Inversion recovery and saturation recovery pulmonary vein MR angiography using an image based navigator fluoro trigger and variable-density 3D cartesian sampling with spiral-like order.

Atrial fibrillation Image based navigators Left atrial delayed enhancement Magnetic resonance angiography Variable density cartesian sampling

Journal

The international journal of cardiovascular imaging
ISSN: 1875-8312
Titre abrégé: Int J Cardiovasc Imaging
Pays: United States
ID NLM: 100969716

Informations de publication

Date de publication:
27 Apr 2024
Historique:
received: 16 11 2023
accepted: 07 04 2024
medline: 28 4 2024
pubmed: 28 4 2024
entrez: 27 4 2024
Statut: aheadofprint

Résumé

Contrast enhanced pulmonary vein magnetic resonance angiography (PV CE-MRA) has value in atrial ablation pre-procedural planning. We aimed to provide high fidelity, ECG gated PV CE-MRA accelerated by variable density Cartesian sampling (VD-CASPR) with image navigator (iNAV) respiratory motion correction acquired in under 4 min. We describe its use in part during the global iodinated contrast shortage. VD-CASPR/iNAV framework was applied to ECG-gated inversion and saturation recovery gradient recalled echo PV CE-MRA in 65 patients (66 exams) using .15 mmol/kg Gadobutrol. Image quality was assessed by three physicians, and anatomical segmentation quality by two technologists. Left atrial SNR and left atrial/myocardial CNR were measured. 12 patients had CTA within 6 months of MRA. Two readers assessed PV ostial measurements versus CTA for intermodality/interobserver agreement. Inter-rater/intermodality reliability, reproducibility of ostial measurements, SNR/CNR, image, and anatomical segmentation quality was compared. The mean acquisition time was 3.58 ± 0.60 min. Of 35 PV pre-ablation datasets (34 patients), mean anatomical segmentation quality score was 3.66 ± 0.54 and 3.63 ± 0.55 as rated by technologists 1 and 2, respectively (p = 0.7113). Good/excellent anatomical segmentation quality (grade 3/4) was seen in 97% of exams. Each rated one exam as moderate quality (grade 2). 95% received a majority image quality score of good/excellent by three physicians. Ostial PV measurements correlated moderate to excellently with CTA (ICCs range 0.52-0.86). No difference in SNR was observed between IR and SR. High quality PV CE-MRA is possible in under 4 min using iNAV bolus timing/motion correction and VD-CASPR.

Identifiants

pubmed: 38676848
doi: 10.1007/s10554-024-03111-0
pii: 10.1007/s10554-024-03111-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Amukotuwa SA, Bammer R, Jackson DM, Sutherland T (2022) Iodinated contrast media shortage: insights and guidance from two major public hospitals. J Med Imaging Radiat Oncol 66:946–956. https://doi.org/10.1111/1754-9485.13444
doi: 10.1111/1754-9485.13444 pubmed: 35634808 pmcid: 9796658
Dong J, Dickfeld T, Dalal D, Cheema A, Vasamreddy CR, Henrikson CA, Marine JE et al (2006) Initial experience in the use of integrated electroanatomic mapping with three-dimensional MR/CT images to guide catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 17:459–466. https://doi.org/10.1111/j.1540-8167.2006.00425.x
doi: 10.1111/j.1540-8167.2006.00425.x pubmed: 16684014
Sheffer D, Kholmovski E, Chang L, Velagapudi KN, Damal K, Marrouche NF, McGann C (2013) Improved left atrial imaging in atrial fibrillation patients using novel ECG-gated vs. conventional non-gated cardiac MRA. J Cardiovasc Magn Reson 15:O50. https://doi.org/10.1186/1532-429X-15-S1-O50
doi: 10.1186/1532-429X-15-S1-O50 pmcid: 3559469
Hu P, Peters DC, Stoeck C, Kissinger KV, Goddu B, Goepfert L, Manning WJ et al (2009) Off-resonant pulmonary vein imaging. J Cardiovasc Magn Reson. https://doi.org/10.1186/1532-429X-11-S1-P185
doi: 10.1186/1532-429X-11-S1-P185 pmcid: 7860846
Rashid I, Ginami G, Nordio G, Fotaki A, Neji R, Alam H, Pushparajah K, Frigiola A, Valverde I, Botnar RM, Prieto C (2023) Magnetization transfer BOOST noncontrast angiography improves pulmonary vein imaging in adults with congenital heart disease. J Magn Reson Imaging 57(2):521–531. https://doi.org/10.1002/jmri.28280
doi: 10.1002/jmri.28280 pubmed: 35642573
Pennig L, Wagner A, Weiss K, Lennartz S, Grunz J-P, Maintz D, Laukamp KR et al (2020) Imaging of the pulmonary vasculature in congenital heart disease without gadolinium contrast: intraindividual comparison of a novel compressed SENSE accelerated 3D modified REACT with 4D contrast-enhanced magnetic resonance angiography. J Cardiovasc Magn Reson 22:8. https://doi.org/10.1186/s12968-019-0591-y
doi: 10.1186/s12968-019-0591-y pubmed: 31969137 pmcid: 6977250
von Knobelsdorff-Brenkenhoff F, Gruettner H, Trauzeddel RF, Greiser A, Schulz-Menger J (2014) Comparison of native high-resolution 3D and contrast-enhanced MR angiography for assessing the thoracic aorta. Eur Heart J Cardiovasc Imaging 15:651–658. https://doi.org/10.1093/ehjci/jet263
doi: 10.1093/ehjci/jet263
Kawaji K, Spincemaille P, Nguyen TD, Thimmappa N, Cooper MA, Prince MR, Wang Y (2014) Direct coronary motion extraction from a 2D fat image navigator for prospectively gated coronary MR angiography. Magn Reson Med 71:599–607. https://doi.org/10.1002/mrm.24698
doi: 10.1002/mrm.24698 pubmed: 23504975
Addy NO, Ingle RR, Luo J, Baron CA, Yang PC, Hu BS, Nishimura DG (2017) 3D image-based navigators for coronary MR angiography. Magn Reson Med 77:1874–1883. https://doi.org/10.1002/mrm.26269
doi: 10.1002/mrm.26269 pubmed: 27174590
Moghari MH, Roujol S, Chan RH, Hong SN, Bello N, Henningsson M, Ngo LH et al (2013) Free-breathing 3D cardiac MRI using iterative image-based respiratory motion correction. Magn Reson Med 70:1005–1015. https://doi.org/10.1002/mrm.24538
doi: 10.1002/mrm.24538 pubmed: 23132549
Keegan J, Gatehouse PD, Yang G-Z, Firmin DN (2007) Non-model-based correction of respiratory motion using beat-to-beat 3D spiral fat-selective imaging. J Magn Reson Imaging 26:624–629. https://doi.org/10.1002/jmri.20941
doi: 10.1002/jmri.20941 pubmed: 17729350
Henningsson M, Koken P, Stehning C, Razavi R, Prieto C, Botnar RM (2012) Whole-heart coronary MR angiography with 2D self-navigated image reconstruction. Magn Reson Med 67:437–445. https://doi.org/10.1002/mrm.23027
doi: 10.1002/mrm.23027 pubmed: 21656563
Bustin A, Ginami G, Cruz G, Correia T, Ismail TF, Rashid I, Neji R et al (2019) Five-minute whole-heart coronary MRA with sub-millimeter isotropic resolution, 100% respiratory scan efficiency, and 3D-PROST reconstruction. Magn Reson Med 81:102–115. https://doi.org/10.1002/mrm.27354
doi: 10.1002/mrm.27354 pubmed: 30058252
Zeilinger MG, Kunze K-P, Munoz C, Neji R, Schmidt M, Croisille P, Heiss R et al (2022) Non-rigid motion-corrected free-breathing 3D myocardial dixon LGE imaging in a clinical setting. Eur Radiol 32:4340–4351. https://doi.org/10.1007/s00330-022-08560-6
doi: 10.1007/s00330-022-08560-6 pubmed: 35184220 pmcid: 9213263
Hajhosseiny R, Rashid I, Bustin A, Munoz C, Cruz G, Nazir MS, Grigoryan K et al (2021) Clinical comparison of sub-mm high-resolution non-contrast coronary CMR angiography against coronary CT angiography in patients with low-intermediate risk of coronary artery disease: a single center trial. J Cardiovasc Magn Reson 23:57. https://doi.org/10.1186/s12968-021-00758-9
doi: 10.1186/s12968-021-00758-9 pubmed: 33993890 pmcid: 8127202
Fotaki A, Munoz C, Emanuel Y, Hua A, Bosio F, Kunze KP, Neji R et al (2022) Efficient non-contrast enhanced 3D Cartesian cardiovascular magnetic resonance angiography of the thoracic aorta in 3 min. J Cardiovasc Magn Reson 24:5. https://doi.org/10.1186/s12968-021-00839-9
doi: 10.1186/s12968-021-00839-9 pubmed: 35000609 pmcid: 8744314
Munoz C, Bustin A, Neji R, Kunze KP, Forman C, Schmidt M, Hajhosseiny R et al (2020) Motion-corrected 3D whole-heart water-fat high-resolution late gadolinium enhancement cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson 22:53. https://doi.org/10.1186/s12968-020-00649-5
doi: 10.1186/s12968-020-00649-5 pubmed: 32684167 pmcid: 7370486
Tandon A, Hashemi S, Parks WJ, Kelleman MS, Sallee D, Slesnick TC (2016) Improved high-resolution pediatric vascular cardiovascular magnetic resonance with gadofosveset-enhanced 3D respiratory navigated, inversion recovery prepared gradient echo readout imaging compared to 3D balanced steady-state free precession readout imaging. J Cardiovasc Magn Reson 18(1):74. https://doi.org/10.1186/s12968-016-0296-4
doi: 10.1186/s12968-016-0296-4 pubmed: 27802802 pmcid: 5090984
Zheng J, Bae KT, Woodard PK, Haacke EM, Li D (1999) Efficacy of slow infusion of gadolinium contrast agent in three-dimensional MR coronary artery imaging. J Magn Reson Imaging 10(5):800–805. https://doi.org/10.1002/(sici)1522-2586(199911)10:5%3c800::aid-jmri26%3e3.0.co;2-l
doi: 10.1002/(sici)1522-2586(199911)10:5<800::aid-jmri26>3.0.co;2-l pubmed: 10548791
Rashid S, Rapacchi S, Shivkumar K, Plotnik A, Finn JP, Hu P (2016) Modified wideband three-dimensional late gadolinium enhancement MRI for patients with implantable cardiac devices. Magn Reson Med 75(2):572–584. https://doi.org/10.1002/mrm.25601
doi: 10.1002/mrm.25601 pubmed: 25772155
Ginami G, Lòpez K, Mukherjee RK, Neji R, Munoz C, Roujol S, Mountney P et al (2019) Non-contrast enhanced simultaneous 3D whole-heart bright-blood pulmonary veins visualization and black-blood quantification of atrial wall thickness. Magn Reson Med 81:1066–1079. https://doi.org/10.1002/mrm.27472
doi: 10.1002/mrm.27472 pubmed: 30230609
Groarke JD, Waller AH, Vita TS, Michaud GF, Di Carli MF, Blankstein R, Kwong RY et al (2014) Feasibility study of electrocardiographic and respiratory gated, gadolinium enhanced magnetic resonance angiography of pulmonary veins and the impact of heart rate and rhythm on study quality. J Cardiovasc Magn Reson 16:43. https://doi.org/10.1186/1532-429X-16-43
doi: 10.1186/1532-429X-16-43 pubmed: 24947763 pmcid: 4078012
Lam CZ, Pagano JJ, Gill N, Vidarsson L, de la Mora R, Seed M, Grosse-Wortmann L et al (2019) Dual phase infusion with bolus tracking: technical innovation for cardiac and respiratory navigated magnetic resonance angiography using extracellular contrast. Pediatr Radiol 49:399–406. https://doi.org/10.1007/s00247-018-4293-7
doi: 10.1007/s00247-018-4293-7 pubmed: 30443668
Tandon A, James L, Henningsson M, Botnar RM, Potersnak A, Greil GF, Hussain T (2016) A clinical combined gadobutrol bolus and slow infusion protocol enabling angiography, inversion recovery whole heart, and late gadolinium enhancement imaging in a single study. J Cardiovasc Magn Reson 18:66. https://doi.org/10.1186/s12968-016-0285-7
doi: 10.1186/s12968-016-0285-7 pubmed: 27716273 pmcid: 5052797
Dabir D, Naehle CP, Clauberg R, Gieseke J, Schild HH, Thomas D (2012) High-resolution motion compensated MRA in patients with congenital heart disease using extracellular contrast agent at 3 tesla. J Cardiovasc Magn Reson 14:75. https://doi.org/10.1186/1532-429X-14-75
doi: 10.1186/1532-429X-14-75 pubmed: 23107424 pmcid: 3552711
Siebermair J, Kholmovski EG, Sheffer D, Schroeder J, Jensen L, Kheirkhahan M, Baher AA et al (2021) Saturation recovery-prepared magnetic resonance angiography for assessment of left atrial and esophageal anatomy. Br J Radiol 94:20210048. https://doi.org/10.1259/bjr.20210048
doi: 10.1259/bjr.20210048 pubmed: 34111982 pmcid: 8248198
Heerfordt J, Stuber M, Maillot A, Bianchi V, Piccini D (2020) A quantitative comparison between a navigated cartesian and a self-navigated radial protocol from clinical studies for free-breathing 3D whole-heart bSSFP coronary MRA. Magn Reson Med 84(1):157–169. https://doi.org/10.1002/mrm.28101
doi: 10.1002/mrm.28101 pubmed: 31815322
Robb JS, Hu C, Peters DC (2020) Interleaved, undersampled radial multiple-acquisition steady-state free precession for improved left atrial cine imaging. Magn Reson Med 83(5):1721–1729. https://doi.org/10.1002/mrm.28036
doi: 10.1002/mrm.28036 pubmed: 31605555
Hamdan A, Charalampos K, Roettgen R, Wellnhofer E, Gebker R, Paetsch I, Jahnke C et al (2009) Magnetic resonance imaging versus computed tomography for characterization of pulmonary vein morphology before radiofrequency catheter ablation of atrial fibrillation. Am J Cardiol 104:1540–1546. https://doi.org/10.1016/j.amjcard.2009.07.029
doi: 10.1016/j.amjcard.2009.07.029 pubmed: 19932789
Fahlenkamp UL, Lembcke A, Roesler R, Schwenke C, Huppertz A, Streitparth F, Taupitz M, Hamm B, Wagner M (2013) ECG-gated imaging of the left atrium and pulmonary veins: intra-individual comparison of CTA and MRA. Clin Radiol 68(10):1059–1064. https://doi.org/10.1016/j.crad.2013.05.006
doi: 10.1016/j.crad.2013.05.006 pubmed: 23809271
Gottlieb LA, Al Jefairi N, El Hamrani D, Naulin J, Lamy J, Kachenoura N, Constantin M et al (2021) Reduction in left atrial and pulmonary vein dimensions after ablation therapy is mediated by scar. Int J Cardiol Heart Vasc 37:100894. https://doi.org/10.1016/j.ijcha.2021.100894
doi: 10.1016/j.ijcha.2021.100894 pubmed: 34746362 pmcid: 8554268

Auteurs

Jason Craft (J)

Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA. Jason.Craft@chsli.org.

Jonathan Weber (J)

Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA.

Yulee Li (Y)

Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA.

Joshua Y Cheng (JY)

Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA.

Nancy Diaz (N)

Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA.

Karl P Kunze (KP)

MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK.

Michaela Schmidt (M)

Siemens Healthineers, Erlangen, Germany.

Marie Grgas (M)

Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA.

Suzanne Weber (S)

Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA.

John Tang (J)

Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA.

Roosha Parikh (R)

Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA.

Afiachukwu Onuegbu (A)

Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA.

Ann-Marie Yamashita (AM)

Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA.

Elizabeth Haag (E)

Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA.

Daniel Fuentes (D)

Biosense Webster Incorporated, Irvine, CA, USA.

Michael Czipo (M)

Biosense Webster Incorporated, Irvine, CA, USA.

Radhouene Neji (R)

School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.

Cristian B Espada (CB)

Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA.

Leana Figueroa (L)

Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA.

Jonathan A Rothbaum (JA)

Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA.

Kana Fujikura (K)

Division of Cardiology, NYU Grossman School of Medicine, New York, NY, USA.

Ruqiyya Bano (R)

Department of Nephrology and Hypertension, Stony Brook University Hospital, New York, NY, 11794, USA.

Omar K Khalique (OK)

Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA.

Claudia Prieto (C)

School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.

Rene M Botnar (RM)

School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.

Classifications MeSH