Astroglial Kir4.1 potassium channel deficit drives neuronal hyperexcitability and behavioral defects in Fragile X syndrome mouse model.
Animals
Astrocytes
/ metabolism
Fragile X Syndrome
/ metabolism
Fragile X Mental Retardation Protein
/ metabolism
Potassium Channels, Inwardly Rectifying
/ metabolism
Mice, Knockout
Disease Models, Animal
Male
Mice
Neurons
/ metabolism
Hippocampus
/ metabolism
Behavior, Animal
Potassium
/ metabolism
Mice, Inbred C57BL
RNA, Messenger
/ metabolism
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
27 Apr 2024
27 Apr 2024
Historique:
received:
27
07
2021
accepted:
03
04
2024
medline:
28
4
2024
pubmed:
28
4
2024
entrez:
27
4
2024
Statut:
epublish
Résumé
Fragile X syndrome (FXS) is an inherited form of intellectual disability caused by the loss of the mRNA-binding fragile X mental retardation protein (FMRP). FXS is characterized by neuronal hyperexcitability and behavioral defects, however the mechanisms underlying these critical dysfunctions remain unclear. Here, using male Fmr1 knockout mouse model of FXS, we identify abnormal extracellular potassium homeostasis, along with impaired potassium channel Kir4.1 expression and function in astrocytes. Further, we reveal that Kir4.1 mRNA is a binding target of FMRP. Finally, we show that the deficit in astroglial Kir4.1 underlies neuronal hyperexcitability and several behavioral defects in Fmr1 knockout mice. Viral delivery of Kir4.1 channels specifically to hippocampal astrocytes from Fmr1 knockout mice indeed rescues normal astrocyte potassium uptake, neuronal excitability, and cognitive and social performance. Our findings uncover an important role for astrocyte dysfunction in the pathophysiology of FXS, and identify Kir4.1 channel as a potential therapeutic target for FXS.
Identifiants
pubmed: 38678030
doi: 10.1038/s41467-024-47681-y
pii: 10.1038/s41467-024-47681-y
doi:
Substances chimiques
Fragile X Mental Retardation Protein
139135-51-6
Potassium Channels, Inwardly Rectifying
0
Kcnj10 (channel)
0
Fmr1 protein, mouse
0
Potassium
RWP5GA015D
RNA, Messenger
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
3583Subventions
Organisme : EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
ID : 683154
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 722053
Organisme : Fondation Jérôme Lejeune (Jérôme Lejeune Foundation)
ID : 1535
Informations de copyright
© 2024. The Author(s).
Références
Bagni, C. & Zukin, R. S. A Synaptic Perspective of Fragile X Syndrome and Autism Spectrum Disorders. Neuron 101, 1070–1088 (2019).
pubmed: 30897358
pmcid: 9628679
doi: 10.1016/j.neuron.2019.02.041
Berry-Kravis, E. Mechanism-Based Treatments in Neurodevelopmental Disorders: Fragile X Syndrome. Pediatr. Neurol. 50, 297–302 (2014).
pubmed: 24518745
doi: 10.1016/j.pediatrneurol.2013.12.001
Santos, A. R., Kanellopoulos, A. K. & Bagni, C. Learning and behavioral deficits associated with the absence of the fragile X mental retardation protein: what a fly and mouse model can teach us. Learn. Memory 21, 543–555 (2014).
doi: 10.1101/lm.035956.114
Pieretti, M. et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66, 817–822 (1991).
pubmed: 1878973
doi: 10.1016/0092-8674(91)90125-I
Bakker, C. et al. Fmr1 knockout mice: A model to study fragile X mental retardation. Cell 78, 23–33 (1994).
Darnell, J. C. et al. FMRP Stalls Ribosomal Translocation on mRNAs Linked to Synaptic Function and Autism. Cell 146, 247–261 (2011).
pubmed: 21784246
pmcid: 3232425
doi: 10.1016/j.cell.2011.06.013
Santoro, M. R., Bray, S. M. & Warren, S. T. Molecular Mechanisms of Fragile X Syndrome: A Twenty-Year Perspective. Ann. Rev. Pathol. Mechan. Dis. 7, 219–245 (2012).
doi: 10.1146/annurev-pathol-011811-132457
Strumbos, J. G., Brown, M. R., Kronengold, J., Polley, D. B. & Kaczmarek, L. K. Fragile X Mental Retardation Protein Is Required for Rapid Experience-Dependent Regulation of the Potassium Channel Kv3.1b. J. Neurosci. 30, 10263–10271 (2010).
pubmed: 20685971
pmcid: 3485078
doi: 10.1523/JNEUROSCI.1125-10.2010
Lee, H. Y. et al. Bidirectional Regulation of Dendritic Voltage-Gated Potassium Channels by the Fragile X Mental Retardation Protein. Neuron 72, 630–642 (2011).
pubmed: 22099464
pmcid: 3433402
doi: 10.1016/j.neuron.2011.09.033
Gross, C., Yao, X., Pong, D. L., Jeromin, A. & Bassell, G. J. Fragile X Mental Retardation Protein Regulates Protein Expression and mRNA Translation of the Potassium Channel Kv4.2. J. Neurosci. 31, 5693–5698 (2011).
pubmed: 21490210
pmcid: 3089949
doi: 10.1523/JNEUROSCI.6661-10.2011
Deng, P.-Y. et al. FMRP Regulates Neurotransmitter Release and Synaptic Information Transmission by Modulating Action Potential Duration via BK Channels. Neuron 77, 696–711 (2013).
pubmed: 23439122
pmcid: 3584349
doi: 10.1016/j.neuron.2012.12.018
Ferron, L., Nieto-Rostro, M., Cassidy, J. S. & Dolphin, A. C. Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density. Nat. Commun. 5, 3628 (2014).
pubmed: 24709664
doi: 10.1038/ncomms4628
Brown, M. R. et al. Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nat. Neurosci. 13, 819–821 (2010).
pubmed: 20512134
pmcid: 2893252
doi: 10.1038/nn.2563
El-Hassar, L. et al. Modulators of Kv3 Potassium Channels Rescue the Auditory Function of Fragile X Mice. J. Neurosci. 39, 4797–4813 (2019).
pubmed: 30936239
pmcid: 6561694
doi: 10.1523/JNEUROSCI.0839-18.2019
Ferron, L. Fragile X mental retardation protein controls ion channel expression and activity. J. Physiol. 594, 5861–5867 (2016).
pubmed: 26864773
pmcid: 5063927
doi: 10.1113/JP270675
Zhang, Y. et al. Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1−/y mice. Nat. Neurosci. 17, 1701–1709 (2014).
pubmed: 25383903
doi: 10.1038/nn.3864
Contractor, A., Klyachko, V. A. & Portera-Cailliau, C. Altered Neuronal and Circuit Excitability in Fragile X Syndrome. Neuron 87, 699–715 (2015).
pubmed: 26291156
pmcid: 4545495
doi: 10.1016/j.neuron.2015.06.017
Dallérac, G., Zapata, J. & Rouach, N. Versatile control of synaptic circuits by astrocytes: where, when and how? Nat. Rev. Neurosci. 19, 729–743 (2018).
pubmed: 30401802
doi: 10.1038/s41583-018-0080-6
Halassa, M. M. & Haydon, P. G. Integrated Brain Circuits: Astrocytic Networks Modulate Neuronal Activity and Behavior. Annu. Rev. Physiol. 72, 335–355 (2010).
pubmed: 20148679
pmcid: 3117429
doi: 10.1146/annurev-physiol-021909-135843
Allen, N. J. & Eroglu, C. Cell Biology of Astrocyte-Synapse Interactions. Neuron 96, 697–708 (2017).
pubmed: 29096081
pmcid: 5687890
doi: 10.1016/j.neuron.2017.09.056
Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 (2010).
pubmed: 20012068
doi: 10.1007/s00401-009-0619-8
Molofsky, A. V. et al. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev. 26, 891–907 (2012).
pubmed: 22549954
pmcid: 3347787
doi: 10.1101/gad.188326.112
Blanco-Suárez, E., Caldwell, A. L. M. & Allen, N. J. Role of astrocyte-synapse interactions in CNS disorders. J. Physiol. 595, 1903–1916 (2017).
pubmed: 27381164
doi: 10.1113/JP270988
Higashimori, H. et al. Astroglial FMRP-dependent translational down-regulation of mGluR5 underlies glutamate transporter GLT1 dysregulation in the fragile X mouse. Hum. Mol. Genet. 22, 2041–2054 (2013).
pubmed: 23396537
pmcid: 3633372
doi: 10.1093/hmg/ddt055
Pacey, L. K. K. & Doering, L. C. Developmental expression of FMRP in the astrocyte lineage: Implications for fragile X syndrome. Glia 55, 1601–1609 (2007).
pubmed: 17823967
doi: 10.1002/glia.20573
Higashimori, H. et al. Selective Deletion of Astroglial FMRP Dysregulates Glutamate Transporter GLT1 and Contributes to Fragile X Syndrome Phenotypes In Vivo. J. Neurosci. 36, 7079–7094 (2016).
pubmed: 27383586
pmcid: 4938857
doi: 10.1523/JNEUROSCI.1069-16.2016
Hodges, J. L. et al. Astrocytic Contributions to Synaptic and Learning Abnormalities in a Mouse Model of Fragile X Syndrome. Biol. Psychiatry 82, 139–149 (2017).
pubmed: 27865451
doi: 10.1016/j.biopsych.2016.08.036
Jin, S. et al. Astroglial FMRP modulates synaptic signaling and behavior phenotypes in FXS mouse model. Glia 69, 594–608 (2021).
pubmed: 32970902
doi: 10.1002/glia.23915
Bellot-Saez, A., Kékesi, O., Morley, J. W. & Buskila, Y. Astrocytic modulation of neuronal excitability through K + spatial buffering. Neurosci. Biobehav. Rev. 77, 87–97 (2017).
pubmed: 28279812
doi: 10.1016/j.neubiorev.2017.03.002
Cheung, G., Sibille, J., Zapata, J. & Rouach, N. Activity-Dependent Plasticity of Astroglial Potassium and Glutamate Clearance. Neural Plast. 2015, 1–16 (2015).
doi: 10.1155/2015/109106
Aitken, P. G. & Somjen, G. G. The sources of extracellular potassium accumulation in the CA1 region of hippocampal slices. Brain Res. 369, 163–167 (1986).
pubmed: 3697739
doi: 10.1016/0006-8993(86)90524-X
Haj-Yasein, N. N. et al. Deletion of aquaporin-4 increases extracellular K+ concentration during synaptic stimulation in mouse hippocampus. Brain Struct. Funct. 220, 2469–2474 (2015).
pubmed: 24744149
doi: 10.1007/s00429-014-0767-z
Poolos, N. P., Mauk, M. D. & Kocsis, J. D. Activity-evoked increases in extracellular potassium modulate presynaptic excitability in the CA1 region of the hippocampus. J. Neurophysiol. 58, 404–416 (1987).
pubmed: 3655875
doi: 10.1152/jn.1987.58.2.404
Kofuji, P. & Newman, E. A. Potassium buffering in the central nervous system. Neuroscience 129, 1043–1054 (2004).
doi: 10.1016/j.neuroscience.2004.06.008
Djukic, B., Casper, K. B., Philpot, B. D., Chin, L.-S. & McCarthy, K. D. Conditional Knock-Out of Kir4.1 Leads to Glial Membrane Depolarization, Inhibition of Potassium and Glutamate Uptake, and Enhanced Short-Term Synaptic Potentiation. J. Neurosci. 27, 11354–11365 (2007).
pubmed: 17942730
pmcid: 6673037
doi: 10.1523/JNEUROSCI.0723-07.2007
Olsen, M. L., Higashimori, H., Campbell, S. L., Hablitz, J. J. & Sontheimer, H. Functional expression of Kir4.1 channels in spinal cord astrocytes. Glia 53, 516–528 (2006).
pubmed: 16369934
pmcid: 2553202
doi: 10.1002/glia.20312
Sibille, J., Pannasch, U. & Rouach, N. Astroglial potassium clearance contributes to short-term plasticity of synaptically evoked currents at the tripartite synapse. J. Physiol. 592, 87–102 (2014).
pubmed: 24081156
doi: 10.1113/jphysiol.2013.261735
Higashi, K. et al. An inwardly rectifying K + channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am. J. Physiol. Cell Physiol. 281, C922–C931 (2001).
pubmed: 11502569
doi: 10.1152/ajpcell.2001.281.3.C922
Zalfa, F. et al. A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability. Nat. Neurosci. 10, 578–587 (2007).
pubmed: 17417632
pmcid: 2804293
doi: 10.1038/nn1893
Asiminas, A. et al. Sustained correction of associative learning deficits after brief, early treatment in a rat model of Fragile X Syndrome. Sci. Transl. Med. 11, eaao0498 (2019).
pubmed: 31142675
pmcid: 8162683
doi: 10.1126/scitranslmed.aao0498
Aloisi, E. et al. Altered surface mGluR5 dynamics provoke synaptic NMDAR dysfunction and cognitive defects in Fmr1 knockout mice. Nat. Commun. 8, 1103 (2017).
pubmed: 29062097
pmcid: 5653653
doi: 10.1038/s41467-017-01191-2
Ventura, R., Pascucci, T., Catania, M. V., Musumeci, S. A. & Puglisi-Allegra, S. Object recognition impairment in Fmr1 knockout mice is reversed by amphetamine: involvement of dopamine in the medial prefrontal cortex. Behav. Pharmacol. 15, 433–442 (2004).
pubmed: 15343070
doi: 10.1097/00008877-200409000-00018
Bhattacharya, A. et al. Genetic Removal of p70 S6 Kinase 1 Corrects Molecular, Synaptic, and Behavioral Phenotypes in Fragile X Syndrome Mice. Neuron 76, 325–337 (2012).
pubmed: 23083736
pmcid: 3479445
doi: 10.1016/j.neuron.2012.07.022
Chever, O., Djukic, B., McCarthy, K. D. & Amzica, F. Implication of Kir4.1 Channel in Excess Potassium Clearance: An In Vivo Study on Anesthetized Glial-Conditional Kir4.1 Knock-Out Mice. J. Neurosci. 30, 15769–15777 (2010).
pubmed: 21106816
pmcid: 6633770
doi: 10.1523/JNEUROSCI.2078-10.2010
Larsen, B. R. et al. Contributions of the Na+/K+-ATPase, NKCC1, and Kir4.1 to hippocampal K+ clearance and volume responses. Glia 62, 608–622 (2014).
pubmed: 24482245
pmcid: 4302754
doi: 10.1002/glia.22629
Ballas, N., Lioy, D. T., Grunseich, C. & Mandel, G. Non–cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat. Neurosci. 12, 311–317 (2009).
pubmed: 19234456
pmcid: 3134296
doi: 10.1038/nn.2275
Cuddapah, V. A. et al. Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with disease severity in Rett syndrome. J. Med. Genet. 51, 152–158 (2014).
pubmed: 24399845
doi: 10.1136/jmedgenet-2013-102113
Kahanovitch, U. et al. MeCP2 Deficiency Leads to Loss of Glial Kir4.1. eNeuro 5, ENEURO.0194-17.2018 (2018).
Seifert, G., Henneberger, C. & Steinhäuser, C. Diversity of astrocyte potassium channels: An update. Brain Res. Bull. 136, 26–36 (2018).
pubmed: 27965079
doi: 10.1016/j.brainresbull.2016.12.002
Cui, Y. et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554, 323–327 (2018).
pubmed: 29446379
doi: 10.1038/nature25752
Kelley, K. W. et al. Kir4.1-Dependent Astrocyte-Fast Motor Neuron Interactions Are Required for Peak Strength. Neuron 98, 306–319.e7 (2018).
pubmed: 29606582
pmcid: 5919779
doi: 10.1016/j.neuron.2018.03.010
Neusch, C. et al. Lack of the Kir4.1 Channel Subunit Abolishes K + Buffering Properties of Astrocytes in the Ventral Respiratory Group: Impact on Extracellular K + Regulation. J. Neurophysiol. 95, 1843–1852 (2006).
pubmed: 16306174
doi: 10.1152/jn.00996.2005
Seifert, G. et al. Analysis of Astroglial K+ Channel Expression in the Developing Hippocampus Reveals a Predominant Role of the Kir4.1 Subunit. J. Neurosci. 29, 7474–7488 (2009).
pubmed: 19515915
pmcid: 6665420
doi: 10.1523/JNEUROSCI.3790-08.2009
Ventura, R. & Harris, K. M. Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci. 19, 6897–6906 (1999).
pubmed: 10436047
pmcid: 6782870
doi: 10.1523/JNEUROSCI.19-16-06897.1999
Steinhäuser, C., Grunnet, M. & Carmignoto, G. Crucial role of astrocytes in temporal lobe epilepsy. Neuroscience 323, 157–169 (2016).
pubmed: 25592426
doi: 10.1016/j.neuroscience.2014.12.047
Devinsky, O., Vezzani, A., Najjar, S., De Lanerolle, N. C. & Rogawski, M. A. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 36, 174–184 (2013).
pubmed: 23298414
doi: 10.1016/j.tins.2012.11.008
Catterall, W. A. Structure and Regulation of Voltage-Gated Ca 2+ Channels. Annu. Rev. Cell Dev. Biol. 16, 521–555 (2000).
pubmed: 11031246
doi: 10.1146/annurev.cellbio.16.1.521
Guéguinou, M. et al. KCa and Ca2+ channels: The complex thought. Bioch. Biophys. Acta Mol. Cell Res. 1843, 2322–2333 (2014).
doi: 10.1016/j.bbamcr.2014.02.019
Sibille, J., Dao Duc, K., Holcman, D. & Rouach, N. The Neuroglial Potassium Cycle during Neurotransmission: Role of Kir4.1 Channels. PLoS Comput. Biol. 11, e1004137 (2015).
pubmed: 25826753
pmcid: 4380507
doi: 10.1371/journal.pcbi.1004137
Tang, S. et al. Loss of CDKL5 in Glutamatergic Neurons Disrupts Hippocampal Microcircuitry and Leads to Memory Impairment in Mice. J. Neurosci. 37, 7420–7437 (2017).
pubmed: 28674172
pmcid: 5546111
doi: 10.1523/JNEUROSCI.0539-17.2017
Schiavi, S. et al. Reward-Related Behavioral, Neurochemical and Electrophysiological Changes in a Rat Model of Autism Based on Prenatal Exposure to Valproic Acid. Front. Cell Neurosci. 13, 1–14 (2019).
doi: 10.3389/fncel.2019.00479
Baranek, G. T. et al. Hyporesponsiveness to social and nonsocial sensory stimuli in children with autism, children with developmental delays, and typically developing children. Dev. Psychopathol. 25, 307–320 (2013).
pubmed: 23627946
pmcid: 3641693
doi: 10.1017/S0954579412001071
Robertson, C. E. & Baron-Cohen, S. Sensory perception in autism. Nat. Rev. Neurosci. 18, 671–684 (2017).
pubmed: 28951611
doi: 10.1038/nrn.2017.112
Tong, X. et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat. Neurosci. 17, 694–703 (2014).
pubmed: 24686787
pmcid: 4064471
doi: 10.1038/nn.3691
Bataveljić, D., Nikolić, L., Milosević, M., Todorović, N. & Andjus, P. R. Changes in the astrocytic aquaporin-4 and inwardly rectifying potassium channel expression in the brain of the amyotrophic lateral sclerosis SOD1 G93A rat model. Glia 60, 1991–2003 (2012).
pubmed: 22987392
doi: 10.1002/glia.22414
Tang, X., Hang, D., Sand, A. & Kofuji, P. Variable loss of Kir4.1 channel function in SeSAME syndrome mutations. Biochem. Biophys. Res. Commun. 399, 537–541 (2010).
pubmed: 20678478
pmcid: 2940129
doi: 10.1016/j.bbrc.2010.07.105
Sicca, F. et al. Gain-of-function defects of astrocytic Kir4.1 channels in children with autism spectrum disorders and epilepsy. Sci. Rep. 6, 34325 (2016).
pubmed: 27677466
pmcid: 5039625
doi: 10.1038/srep34325
Sun, C. et al. Association study between inwardly rectifying potassium channels 2.1 and 4.1 and autism spectrum disorders. Life Sci. 213, 183–189 (2018).
pubmed: 30304693
doi: 10.1016/j.lfs.2018.10.012
Mientjes, E. J. et al. The generation of a conditional Fmr1 knock out mouse model to study Fmrp function in vivo. Neurobiol. Dis. 21, 549–555 (2006).
pubmed: 16257225
doi: 10.1016/j.nbd.2005.08.019
Hébert, B. et al. Rescue of fragile X syndrome phenotypes in Fmr1KO mice by a BKCa channel opener molecule. Orphanet. J. Rare Dis. 9, 124 (2014).
pubmed: 25079250
pmcid: 4237919
doi: 10.1186/s13023-014-0124-6
Pannasch, U., Sibille, J. & Rouach, N. Dual Electrophysiological Recordings of Synaptically-evoked Astroglial and Neuronal Responses in Acute Hippocampal Slices. J. Vis. Exper. e4418 https://doi.org/10.3791/4418 (2012).
Mazaré, N., Oudart, M., Cheung, G., Boulay, A.-C. & Cohen-Salmon, M. Immunoprecipitation of Ribosome-Bound mRNAs from Astrocytic Perisynaptic Processes of the Mouse Hippocampus. STAR Protoc. 1, 100198 (2020).
pubmed: 33377092
pmcid: 7757553
doi: 10.1016/j.xpro.2020.100198
Oudart, M. et al. AstroDot: a new method for studying the spatial distribution of mRNA in astrocytes. J. Cell Sci. 133, jcs239756 (2020).
pubmed: 32079659
doi: 10.1242/jcs.239756
Gabriel, L. R., Wu, S. & Melikian, H. E. Brain Slice Biotinylation: An Ex Vivo Approach to Measure Region-specific Plasma Membrane Protein Trafficking in Adult Neurons. J. Visual. Exper. https://doi.org/10.3791/51240 (2014).
Berger, A. et al. Repair of Rhodopsin mRNA by Spliceosome-Mediated RNA Trans -Splicing: A New Approach for Autosomal Dominant Retinitis Pigmentosa. Mol. Therapy 23, 918–930 (2015).
doi: 10.1038/mt.2015.11
Zeidler, S. et al. Paradoxical effect of baclofen on social behavior in the fragile X syndrome mouse model. Brain Behav. 8, e00991 (2018).
pubmed: 29785777
pmcid: 5991574
doi: 10.1002/brb3.991