Fasting hyperglycaemia and fatty liver drive colorectal cancer: a retrospective analysis in 1145 patients.
Colorectal cancer
Liver fibrosis
Liver steatosis
MASLD
Metabolic syndrome
Journal
Internal and emergency medicine
ISSN: 1970-9366
Titre abrégé: Intern Emerg Med
Pays: Italy
ID NLM: 101263418
Informations de publication
Date de publication:
26 Apr 2024
26 Apr 2024
Historique:
received:
29
12
2023
accepted:
23
03
2024
medline:
26
4
2024
pubmed:
26
4
2024
entrez:
26
4
2024
Statut:
aheadofprint
Résumé
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents the hepatic manifestation of increased adiposopathy, whose pathogenetic features have been proposed as tumourigenic triggers for colorectal cancer (CRC). We aim to identify specific metabolic signatures involved in CRC development that may be used as non-invasive biomarkers, paving the way for specific and personalized strategies of CRC prevention and early detection. We retrospectively assessed CRC onset during a time frame of 8 years in a cohort of 1145 out-patients individuals who had previously been evaluated for Metabolic Syndrome. 28 patients developed CRC. No association between CRC development and visceral and general obesity was detected, while baseline fasting plasma glucose (FPG) and non-invasive liver fibrosis scores were significantly higher in patients with CRC, compared to those who did not develop cancer. Liver steatosis and MASLD were more frequently diagnosed in patients who developed CRC compared to no cancer developers. Canonical correlations among metabolic biomarkers were not present in CRC developers, differently from no cancer group. In ROC analysis, FPG and non-invasive scores also showed good sensitivity and specificity in predicting colon cancer. We then calculated ORs for metabolic biomarkers, finding that higher FPG and non-invasive scores were associated with an increased risk of developing CRC. MASLD and increased FPG may play a role in the clinical background of CRC, bringing to light the fascinating possibility of a reversed gut-liver axis communication in the pathogenesis of CRC. Thus, the use of non-invasive scores of fatty liver may be helpful to predict the risk of CRC and serve as novel prognostic factors for prevention and therapeutic strategies.
Sections du résumé
BACKGROUND
BACKGROUND
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents the hepatic manifestation of increased adiposopathy, whose pathogenetic features have been proposed as tumourigenic triggers for colorectal cancer (CRC). We aim to identify specific metabolic signatures involved in CRC development that may be used as non-invasive biomarkers, paving the way for specific and personalized strategies of CRC prevention and early detection.
METHODS
METHODS
We retrospectively assessed CRC onset during a time frame of 8 years in a cohort of 1145 out-patients individuals who had previously been evaluated for Metabolic Syndrome.
RESULTS
RESULTS
28 patients developed CRC. No association between CRC development and visceral and general obesity was detected, while baseline fasting plasma glucose (FPG) and non-invasive liver fibrosis scores were significantly higher in patients with CRC, compared to those who did not develop cancer. Liver steatosis and MASLD were more frequently diagnosed in patients who developed CRC compared to no cancer developers. Canonical correlations among metabolic biomarkers were not present in CRC developers, differently from no cancer group. In ROC analysis, FPG and non-invasive scores also showed good sensitivity and specificity in predicting colon cancer. We then calculated ORs for metabolic biomarkers, finding that higher FPG and non-invasive scores were associated with an increased risk of developing CRC.
CONCLUSION
CONCLUSIONS
MASLD and increased FPG may play a role in the clinical background of CRC, bringing to light the fascinating possibility of a reversed gut-liver axis communication in the pathogenesis of CRC. Thus, the use of non-invasive scores of fatty liver may be helpful to predict the risk of CRC and serve as novel prognostic factors for prevention and therapeutic strategies.
Identifiants
pubmed: 38668822
doi: 10.1007/s11739-024-03596-6
pii: 10.1007/s11739-024-03596-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Fondazione AIRC per la ricerca sul cancro ETS
ID : AIRC IG 2019 "Regulation of lipid metabolic pathways in the gut liver axis: relevance in hepatocarcinoma". Id. 23239
Organisme : Ministero dell'Istruzione, dell'Università e della Ricerca
ID : "Metabolic hits in the road to colon cancer". Codice progetto n. 2022H9MPZ5
Organisme : Ministero dell'Università e della Ricerca
ID : Project code: CN00000041, CUP H93C22000430007
Organisme : Ministero dell'Università e della Ricerca
ID : Project code PE00000003, Concession Decree No. 1550 of 11 October 2022 adopted by the Italian Ministry of University and Research, CUP D93C22000890001
Organisme : Ministero dell'Università e della Ricerca
ID : Project code PNRR-MR1-2022-12376395. CUP H93C22000780006
Organisme : Ministero dell'Università e della Ricerca
ID : Project code PE0000015, Concession Decree No. 1243 of 2 August 2022 adopted by the Italian Ministry of University and Research, CUP H33C22000680006
Organisme : Regione Puglia
ID : PON "RICERCA E INNOVAZIONE" 2014-2020 - Innovazione (D.M. 10 AGOSTO 2021, N. 1062)
Organisme : Regione Puglia
ID : PON-AIM1853334, Attività 2- Linea 1
Informations de copyright
© 2024. The Author(s).
Références
Siegel RL, Fedewa SA, Anderson WF, Miller KD, Ma J, Rosenberg PS, Jemal A (2017) Colorectal cancer incidence patterns in the United States, 1974–2013. JNCI J Natl Cancer Inst. https://doi.org/10.1093/jnci/djw322
doi: 10.1093/jnci/djw322
pubmed: 29117389
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660
doi: 10.3322/caac.21660
pubmed: 33538338
Mózes FE, Lee JA, Selvaraj EA, Jayaswal ANA, Trauner M, Boursier J, Fournier C, Staufer K, Stauber RE, Bugianesi E et al (2022) Diagnostic accuracy of non-invasive tests for advanced fibrosis in patients with NAFLD: an individual patient data meta-analysis. Gut 71:1006–1019. https://doi.org/10.1136/gutjnl-2021-324243
doi: 10.1136/gutjnl-2021-324243
pubmed: 34001645
GBD (2019) Cancer risk factors collaborators the global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the global burden of disease study 2019. Lancet Lond Engl 2022(400):563–591. https://doi.org/10.1016/S0140-6736(22)01438-6
doi: 10.1016/S0140-6736(22)01438-6
Abar L, Vieira AR, Aune D, Sobiecki JG, Vingeliene S, Polemiti E, Stevens C, Greenwood DC, Chan DSM, Schlesinger S et al (2018) Height and body fatness and colorectal cancer risk: an update of the WCRF-AICR systematic review of published prospective studies. Eur J Nutr 57:1701–1720. https://doi.org/10.1007/s00394-017-1557-1
doi: 10.1007/s00394-017-1557-1
pubmed: 29080978
Crudele L, Piccinin E, Moschetta A (2021) Visceral adiposity and cancer: role in pathogenesis and prognosis. Nutrients 13:2101. https://doi.org/10.3390/nu13062101
doi: 10.3390/nu13062101
pubmed: 34205356
pmcid: 8234141
Liu JJ, Druta M, Shibata D, Coppola D, Boler I, Elahi A, Reich RR, Siegel E, Extermann M (2014) Metabolic syndrome and colorectal cancer: is hyperinsulinemia/insulin receptor-mediated angiogenesis a critical process? J Geriatr Oncol 5:40–48. https://doi.org/10.1016/j.jgo.2013.11.004
doi: 10.1016/j.jgo.2013.11.004
pubmed: 24484717
Kay J, Thadhani E, Samson L, Engelward B (2019) Inflammation-induced DNA damage. Mutations Cancer DNA Repair 83:102673. https://doi.org/10.1016/j.dnarep.2019.102673
doi: 10.1016/j.dnarep.2019.102673
pubmed: 31387777
Cariello M, Piccinin E, Zerlotin R, Piglionica M, Peres C, Divella C, Signorile A, Villani G, Ingravallo G, Sabbà C et al (2021) Adhesion of platelets to colon cancer cells is necessary to promote tumor development in xenograft. Genet Inflamm Models Cancers 13:4243. https://doi.org/10.3390/cancers13164243
doi: 10.3390/cancers13164243
Lee H, Lee HW, Kim SU, Chang Kim H (2022) Metabolic dysfunction-associated fatty liver disease increases colon cancer risk: a nationwide cohort study. Clin Transl Gastroenterol 13:e00435. https://doi.org/10.14309/ctg.0000000000000435
doi: 10.14309/ctg.0000000000000435
pubmed: 35080508
pmcid: 8806363
Mantovani A, Dauriz M, Byrne CD, Lonardo A, Zoppini G, Bonora E, Targher G (2018) Association between nonalcoholic fatty liver disease and colorectal tumours in asymptomatic adults undergoing screening colonoscopy: a systematic review and meta-analysis. Metabolism 87:1–12. https://doi.org/10.1016/j.metabol.2018.06.004
doi: 10.1016/j.metabol.2018.06.004
pubmed: 29935236
Chen J, Bian D, Zang S, Yang Z, Tian G, Luo Y, Yang J, Xu B, Shi J (2019) The association between nonalcoholic fatty liver disease and risk of colorectal adenoma and cancer incident and recurrence: a meta-analysis of observational studies. Expert Rev Gastroenterol Hepatol 13:385–395. https://doi.org/10.1080/17474124.2019.1580143
doi: 10.1080/17474124.2019.1580143
pubmed: 30791768
Tsilidis KK, Kasimis JC, Lopez DS, Ntzani EE, Ioannidis JPA (2015) Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ 350:g7607. https://doi.org/10.1136/bmj.g7607
doi: 10.1136/bmj.g7607
pubmed: 25555821
Allen AM, Hicks SB, Mara KC, Larson JJ, Therneau TM (2019) The risk of incident extrahepatic cancers is higher in non-alcoholic fatty liver disease than obesity—a longitudinal cohort study. J Hepatol 71:1229–1236. https://doi.org/10.1016/j.jhep.2019.08.018
doi: 10.1016/j.jhep.2019.08.018
pubmed: 31470068
pmcid: 6921701
George ES, Sood S, Kiss N, Daly RM, Nicoll AJ, Roberts SK, Baguley BJ (2022) The evidence surrounding non-alcoholic fatty liver disease in individuals with cancer: a systematic literature review. Curr Oncol 30:48–74. https://doi.org/10.3390/curroncol30010005
doi: 10.3390/curroncol30010005
pubmed: 36661654
pmcid: 9857873
Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, Zelber-Sagi S, Wai-Sun Wong V, Dufour J-F, Schattenberg JM et al (2020) A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol 73:202–209. https://doi.org/10.1016/j.jhep.2020.03.039
doi: 10.1016/j.jhep.2020.03.039
pubmed: 32278004
Kim MC, Park JG, Jang BI, Lee HJ, Lee WK (2019) Liver fibrosis is associated with risk for colorectal adenoma in patients with nonalcoholic fatty liver disease. Medicine (Baltimore) 98:e14139. https://doi.org/10.1097/MD.0000000000014139
doi: 10.1097/MD.0000000000014139
pubmed: 30732129
Lazarus JV, Castera L, Mark HE, Allen AM, Adams LA, Anstee QM, Arrese M, Alqahtani SA, Bugianesi E, Colombo M et al (2023) Real-world evidence on non-invasive tests and associated cut-offs used to assess fibrosis in routine clinical practice. JHEP Rep Innov Hepatol 5:100596. https://doi.org/10.1016/j.jhepr.2022.100596
doi: 10.1016/j.jhepr.2022.100596
Kim G-A, Lee HC, Choe J, Kim M-J, Lee MJ, Chang H-S, Bae IY, Kim H-K, An J, Shim JH et al (2018) Association between non-alcoholic fatty liver disease and cancer incidence rate. J Hepatol 68:140–146. https://doi.org/10.1016/j.jhep.2017.09.012
doi: 10.1016/j.jhep.2017.09.012
Mottin CC, Moretto M, Padoin AV, Swarowsky AM, Toneto MG, Glock L, Repetto G (2004) The role of ultrasound in the diagnosis of hepatic steatosis in morbidly obese patients. Obes Surg 14:635–637. https://doi.org/10.1381/096089204323093408
doi: 10.1381/096089204323093408
pubmed: 15186630
Alberti KGMM, Zimmet P, Shaw J (2006) Metabolic syndrome—a new world-wide definition. A consensus statement from the international diabetes federation. Diabet Med J Br Diabet Assoc 23:469–480. https://doi.org/10.1111/j.1464-5491.2006.01858.x
doi: 10.1111/j.1464-5491.2006.01858.x
Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, Romero D, Abdelmalek MF, Anstee QM, Arab JP et al (2023) A multi-society delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. https://doi.org/10.1016/j.jhep.2023.06.003
doi: 10.1016/j.jhep.2023.06.003
pubmed: 37984709
Bays HE, González-Campoy JM, Henry RR, Bergman DA, Kitabchi AE, Schorr AB, Rodbard HW (2008) Adiposopathy working group is adiposopathy (sick fat) an endocrine disease? Int J Clin Pract 62:1474–1483. https://doi.org/10.1111/j.1742-1241.2008.01848.x
doi: 10.1111/j.1742-1241.2008.01848.x
pubmed: 18681905
Phan AT, Goldrath AW, Glass CK (2017) Metabolic and epigenetic coordination of T cell and macrophage immunity. Immunity 46:714–729. https://doi.org/10.1016/j.immuni.2017.04.016
doi: 10.1016/j.immuni.2017.04.016
pubmed: 28514673
pmcid: 5505665
Bovenga F, Sabbà C, Moschetta A (2015) Uncoupling nuclear receptor LXR and cholesterol metabolism in cancer. Cell Metab 21:517–526. https://doi.org/10.1016/j.cmet.2015.03.002
doi: 10.1016/j.cmet.2015.03.002
pubmed: 25863245
Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777. https://doi.org/10.1038/nrc2222
doi: 10.1038/nrc2222
pubmed: 17882277
Raccosta L, Fontana R, Corna G, Maggioni D, Moresco M, Russo V (2016) Cholesterol metabolites and tumor microenvironment: the road towards clinical translation. Cancer Immunol Immunother CII 65:111–117. https://doi.org/10.1007/s00262-015-1779-0
doi: 10.1007/s00262-015-1779-0
pubmed: 26646851
Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA, Corzo A, Cho H-I, Celis E, Lennox B et al (2010) Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med 16:880–886. https://doi.org/10.1038/nm.2172
doi: 10.1038/nm.2172
pubmed: 20622859
pmcid: 2917488
Borgquist S, Butt T, Almgren P, Shiffman D, Stocks T, Orho-Melander M, Manjer J, Melander O (2016) Apolipoproteins, lipids and risk of cancer: apolipoproteins, lipids and risk of cancer. Int J Cancer 138:2648–2656. https://doi.org/10.1002/ijc.30013
doi: 10.1002/ijc.30013
pubmed: 26804063
Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet Lond Engl 371:569–578. https://doi.org/10.1016/S0140-6736(08)60269-X
doi: 10.1016/S0140-6736(08)60269-X
Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638. https://doi.org/10.1056/NEJMoa021423
doi: 10.1056/NEJMoa021423
pubmed: 12711737
Taniguchi K, Karin M (2018) NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18:309–324. https://doi.org/10.1038/nri.2017.142
doi: 10.1038/nri.2017.142
pubmed: 29379212
Torre LA, Siegel RL, Ward EM, Jemal A (2016) Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomarkers Prev 25:16–27. https://doi.org/10.1158/1055-9965.EPI-15-0578
doi: 10.1158/1055-9965.EPI-15-0578
pubmed: 26667886
Farinetti A, Zurlo V, Manenti A, Coppi F, Mattioli AV (2017) Mediterranean diet and colorectal cancer: a systematic review. Nutrition 43–44:83–88. https://doi.org/10.1016/j.nut.2017.06.008
doi: 10.1016/j.nut.2017.06.008
pubmed: 28935150
Veettil SK, Wong TY, Loo YS, Playdon MC, Lai NM, Giovannucci EL, Chaiyakunapruk N (2021) Role of diet in colorectal cancer incidence: umbrella review of meta-analyses of prospective observational studies. JAMA Netw Open 4:e2037341. https://doi.org/10.1001/jamanetworkopen.2020.37341
doi: 10.1001/jamanetworkopen.2020.37341
pubmed: 33591366
pmcid: 7887658
Beyaz S, Mana MD, Roper J, Kedrin D, Saadatpour A, Hong S-J, Bauer-Rowe KE, Xifaras ME, Akkad A, Arias E et al (2016) High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531:53–58. https://doi.org/10.1038/nature17173
doi: 10.1038/nature17173
pubmed: 26935695
pmcid: 4846772
Ducheix S, Peres C, Härdfeldt J, Frau C, Mocciaro G, Piccinin E, Lobaccaro J-M, De Santis S, Chieppa M, Bertrand-Michel J et al (2018) Deletion of stearoyl-CoA desaturase-1 from the intestinal epithelium promotes inflammation and tumorigenesis, reversed by dietary oleate. Gastroenterology 155:1524-1538.e9. https://doi.org/10.1053/j.gastro.2018.07.032
doi: 10.1053/j.gastro.2018.07.032
pubmed: 30063922
Piccinin E, Cariello M, De Santis S, Ducheix S, Sabbà C, Ntambi JM, Moschetta A (2019) Role of Oleic acid in the gut-liver axis: from diet to the regulation of its synthesis via stearoyl-CoA desaturase 1 (SCD1). Nutrients 11:2283. https://doi.org/10.3390/nu11102283
doi: 10.3390/nu11102283
pubmed: 31554181
pmcid: 6835877
Gadaleta RM, Cariello M, Crudele L, Moschetta A (2022) Bile salt hydrolase-competent probiotics in the management of IBD: unlocking the “bile acid code.” Nutrients 14:3212. https://doi.org/10.3390/nu14153212
doi: 10.3390/nu14153212
pubmed: 35956388
pmcid: 9370712
Petruzzelli M, Moschetta A (2010) Intestinal ecology in the metabolic syndrome. Cell Metab 11:345–346. https://doi.org/10.1016/j.cmet.2010.04.012
doi: 10.1016/j.cmet.2010.04.012
pubmed: 20444415
Takeuchi T, Kubota T, Nakanishi Y, Tsugawa H, Suda W, Kwon AT-J, Yazaki J, Ikeda K, Nemoto S, Mochizuki Y et al (2023) Gut microbial carbohydrate metabolism contributes to insulin resistance. Nature 621:389–395. https://doi.org/10.1038/s41586-023-06466-x
doi: 10.1038/s41586-023-06466-x
pubmed: 37648852
pmcid: 10499599
Johnson CH, Dejea CM, Edler D, Hoang LT, Santidrian AF, Felding BH, Ivanisevic J, Cho K, Wick EC, Hechenbleikner EM et al (2015) Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab 21:891–897. https://doi.org/10.1016/j.cmet.2015.04.011
doi: 10.1016/j.cmet.2015.04.011
pubmed: 25959674
pmcid: 4456201
European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO) EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016; 64: 1388–1402, https://doi.org/10.1016/j.jhep.2015.11.004 .
EASL-ALEH Clinical Practice Guidelines (2015) Non-invasive tests for evaluation of liver disease severity and prognosis. J Hepatol 63:237–264. https://doi.org/10.1016/j.jhep.2015.04.006
doi: 10.1016/j.jhep.2015.04.006