholi, D. A case of Raine syndrome presenting with facial dysmorphy and review of literature. BMC Med. Genet. 19, 76 (2018).
pubmed: 29751744
pmcid: 5948820
doi: 10.1186/s12881-018-0593-x
Elalaoui, S. C. et al. Non lethal Raine syndrome and differential diagnosis. Eur. J. Med. Genet. 59, 577–583 (2016).
pubmed: 27667191
doi: 10.1016/j.ejmg.2016.09.018
Mameli, C. et al. Natural history of non-lethal Raine syndrome during childhood. Orphanet J. Rare Dis. 15, 93 (2020).
pubmed: 32299476
pmcid: 7164176
doi: 10.1186/s13023-020-01373-0
Palma-Lara, I. et al. FAM20C overview: Classic and novel targets, pathogenic variants and raine syndrome phenotypes. Int. J. Mol. Sci. 22, 8039 (2021).
pubmed: 34360805
pmcid: 8348777
doi: 10.3390/ijms22158039
Hung, C. Y. et al. A novel FAM20C mutation causes a rare form of neonatal lethal Raine syndrome. Am. J. Med. Genet. A 179, 1866–1871 (2019).
pubmed: 31297960
doi: 10.1002/ajmg.a.61291
Mamedova, E. et al. Non-lethal raine syndrome in a middle-aged woman caused by a novel FAM20C Mutation. Calcif. Tissue Int. 105, 567–572 (2019).
pubmed: 31471673
doi: 10.1007/s00223-019-00599-w
Vogel, P. et al. Amelogenesis imperfecta and other biomineralization defects in Fam20a and Fam20c null mice. Vet. Pathol. 49, 998–1017 (2012).
pubmed: 22732358
doi: 10.1177/0300985812453177
Wang, X. et al. The specific role of FAM20C in amelogenesis. J. Dent. Res. 92, 995–999 (2013).
pubmed: 24026952
pmcid: 3797537
doi: 10.1177/0022034513504588
Dong, C. et al. The phosphorylation of serine55 in enamelin is essential for murine amelogenesis. Matrix Biol. 111, 245–263 (2022).
pubmed: 35820561
doi: 10.1016/j.matbio.2022.07.001
Simancas Escorcia, V. et al. Pathogenesis of enamel-renal syndrome associated gingival fibromatosis: A proteomic approach. Front. Endocrinol. (Lausanne) 12, 752568 (2021).
pubmed: 34777248
doi: 10.3389/fendo.2021.752568
Osaka, H. et al. Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum. Mol. Genet. 12, 1945–1958 (2003).
pubmed: 12913066
doi: 10.1093/hmg/ddg211
Shibata, S. & Ishiyama, J. Secreted protein acidic and rich in cysteine (SPARC) is upregulated by transforming growth factor (TGF)-β and is required for TGF-β-induced hydrogen peroxide production in fibroblasts. Fibrogenes. Tissue Repair 6, 6 (2013).
doi: 10.1186/1755-1536-6-6
Worby, C. A., Mayfield, J. E., Pollak, A. J., Dixon, J. E. & Banerjee, S. The ABCs of the atypical Fam20 secretory pathway kinases. J. Biol. Chem. 296, 100267 (2021).
pubmed: 33759783
pmcid: 7948968
doi: 10.1016/j.jbc.2021.100267
Dzamukova, M. et al. Mechanical forces couple bone matrix mineralization with inhibition of angiogenesis to limit adolescent bone growth. Nat. Commun. 13, 3059 (2022).
pubmed: 35650194
pmcid: 9160028
doi: 10.1038/s41467-022-30618-8
Chung, Y. et al. Role of Shh and TGF in cyclosporine-enhanced expression of collagen and α-SMA by gingival fibroblast. J. Clin. Periodontol. 42, 29–36 (2015).
pubmed: 25385493
doi: 10.1111/jcpe.12333
Marconi, G. D. et al. Transforming growth factor-beta1 and human gingival fibroblast-to-myofibroblast differentiation: Molecular and morphological modifications. Front. Physiol. 12, 676512 (2021).
pubmed: 34093237
pmcid: 8176099
doi: 10.3389/fphys.2021.676512
Wright, H. J., Chapple, I. L. & Matthews, J. B. TGF-beta isoforms and TGF-beta receptors in drug-induced and hereditary gingival overgrowth. J. Oral Pathol. Med. 30, 281–289 (2001).
pubmed: 11334464
doi: 10.1034/j.1600-0714.2001.300505.x
Wang, Z. et al. Periostin: An emerging activator of multiple signaling pathways. J. Cell Commun. Signal. 16, 515–530 (2022).
pubmed: 35412260
pmcid: 9733775
doi: 10.1007/s12079-022-00674-2
Kim, S. S., Jackson-Boeters, L., Darling, M. R., Rieder, M. J. & Hamilton, D. W. Nifedipine induces periostin expression in gingival fibroblasts through TGF-beta. J. Dent. Res. 92, 1022–1028 (2013).
pubmed: 24004653
doi: 10.1177/0022034513503659
Shinde, A. V., Humeres, C. & Frangogiannis, N. G. The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 298–309 (2017).
pubmed: 27825850
doi: 10.1016/j.bbadis.2016.11.006
Trombetta-Esilva, J. & Bradshaw, A. D. The function of SPARC as a mediator of fibrosis. Open Rheumatol. J. 6, 146–155 (2012).
pubmed: 22802913
pmcid: 3395844
doi: 10.2174/1874312901206010146
Massagué, J. & Chen, Y. G. Controlling TGF-beta signaling. Genes Dev. 14, 627–644 (2000).
pubmed: 10733523
doi: 10.1101/gad.14.6.627
Varelas, X. et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat. Cell. Biol. 10, 837–848 (2008).
pubmed: 18568018
doi: 10.1038/ncb1748
Piersma, B., Bank, R. A. & Boersema, M. Signaling in fibrosis: TGF-β, WNT, and YAP/TAZ converge. Front. Med. (Lausanne) 2, 59 (2015).
pubmed: 26389119
Szeto, S. G. et al. YAP/TAZ are mechanoregulators of TGF-β-Smad signaling and renal fibrogenesis. J. Am. Soc. Nephrol. 27, 3117–3128 (2016).
pubmed: 26961347
pmcid: 5042658
doi: 10.1681/ASN.2015050499
Xiang, D. et al. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and YAP signaling. Phytomedicine 78, 153294 (2020).
pubmed: 32771890
doi: 10.1016/j.phymed.2020.153294
Zhao, B., Li, L., Tumaneng, K., Wang, C.-Y. & Guan, K.-L. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 24, 72–85 (2010).
pubmed: 20048001
pmcid: 2802193
doi: 10.1101/gad.1843810
Mannaerts, I. et al. The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J. Hepatol. 63, 679–688 (2015).
pubmed: 25908270
doi: 10.1016/j.jhep.2015.04.011
Zhang, J. et al. Secretory kinase Fam20C tunes endoplasmic reticulum redox state via phosphorylation of Ero1α. EMBO J. 37, e98699 (2018).
pubmed: 29858230
pmcid: 6043849
doi: 10.15252/embj.201798699
Pollak, A. J. et al. Phosphorylation of serine96 of histidine-rich calcium-binding protein by the Fam20C kinase functions to prevent cardiac arrhythmia. Proc.. Natl. Acad. Sci. U. S. A. 114, 9098–9103 (2017).
pubmed: 28784772
pmcid: 5576816
doi: 10.1073/pnas.1706441114
Chen, X. et al. Proteolytic processing of secretory pathway kinase Fam20C by site-1 protease promotes biomineralization. Proc. Natl. Acad. Sci. U. S. A. 118, e2100133118 (2021).
pubmed: 34349020
pmcid: 8364200
doi: 10.1073/pnas.2100133118
Sehgal, P. et al. Inhibition of the sarco/endoplasmic reticulum (ER) Ca2+-ATPase by thapsigargin analogs induces cell death via ER Ca2+ depletion and the unfolded protein response. J. Biol. Chem. 292, 19656–19673 (2017).
pubmed: 28972171
pmcid: 5712609
doi: 10.1074/jbc.M117.796920
Kinoshita, Y., Hori, M., Taguchi, M. & Fukumoto, S. Functional analysis of mutant FAM20C in Raine syndrome with FGF23-related hypophosphatemia. Bone 67, 145–151 (2014).
pubmed: 25026495
doi: 10.1016/j.bone.2014.07.009
Saigoh, K. et al. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat. Genet. 23, 47–51 (1999).
pubmed: 10471497
doi: 10.1038/12647
Mohanan, A., Washimkar, K. R. & Mugale, M. N. Unraveling the interplay between vital organelle stress and oxidative stress in idiopathic pulmonary fibrosis. Biochim. Biophys. Acta Mol. Cell Res. 1871, 119676 (2024).
pubmed: 38242330
doi: 10.1016/j.bbamcr.2024.119676
Yuan, Q. et al. MiR-185-5p ameliorates endoplasmic reticulum stress and renal fibrosis by downregulation of ATF6. Lab. Investig. 100, 1436–1446 (2020).
pubmed: 32514126
doi: 10.1038/s41374-020-0447-y
Wang, H. et al. Diosmetin-7-O-β-D-glucopyranoside suppresses endothelial-mesenchymal transformation through endoplasmic reticulum stress in cardiac fibrosis. Clin. Exp. Pharmacol. Physiol. 50, 789–805 (2023).
pubmed: 37430476
doi: 10.1111/1440-1681.13802
Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).
pubmed: 12471243
doi: 10.1126/science.1075762
Al-Mane, K., Al-Dayel, F. & McDonald, P. Intracranial calcification in Raine syndrome: Radiological pathological correlation. Pediatr. Radiol. 28, 820–823 (1998).
pubmed: 9799309
doi: 10.1007/s002470050473
Tarbit, E., Singh, I., Peart, J. N. & RoseMeyer, R. B. Biomarkers for the identification of cardiac fibroblast and myofibroblast cells. Heart Fail. Rev. 24, 1–15 (2019).
pubmed: 29987445
doi: 10.1007/s10741-018-9720-1
Venugopal, H., Hanna, A., Humeres, C. & Frangogiannis, N. G. Properties and functions of fibroblasts and myofibroblasts in myocardial infarction. Cells 11, 1386 (2022).
pubmed: 35563692
pmcid: 9102016
doi: 10.3390/cells11091386
Zhang, H., Zhou, Y., Wen, D. & Wang, J. Noncoding RNAs: Master regulator of fibroblast to myofibroblast transition in fibrosis. Int. J. Mol. Sci. 24, 1801 (2023).
pubmed: 36675315
pmcid: 9861037
doi: 10.3390/ijms24021801
Kong, P., Christia, P. & Frangogiannis, N. G. The pathogenesis of cardiac fibrosis. Cell. Mol. Life Sci. 71, 549–574 (2014).
pubmed: 23649149
doi: 10.1007/s00018-013-1349-6
Li, L., Fu, H. & Liu, Y. The fibrogenic niche in kidney fibrosis: Components and mechanisms. Nat. Rev. Nephrol. 18, 545–557 (2022).
pubmed: 35788561
doi: 10.1038/s41581-022-00590-z
Nikoloudaki, G., Snider, P., Simmons, O., Conway, S. J. & Hamilton, D. W. Periostin and matrix stiffness combine to regulate myofibroblast differentiation and fibronectin synthesis during palatal healing. Matrix Biol. 94, 31–56 (2020).
pubmed: 32777343
pmcid: 8922408
doi: 10.1016/j.matbio.2020.07.002
Farbehi, N. et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife 8, e43882 (2019).
pubmed: 30912746
pmcid: 6459677
doi: 10.7554/eLife.43882
Gallucci, R. M., Lee, E. G. & Tomasek, J. J. IL-6 modulates alpha-smooth muscle actin expression in dermal fibroblasts from IL-6-deficient mice. J Invest Dermatol 126, 561–568 (2006).
pubmed: 16397521
doi: 10.1038/sj.jid.5700109
Morton, R. S. & Dongari-Bagtzoglou, A. I. Regulation of gingival fibroblast interleukin-6 secretion by cyclosporine A. J. Periodontol. 70, 1464–1471 (1999).
pubmed: 10632522
doi: 10.1902/jop.1999.70.12.1464
Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).
pubmed: 27447449
pmcid: 5512625
doi: 10.1038/ncomms12260
Li, C. & Kuemmerle, J. F. The fate of myofibroblasts during the development of fibrosis in Crohn’s disease. J. Dig. Dis. 21, 326–331 (2020).
pubmed: 32092217
doi: 10.1111/1751-2980.12852
Gagliano, N. et al. Differential effect of cyclosporin A and FK506 on SPARC mRNA expression by human gingival fibroblasts. Biomed. Pharmacother. 59, 249–252 (2005).
pubmed: 15890490
doi: 10.1016/j.biopha.2004.06.005
Takeuchi, H. et al. Nicotine-induced CCN2: From smoking to periodontal fibrosis. J. Dent. Res. 89, 34–39 (2010).
pubmed: 19966042
doi: 10.1177/0022034509353403
Kiuchi, M. et al. An assessment of mast cells and myofibroblasts in denture-induced fibrous hyperplasia. J. Oral Pathol. Med. 43, 53–60 (2014).
pubmed: 23627608
doi: 10.1111/jop.12072
Riley, H. J. et al. SPARC production by bone marrow-derived cells contributes to myocardial fibrosis in pressure overload. Am. J. Physiol. Heart Circ. Physiol. 320, H604–H612 (2021).
pubmed: 33306449
doi: 10.1152/ajpheart.00552.2020
Kozumi, K. et al. Transcriptomics identify thrombospondin-2 as a biomarker for NASH and advanced liver fibrosis. Hepatology 74, 2452–2466 (2021).
pubmed: 34105780
doi: 10.1002/hep.31995
Li, F. J. et al. Citrullinated vimentin mediates development and progression of lung fibrosis. Sci. Transl. Med. 13, eaba2927 (2021).
pubmed: 33731433
pmcid: 8594069
doi: 10.1126/scitranslmed.aba2927
Ghosh, A. K. & Vaughan, D. E. PAI-1 in tissue fibrosis. J. Cell. Physiol. 227, 493–507 (2012).
pubmed: 21465481
pmcid: 3204398
doi: 10.1002/jcp.22783
Bauer, A. & Habior, A. Concentration of serum matrix metalloproteinase-3 in patients with primary biliary cholangitis. Front. Immunol. 13, 885229 (2022).
pubmed: 35529854
pmcid: 9072739
doi: 10.3389/fimmu.2022.885229
Gawron, K. et al. TIMP-1 association with collagen type I overproduction in hereditary gingival fibromatosis. Oral Dis. 24, 1581–1590 (2018).
pubmed: 29989318
doi: 10.1111/odi.12938
Strzelec, K. et al. Clinics and genetic background of hereditary gingival fibromatosis. Orphanet J. Rare Dis. 16, 492 (2021).
pubmed: 34819125
pmcid: 8611899
doi: 10.1186/s13023-021-02104-9
Zhang, X., Chen, C. T., Bhargava, M. & Torzilli, P. A. A comparative study of fibronectin cleavage by MMP-1, -3, -13, and -14. Cartilage 3, 267–277 (2012).
pubmed: 26069638
pmcid: 4297120
doi: 10.1177/1947603511435273
Das, D. K. et al. miR-1207-3p regulates the androgen receptor in prostate cancer via FNDC1/fibronectin. Exp. Cell Res. 348, 190–200 (2016).
pubmed: 27693493
pmcid: 5077722
doi: 10.1016/j.yexcr.2016.09.021
Das, D. K. & Ogunwobi, O. O. A novel microRNA-1207-3p/FNDC1/FN1/AR regulatory pathway in prostate cancer. RNA Dis. 4, e1503 (2017).
pubmed: 28251177
pmcid: 5328418
Ibelli, A. M. G. et al. Downregulation of growth plate genes involved with the onset of femoral head separation in young broilers. Front. Physiol. 13, 941134 (2022).
pubmed: 36003650
pmcid: 9393217
doi: 10.3389/fphys.2022.941134
Chin, Y.-T. et al. Antioxidants protect against gingival overgrowth induced by cyclosporine A. J Periodontal. Res. 56, 397–407 (2021).
pubmed: 33448057
doi: 10.1111/jre.12832
Meng, X.-M., Nikolic-Paterson, D. J. & Lan, H. Y. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325–338 (2016).
pubmed: 27108839
doi: 10.1038/nrneph.2016.48
Lee, M.-J., Byun, M. R., Furutani-Seiki, M., Hong, J.-H. & Jung, H.-S. YAP and TAZ regulate skin wound healing. J. Investig. Dermatol. 134, 518–525 (2014).
pubmed: 24108406
doi: 10.1038/jid.2013.339
Beyer, T. A. et al. Switch enhancers interpret TGF-β and Hippo signaling to control cell fate in human embryonic stem cells. Cell Rep. 5, 1611–1624 (2013).
pubmed: 24332857
doi: 10.1016/j.celrep.2013.11.021
Aragona, M. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047–1059 (2013).
pubmed: 23954413
doi: 10.1016/j.cell.2013.07.042
Wang, S.-K. et al. FAM20A mutations and transcriptome analyses of dental pulp tissues of enamel renal syndrome. Int. Endod. J. 56, 943–954 (2023).
pubmed: 37159186
doi: 10.1111/iej.13928
Yin, M. et al. The effect and mechanism of gene Fam20a on the development and function of salivary glands in mice. Arch. Oral Biol. 137, 105367 (2022).
pubmed: 35278791
doi: 10.1016/j.archoralbio.2022.105367
Li, L. et al. Ablation of FAM20C caused short root defects via suppressing the BMP signaling pathway in mice. J. Orofac. Orthop. https://doi.org/10.1007/s00056-022-00386-7 (2022).
doi: 10.1007/s00056-022-00386-7
pubmed: 36102945
Szklarczyk, D. et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).
pubmed: 30476243
doi: 10.1093/nar/gky1131