ISWI catalyzes nucleosome sliding in condensed nucleosome arrays.
Journal
Nature structural & molecular biology
ISSN: 1545-9985
Titre abrégé: Nat Struct Mol Biol
Pays: United States
ID NLM: 101186374
Informations de publication
Date de publication:
25 Apr 2024
25 Apr 2024
Historique:
received:
03
11
2022
accepted:
25
03
2024
medline:
26
4
2024
pubmed:
26
4
2024
entrez:
25
4
2024
Statut:
aheadofprint
Résumé
How chromatin enzymes work in condensed chromatin and how they maintain diffusional mobility inside remains unexplored. Here we investigated these challenges using the Drosophila ISWI remodeling ATPase, which slides nucleosomes along DNA. Folding of chromatin fibers did not affect sliding in vitro. Catalytic rates were also comparable in- and outside of chromatin condensates. ISWI cross-links and thereby stiffens condensates, except when ATP hydrolysis is possible. Active hydrolysis is also required for ISWI's mobility in condensates. Energy from ATP hydrolysis therefore fuels ISWI's diffusion through chromatin and prevents ISWI from cross-linking chromatin. Molecular dynamics simulations of a 'monkey-bar' model in which ISWI grabs onto neighboring nucleosomes, then withdraws from one before rebinding another in an ATP hydrolysis-dependent manner, qualitatively agree with our data. We speculate that monkey-bar mechanisms could be shared with other chromatin factors and that changes in chromatin dynamics caused by mutations in remodelers could contribute to pathologies.
Identifiants
pubmed: 38664566
doi: 10.1038/s41594-024-01290-x
pii: 10.1038/s41594-024-01290-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Burak, Y., Ariel, G. & Andelman, D. Onset of DNA aggregation in presence of monovalent and multivalent counterions. Biophys. J. 85, 2100–2110 (2003).
doi: 10.1016/S0006-3495(03)74638-4
pubmed: 14507678
pmcid: 1303439
Post, C. B. & Zimm, B. H. Theory of DNA condensation: collapse versus aggregation. Biopolymers 21, 2123–2137 (1982).
doi: 10.1002/bip.360211104
pubmed: 7171729
Woodcock, C. L. F. Ultrastructure of inactive chromatin. J. Cell Biol. 59, A368 (1973).
Olins, A. L. & Olins, D. E. Spheroid chromatin units (v bodies). Science 183, 330–332 (1974).
doi: 10.1126/science.183.4122.330
pubmed: 4128918
Finch, J. T. & Klug, A. Solenoidal model for superstructure in chromatin. Proc. Natl Acad. Sci. USA 73, 1897 (1976).
doi: 10.1073/pnas.73.6.1897
pubmed: 1064861
pmcid: 430414
Ou, H. D. et al. ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357, eaag0025 (2017).
doi: 10.1126/science.aag0025
pubmed: 28751582
pmcid: 5646685
Maeshima, K. et al. Nucleosomal arrays self-assemble into supramolecular globular structures lacking 30-nm fibers. EMBO J. 35, 1115–1132 (2016).
doi: 10.15252/embj.201592660
pubmed: 27072995
pmcid: 4868957
Adhireksan, Z., Sharma, D., Lee, P. L. & Davey, C. A. Near-atomic resolution structures of interdigitated nucleosome fibres. Nat. Commun. 11, 4747 (2020).
doi: 10.1038/s41467-020-18533-2
pubmed: 32958761
pmcid: 7505979
Hsieh, T. H. S. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108 (2015).
doi: 10.1016/j.cell.2015.05.048
pubmed: 26119342
pmcid: 4509605
Ricci, M. A., Manzo, C., García-Parajo, M. F., Lakadamyali, M. & Cosma, M. P. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160, 1145–1158 (2015).
doi: 10.1016/j.cell.2015.01.054
pubmed: 25768910
Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e21 (2019).
doi: 10.1016/j.cell.2019.08.037
pubmed: 31543265
pmcid: 6778041
Strickfaden, H. et al. Condensed chromatin behaves like a solid on the mesoscale in vitro and in living cells. Cell 183, 1772–1784.e13 (2020).
doi: 10.1016/j.cell.2020.11.027
pubmed: 33326747
Zhang, Y., Narlikar, G. J. & Kutateladze, T. G. Enzymatic reactions inside biological condensates. J. Mol. Biol. 433, 166624 (2021).
doi: 10.1016/j.jmb.2020.08.009
pubmed: 32805219
Hihara, S. et al. Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells. Cell Rep. 2, 1645–1656 (2012).
doi: 10.1016/j.celrep.2012.11.008
pubmed: 23246002
Kornberg, R. D. & Lorch, Y. Primary role of the nucleosome. Mol. Cell 79, 371–375 (2020).
doi: 10.1016/j.molcel.2020.07.020
pubmed: 32763226
Kim, J. M. et al. Single-molecule imaging of chromatin remodelers reveals role of ATPase in promoting fast kinetics of target search and dissociation from chromatin. eLife 10, e69387 (2021).
doi: 10.7554/eLife.69387
pubmed: 34313223
pmcid: 8352589
Corona, D. F. V. et al. ISWI is an ATP-dependent nucleosome remodeling factor. Mol. Cell 3, 239–245 (1999).
doi: 10.1016/S1097-2765(00)80314-7
pubmed: 10078206
Hamiche, A., Sandaltzopoulos, R., Gdula, D. A. & Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97, 833–842 (1999).
doi: 10.1016/S0092-8674(00)80796-5
pubmed: 10399912
Ludwigsen, J., Hepp, N., Klinker, H., Pfennig, S. & Mueller-Planitz, F. Remodeling and repositioning of nucleosomes in nucleosomal arrays. Methods Mol. Biol. 1805, 349–370 (2018).
doi: 10.1007/978-1-4939-8556-2_18
pubmed: 29971727
Mueller-Planitz, F., Klinker, H., Ludwigsen, J. & Becker, P. B. The ATPase domain of ISWI is an autonomous nucleosome remodeling machine. Nat. Struct. Mol. Biol. 20, 82–89 (2013).
doi: 10.1038/nsmb.2457
pubmed: 23202585
Schram, R. D., Klinker, H., Becker, P. B. & Schiessel, H. Computational study of remodeling in a nucleosomal array. Eur. Phys. J. E 38, 85 (2015).
doi: 10.1140/epje/i2015-15085-4
pubmed: 26248702
Klinker, H. et al. ISWI remodelling of physiological chromatin fibres acetylated at lysine 16 of histone H4. PLoS ONE 9, e88411 (2014).
doi: 10.1371/journal.pone.0088411
pubmed: 24516652
pmcid: 3916430
Boyer, L. A. et al. Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes. J. Biol. Chem. 275, 18864–18870 (2000).
doi: 10.1074/jbc.M002810200
pubmed: 10779516
Logie, C., Tse, C., Hansen, J. C. & Peterson, C. L. The core histone N-terminal domains are required for multiple rounds of catalytic chromatin remodeling by the SWI/SNF and RSC complexes. Biochemistry 38, 2514–2522 (1999).
doi: 10.1021/bi982109d
pubmed: 10029546
Peeples, W. & Rosen, M. K. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Nat. Chem. Biol. 17, 693–702 (2021).
doi: 10.1038/s41589-021-00801-x
pubmed: 34035521
pmcid: 8635274
Poirier, M. G., Bussiek, M., Langowski, J. & Widom, J. Spontaneous access to DNA target sites in folded chromatin fibers. J. Mol. Biol. 379, 772–786 (2008).
doi: 10.1016/j.jmb.2008.04.025
pubmed: 18485363
pmcid: 2481406
Poirier, M. G., Oh, E., Tims, H. S. & Widom, J. Dynamics and function of compact nucleosome arrays. Nat. Struct. Mol. Biol. 16, 938–944 (2009).
doi: 10.1038/nsmb.1650
pubmed: 19701201
pmcid: 2748796
Hagerman, T. A. et al. Chromatin stability at low concentration depends on histone octamer saturation levels. Biophys. J. 96, 1944–1951 (2009).
doi: 10.1016/j.bpj.2008.10.070
pubmed: 19254554
pmcid: 2717262
Gibson, B. A. et al. In diverse conditions, intrinsic chromatin condensates have liquid-like material properties. Proc. Natl Acad. Sci. USA 120, e2218085120 (2023).
doi: 10.1073/pnas.2218085120
pubmed: 37094140
pmcid: 10161002
Goins, A. B., Sanabria, H. & Waxham, M. N. Macromolecular crowding and size effects on probe microviscosity. Biophys. J. 95, 5362–5373 (2008).
doi: 10.1529/biophysj.108.131250
pubmed: 18790853
pmcid: 2586553
Yang, J. G. & Narlikar, G. J. FRET-based methods to study ATP-dependent changes in chromatin structure. Methods 41, 291–295 (2007).
doi: 10.1016/j.ymeth.2006.08.015
pubmed: 17309839
pmcid: 1941662
Zhang, M. et al. Molecular organization of the early stages of nucleosome phase separation visualized by cryo-electron tomography. Mol. Cell 82, 3000 (2022).
doi: 10.1016/j.molcel.2022.06.032
pubmed: 35907400
pmcid: 9493104
Weidemann, T. et al. Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy and confocal imaging. J. Mol. Biol. 334, 229–240 (2003).
doi: 10.1016/j.jmb.2003.08.063
pubmed: 14607115
Leonard, J. D. & Narlikar, G. J. A nucleotide-driven switch regulates flanking DNA length sensing by a dimeric chromatin remodeler. Mol. Cell 57, 850–859 (2015).
doi: 10.1016/j.molcel.2015.01.008
pubmed: 25684208
pmcid: 4355161
Larson, A. G. & Narlikar, G. J. The role of phase separation in heterochromatin formation, function, and regulation. Biochemistry 57, 2540–2548 (2018).
doi: 10.1021/acs.biochem.8b00401
pubmed: 29644850
Grüne, T. et al. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol. Cell 12, 449–460 (2003).
doi: 10.1016/S1097-2765(03)00273-9
pubmed: 14536084
Bhardwaj, S. K. et al. Dinucleosome specificity and allosteric switch of the ISW1a ATP-dependent chromatin remodeler in transcription regulation. Nat. Commun. 11, 5913 (2020).
doi: 10.1038/s41467-020-19700-1
pubmed: 33219211
pmcid: 7680125
Yamada, K. et al. Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472, 448–453 (2011).
doi: 10.1038/nature09947
pubmed: 21525927
Li, L. et al. Structure of the ISW1a complex bound to the dinucleosome. Nat. Struct. Mol. Biol. 31, 266–274 (2024). https://doi.org/10.1038/s41594-023-01174-6
Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).
doi: 10.1016/j.cell.2018.06.006
pubmed: 29961577
pmcid: 6063760
Muzzopappa, F., Hertzog, M. & Erdel, F. DNA length tunes the fluidity of DNA-based condensates. Biophys. J. 120, 1288–1300 (2021).
doi: 10.1016/j.bpj.2021.02.027
pubmed: 33640380
pmcid: 8059207
Ludwigsen, J., Klinker, H. & Mueller-Planitz, F. No need for a power stroke in ISWI-mediated nucleosome sliding. EMBO Rep. 14, 1092–1097 (2013).
doi: 10.1038/embor.2013.160
pubmed: 24113208
pmcid: 3981079
Harrer, N. et al. Structural architecture of the nucleosome remodeler ISWI determined from cross-linking, mass spectrometry, SAXS, and modeling. Structure 26, 282–294.e6 (2018).
doi: 10.1016/j.str.2017.12.015
pubmed: 29395785
Rudolph, J., Mahadevan, J., Dyer, P. & Luger, K. Poly(ADP-ribose) polymerase 1 searches DNA via a ‘monkey bar’ mechanism. Elife 7, e37818 (2018).
doi: 10.7554/eLife.37818
pubmed: 30088474
pmcid: 6135609
Deindl, S. et al. ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps. Cell 152, 442–452 (2013).
doi: 10.1016/j.cell.2012.12.040
pubmed: 23374341
pmcid: 3647478
Gamarra, N., Johnson, S. L., Trnka, M. J., Burlingame, A. L. & Narlikar, G. J. The nucleosomal acidic patch relieves auto-inhibition by the ISWI remodeler SNF2h. eLife 7, e35322 (2018).
doi: 10.7554/eLife.35322
pubmed: 29664398
pmcid: 5976439
Dann, G. P. et al. ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference. Nature 548, 607–611 (2017).
doi: 10.1038/nature23671
pubmed: 28767641
pmcid: 5777669
Clapier, C. R., Längst, G., Corona, D. F., Becker, P. B. & Nightingale, K. P. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol. Cell. Biol. 21, 875–883 (2001).
doi: 10.1128/MCB.21.3.875-883.2001
pubmed: 11154274
pmcid: 86678
Schalch, T., Duda, S., Sargent, D. F. & Richmond, T. J. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436, 138–141 (2005).
doi: 10.1038/nature03686
pubmed: 16001076
Verschure, P. J. et al. Condensed chromatin domains in the mammalian nucleus are accessible to large macromolecules. EMBO Rep. 4, 861–866 (2003).
doi: 10.1038/sj.embor.embor922
pubmed: 12947417
pmcid: 1326359
Beaudouin, J., Mora-Bermúdez, F., Klee, T., Daigle, N. & Ellenberg, J. Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins. Biophys. J. 90, 1878–1894 (2006).
doi: 10.1529/biophysj.105.071241
pubmed: 16387760
Erdel, F., Baum, M. & Rippe, K. The viscoelastic properties of chromatin and the nucleoplasm revealed by scale-dependent protein mobility. J. Phys. Condens. Matter 27, 064115 (2015).
doi: 10.1088/0953-8984/27/6/064115
pubmed: 25563347
Maeshima, K. et al. A transient rise in free Mg
doi: 10.1016/j.cub.2017.12.035
pubmed: 29358072
Shimamoto, Y., Tamura, S., Masumoto, H. & Maeshima, K. Nucleosome–nucleosome interactions via histone tails and linker DNA regulate nuclear rigidity. Mol. Biol. Cell 28, 1580–1589 (2017).
doi: 10.1091/mbc.e16-11-0783
pubmed: 28428255
pmcid: 5449155
Kroschwald, S. et al. Different material states of Pub1 condensates define distinct modes of stress adaptation and recovery. Cell Rep. 23, 3327–3339 (2018).
doi: 10.1016/j.celrep.2018.05.041
pubmed: 29898402
Munder, M. C. et al. A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy. eLife 5, e09347 (2016).
doi: 10.7554/eLife.09347
pubmed: 27003292
pmcid: 4850707
Erdel, F. & Rippe, K. Formation of chromatin subcompartments by phase separation. Biophys. J. 114, 2262–2270 (2018).
doi: 10.1016/j.bpj.2018.03.011
pubmed: 29628210
pmcid: 6129460
Schneider, M. W. G. et al. A mitotic chromatin phase transition prevents perforation by microtubules. Nature 609, 183 (2022).
doi: 10.1038/s41586-022-05027-y
pubmed: 35922507
pmcid: 9433320
Keizer, V. I. P. et al. Live-cell micromanipulation of a genomic locus reveals interphase chromatin mechanics. Science 377, 489–495 (2022).
doi: 10.1126/science.abi9810
pubmed: 35901134
Erdel, F. et al. Mouse heterochromatin adopts digital compaction states without showing hallmarks of HP1-driven liquid–liquid phase separation. Mol. Cell 78, 236–249.e7 (2020).
doi: 10.1016/j.molcel.2020.02.005
pubmed: 32101700
pmcid: 7163299
Irgen-Gioro, S., Yoshida, S., Walling, V. & Chong, S. Fixation can change the appearance of phase separation in living cells. Elife 11, e79903 (2022).
doi: 10.7554/eLife.79903
pubmed: 36444977
pmcid: 9817179
Hansen, J. C., Maeshima, K. & Hendzel, M. J. The solid and liquid states of chromatin. Epigenetics Chromatin 14, 50 (2021).
doi: 10.1186/s13072-021-00424-5
pubmed: 34717733
pmcid: 8557566
Korber, P. & Becker, P. B. Nucleosome dynamics and epigenetic stability. Essays Biochem 48, 63–74 (2010).
doi: 10.1042/bse0480063
pubmed: 20822486
Muzzopappa, F. et al. Detecting and quantifying liquid–liquid phase separation in living cells by model-free calibrated half-bleaching. Nat. Commun. 13, 1–15 (2022).
doi: 10.1038/s41467-022-35430-y
Whitehouse, I., Rando, O. J., Delrow, J. & Tsukiyama, T. Chromatin remodelling at promoters suppresses antisense transcription. Nature 450, 1031–1035 (2007).
doi: 10.1038/nature06391
pubmed: 18075583
Gelbart, M. E., Bachman, N., Delrow, J., Boeke, J. D. & Tsukiyama, T. Genome-wide identification of Isw2 chromatin-remodeling targets by localization of a catalytically inactive mutant. Genes Dev. 19, 942 (2005).
doi: 10.1101/gad.1298905
pubmed: 15833917
pmcid: 1080133
Blosser, T. R., Yang, J. G., Stone, M. D., Narlikar, G. J. & Zhuang, X. Dynamics of nucleosome remodelling by individual ACF complexes. Nature 462, 1022–1027 (2009).
doi: 10.1038/nature08627
pubmed: 20033040
pmcid: 2835771
Tilly, B. C. et al. In vivo analysis reveals that ATP-hydrolysis couples remodeling to SWI/SNF release from chromatin. eLife 10, e69424 (2021).
doi: 10.7554/eLife.69424
pubmed: 34313222
pmcid: 8352592
Erdel, F., Schubert, T., Marth, C., Längst, G. & Rippe, K. Human ISWI chromatin-remodeling complexes sample nucleosomes via transient binding reactions and become immobilized at active sites. Proc. Natl Acad. Sci. USA 107, 19873–19878 (2010).
doi: 10.1073/pnas.1003438107
pubmed: 20974961
pmcid: 2993390
Oppikofer, M. et al. Expansion of the ISWI chromatin remodeler family with new active complexes. EMBO Rep. 18, 1697–1706 (2017).
doi: 10.15252/embr.201744011
pubmed: 28801535
pmcid: 5623870
Clapier, C. R., Verma, N., Parnell, T. J. & Cairns, B. R. Cancer-associated gain-of-function mutations activate a SWI/SNF-family regulatory hub. Mol. Cell 80, 712–725.e5 (2020).
doi: 10.1016/j.molcel.2020.09.024
pubmed: 33058778
pmcid: 7853424
Hodges, H. C. et al. Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nat. Struct. Mol. Biol. 25, 61–72 (2018).
doi: 10.1038/s41594-017-0007-3
pubmed: 29323272
Elfring, L. K. et al. Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Genetics 148, 251–265 (1998).
doi: 10.1093/genetics/148.1.251
pubmed: 9475737
pmcid: 1459776
Li, W. et al. Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis. Nat. Cell Biol. 22, 960–972 (2020).
doi: 10.1038/s41556-020-0550-8
pubmed: 32719551
pmcid: 7425812
Shi, B. et al. UTX condensation underlies its tumour-suppressive activity. Nature 597, 726–731 (2021).
doi: 10.1038/s41586-021-03903-7
pubmed: 34526716
pmcid: 9008583
Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).
doi: 10.1038/nbt1172
pubmed: 16369541
Klinker, H., Haas, C., Harrer, N., Becker, P. B. & Mueller-Planitz, F. Rapid purification of recombinant histones. PLoS ONE 9, e104029 (2014).
doi: 10.1371/journal.pone.0104029
pubmed: 25090252
pmcid: 4121265
Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).
doi: 10.1016/S0006-3495(00)76713-0
pubmed: 10692345
pmcid: 1300758
Demeler, B. & Gorbet, G. E. in Analytical Ultracentrifugation (eds Uchiyama, S. et al.) 119–143 (Springer, 2016).
Goins, A. B., Sanabria, H. & Waxham, M. N. Macromolecular crowding and size effects on probe microviscosity. Biophys J. 95, 5362–5373 (2008).
doi: 10.1529/biophysj.108.131250
pubmed: 18790853
pmcid: 2586553
Digman, M. A., Caiolfa, V. R., Zamai, M. & Gratton, E. The phasor approach to fluorescence lifetime imaging analysis. Biophys. J. 94, 14–16 (2008).
doi: 10.1529/biophysj.107.120154
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
doi: 10.1038/nmeth.2019
pubmed: 22743772
MultiStackReg (BioImage Informatics Index, 2022); https://biii.eu/multistackreg
Koulouras, G. et al. EasyFRAP-web: a web-based tool for the analysis of fluorescence recovery after photobleaching data. Nucleic Acids Res. 46, 467–472 (2018).
doi: 10.1093/nar/gky508
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2022).
Vizjak_2023 (GitHub, 2023); https://github.com/StiglerLab/Vizjak_2023