The pRb/RBL2-E2F1/4-GCN5 axis regulates cancer stem cell formation and G0 phase entry/exit by paracrine mechanisms.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
27 Apr 2024
Historique:
received: 30 12 2022
accepted: 09 04 2024
medline: 28 4 2024
pubmed: 28 4 2024
entrez: 27 4 2024
Statut: epublish

Résumé

The lethality, chemoresistance and metastatic characteristics of cancers are associated with phenotypically plastic cancer stem cells (CSCs). How the non-cell autonomous signalling pathways and cell-autonomous transcriptional machinery orchestrate the stem cell-like characteristics of CSCs is still poorly understood. Here we use a quantitative proteomic approach for identifying secreted proteins of CSCs in pancreatic cancer. We uncover that the cell-autonomous E2F1/4-pRb/RBL2 axis balances non-cell-autonomous signalling in healthy ductal cells but becomes deregulated upon KRAS mutation. E2F1 and E2F4 induce whereas pRb/RBL2 reduce WNT ligand expression (e.g. WNT7A, WNT7B, WNT10A, WNT4) thereby regulating self-renewal, chemoresistance and invasiveness of CSCs in both PDAC and breast cancer, and fibroblast proliferation. Screening for epigenetic enzymes identifies GCN5 as a regulator of CSCs that deposits H3K9ac onto WNT promoters and enhancers. Collectively, paracrine signalling pathways are controlled by the E2F-GCN5-RB axis in diverse cancers and this could be a therapeutic target for eliminating CSCs.

Identifiants

pubmed: 38678032
doi: 10.1038/s41467-024-47680-z
pii: 10.1038/s41467-024-47680-z
doi:

Substances chimiques

E2F1 Transcription Factor 0
E2F4 Transcription Factor 0
E2F1 protein, human 0
E2F4 protein, human 0
Wnt Proteins 0
Retinoblastoma Protein 0
p300-CBP Transcription Factors EC 2.3.1.48
WNT7B protein, human 0
Proto-Oncogene Proteins p21(ras) EC 3.6.5.2
KRAS protein, human 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3580

Subventions

Organisme : Pancreatic Cancer UK
ID : 2018RIF_03
Pays : United Kingdom

Informations de copyright

© 2024. The Author(s).

Références

Fiorentino, F. P., Symonds, C. E., Macaluso, M. & Giordano, A. Senescence and p130/Rbl2: a new beginning to the end. Cell Res 19, 1044–1051 (2009).
pubmed: 19668264 doi: 10.1038/cr.2009.96
Velez-Cruz, R. & Johnson, D. G. The retinoblastoma (RB) tumor suppressor: pushing back against genome instability on multiple fronts. Int. J. Mol. Sci. 18, 1776 (2017).
pubmed: 28812991 pmcid: 5578165 doi: 10.3390/ijms18081776
Indovina, P., Marcelli, E., Casini, N., Rizzo, V. & Giordano, A. Emerging roles of RB family: new defense mechanisms against tumor progression. J. Cell Physiol. 228, 525–535 (2013).
pubmed: 22886479 doi: 10.1002/jcp.24170
Dick, F. A., Goodrich, D. W., Sage, J. & Dyson, N. J. Non-canonical functions of the RB protein in cancer. Nat. Rev. Cancer 18, 442–451 (2018).
pubmed: 29692417 pmcid: 6693677 doi: 10.1038/s41568-018-0008-5
Chen, H. Z., Tsai, S. Y. & Leone, G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat. Rev. Cancer 9, 785–797 (2009).
pubmed: 19851314 pmcid: 3616489 doi: 10.1038/nrc2696
Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).
pubmed: 1406933 doi: 10.1038/359295a0
Korenjak, M. & Brehm, A. E2F-Rb complexes regulating transcription of genes important for differentiation and development. Curr. Opin. Genet. Dev. 15, 520–527 (2005).
pubmed: 16081278 doi: 10.1016/j.gde.2005.07.001
Lee, E. Y. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288–294 (1992).
pubmed: 1406932 doi: 10.1038/359288a0
Calo, E. et al. Rb regulates fate choice and lineage commitment in vivo. Nature 466, 1110–1114 (2010).
pubmed: 20686481 pmcid: 2933655 doi: 10.1038/nature09264
Thomas, D. M. et al. The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol. Cell 8, 303–316 (2001).
pubmed: 11545733 doi: 10.1016/S1097-2765(01)00327-6
LeCouter, J. E., Kablar, B., Whyte, P. F., Ying, C. & Rudnicki, M. A. Strain-dependent embryonic lethality in mice lacking the retinoblastoma-related p130 gene. Development 125, 4669–4679 (1998).
pubmed: 9806916 doi: 10.1242/dev.125.23.4669
LeCouter, J. E. et al. Strain-dependent myeloid hyperplasia, growth deficiency, and accelerated cell cycle in mice lacking the Rb-related p107 gene. Mol. Cell. Biol. 18, 7455–7465 (1998).
pubmed: 9819431 pmcid: 109326 doi: 10.1128/MCB.18.12.7455
Brunet, T. et al. Biallelic loss-of-function variants in RBL2 in siblings with a neurodevelopmental disorder. Ann. Clin. Transl. Neurol. 7, 390–396 (2020).
pubmed: 32105419 pmcid: 7086002 doi: 10.1002/acn3.50992
Li, F. X. et al. The development of diabetes in E2f1/E2f2 mutant mice reveals important roles for bone marrow-derived cells in preventing islet cell loss. Proc. Natl Acad. Sci. USA 100, 12935–12940 (2003).
pubmed: 14566047 pmcid: 240722 doi: 10.1073/pnas.2231861100
Iglesias, A. et al. Diabetes and exocrine pancreatic insufficiency in E2F1/E2F2 double-mutant mice. J. Clin. Investig. 113, 1398–1407 (2004).
pubmed: 15146237 pmcid: 406522 doi: 10.1172/JCI200418879
Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).
pubmed: 18772397 pmcid: 2848990 doi: 10.1126/science.1164368
Chan-Seng-Yue, M. et al. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat. Genet. 52, 231–240 (2020).
pubmed: 31932696 doi: 10.1038/s41588-019-0566-9
Curtis, C. et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).
pubmed: 22522925 pmcid: 3440846 doi: 10.1038/nature10983
Conklin, J. F., Baker, J. & Sage, J. The RB family is required for the self-renewal and survival of human embryonic stem cells. Nat. Commun. 3, 1244 (2012).
pubmed: 23212373 doi: 10.1038/ncomms2254
Goding, C. R., Pei, D. & Lu, X. Cancer: pathological nuclear reprogramming? Nat. Rev. Cancer 14, 568–573 (2014).
pubmed: 25030952 doi: 10.1038/nrc3781
Sage, J. et al. Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev. 14, 3037–3050 (2000).
pubmed: 11114892 pmcid: 317090 doi: 10.1101/gad.843200
Dannenberg, J. H., van Rossum, A., Schuijff, L. & te Riele, H. Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev. 14, 3051–3064 (2000).
pubmed: 11114893 pmcid: 317114 doi: 10.1101/gad.847700
Kareta, M. S. et al. Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis. Cell Stem Cell 16, 39–50 (2015).
pubmed: 25467916 doi: 10.1016/j.stem.2014.10.019
Hermann, P. C. et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. cell Stem Cell 1, 313–323 (2007).
pubmed: 18371365 doi: 10.1016/j.stem.2007.06.002
Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res. 67, 1030–1037 (2007).
pubmed: 17283135 doi: 10.1158/0008-5472.CAN-06-2030
Lonardo, E. et al. Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. cell Stem Cell 9, 433–446 (2011).
pubmed: 22056140 doi: 10.1016/j.stem.2011.10.001
Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 63, 11–30 (2013).
pubmed: 23335087 doi: 10.3322/caac.21166
Ying, H. et al. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 30, 355–385 (2016).
pubmed: 26883357 pmcid: 4762423 doi: 10.1101/gad.275776.115
Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014).
pubmed: 24840647 doi: 10.1158/0008-5472.CAN-14-0155
Sinn, M. et al. CONKO-005: adjuvant chemotherapy with gemcitabine plus erlotinib versus gemcitabine alone in patients after r0 resection of pancreatic cancer: a multicenter randomized phase III trial. J. Clin. Oncol. 35, 3330–3337 (2017).
pubmed: 28817370 doi: 10.1200/JCO.2017.72.6463
Loibl, S., Poortmans, P., Morrow, M., Denkert, C. & Curigliano, G. Breast cancer. Lancet 397, 1750–1769 (2021).
pubmed: 33812473 doi: 10.1016/S0140-6736(20)32381-3
Harbeck, N. et al. Breast cancer. Nat. Rev. Dis. Prim. 5, 66 (2019).
pubmed: 31548545 doi: 10.1038/s41572-019-0111-2
Hermann, P. C. & Sainz, B. Jr. Pancreatic cancer stem cells: a state or an entity? Semin. Cancer Biol. 53, 223–231 (2018).
pubmed: 30130664 doi: 10.1016/j.semcancer.2018.08.007
Mueller, M. T. et al. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 137, 1102–1113 (2009).
pubmed: 19501590 doi: 10.1053/j.gastro.2009.05.053
Feng, Y. et al. BRD9-SMAD2/3 orchestrates stemness and tumorigenesis in pancreatic ductal adenocarcinoma. Gastroenterology 166, 139–154 (2024).
Lonardo, E., Cioffi, M., Sancho, P., Crusz, S. & Heeschen, C. Studying pancreatic cancer stem cell characteristics for developing new treatment strategies. J. Vis. Exp. 100, e52801 (2015).
Peng, J. et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 29, 725–738 (2019).
pubmed: 31273297 pmcid: 6796938 doi: 10.1038/s41422-019-0195-y
Stoica, A. F., Chang, C. H. & Pauklin, S. Molecular therapeutics of pancreatic ductal adenocarcinoma: targeted pathways and the role of cancer stem cells. Trends Pharm. Sci. 41, 977–993 (2020).
pubmed: 33092892 doi: 10.1016/j.tips.2020.09.008
Pook, H. & Pauklin, S. Mechanisms of cancer cell death: therapeutic implications for pancreatic ductal adenocarcinoma. Cancers 13, 4834 (2021).
pubmed: 34638318 pmcid: 8508208 doi: 10.3390/cancers13194834
Embuscado, E. E. et al. Immortalizing the complexity of cancer metastasis: genetic features of lethal metastatic pancreatic cancer obtained from rapid autopsy. Cancer Biol. Ther. 4, 548–554 (2005).
pubmed: 15846069 doi: 10.4161/cbt.4.5.1663
Zhang, Y. et al. Canonical wnt signaling is required for pancreatic carcinogenesis. Cancer Res. 73, 4909–4922 (2013).
pubmed: 23761328 pmcid: 3763696 doi: 10.1158/0008-5472.CAN-12-4384
Steele, N. G. et al. Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nat. Cancer 1, 1097–1112 (2020).
pubmed: 34296197 pmcid: 8294470 doi: 10.1038/s43018-020-00121-4
Ervin, E. H., French, R., Chang, C. H. & Pauklin, S. Inside the stemness engine: Mechanistic links between deregulated transcription factors and stemness in cancer. Semin. Cancer Biol. 87, 48–83 (2022).
pubmed: 36347438 doi: 10.1016/j.semcancer.2022.11.001
Tang, Z., Kang, B., Li, C., Chen, T. & Zhang, Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47, W556–W560 (2019).
pubmed: 31114875 pmcid: 6602440 doi: 10.1093/nar/gkz430
Arensman, M. D. et al. WNT7B mediates autocrine Wnt/beta-catenin signaling and anchorage-independent growth in pancreatic adenocarcinoma. Oncogene 33, 899–908 (2014).
pubmed: 23416978 doi: 10.1038/onc.2013.23
Mohammed, H. et al. Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Rep. 3, 342–349 (2013).
pubmed: 23403292 pmcid: 7116645 doi: 10.1016/j.celrep.2013.01.010
Cao, A. R. et al. Genome-wide analysis of transcription factor E2F1 mutant proteins reveals that N- and C-terminal protein interaction domains do not participate in targeting E2F1 to the human genome. J. Biol. Chem. 286, 11985–11996 (2011).
pubmed: 21310950 pmcid: 3069401 doi: 10.1074/jbc.M110.217158
Gallenne, T. et al. Systematic functional perturbations uncover a prognostic genetic network driving human breast cancer. Oncotarget 8, 20572–20587 (2017).
pubmed: 28411283 pmcid: 5400527 doi: 10.18632/oncotarget.16244
Lee, B. K., Bhinge, A. A. & Iyer, V. R. Wide-ranging functions of E2F4 in transcriptional activation and repression revealed by genome-wide analysis. Nucleic Acids Res. 39, 3558–3573 (2011).
pubmed: 21247883 pmcid: 3089461 doi: 10.1093/nar/gkq1313
Alla, V. et al. E2F1 in melanoma progression and metastasis. J. Natl Cancer Inst. 102, 127–133 (2010).
pubmed: 20026813 doi: 10.1093/jnci/djp458
Feliciano, A. et al. miR-99a reveals two novel oncogenic proteins E2F2 and EMR2 and represses stemness in lung cancer. Cell Death Dis. 8, e3141 (2017).
pubmed: 29072692 pmcid: 5680913 doi: 10.1038/cddis.2017.544
Iwamoto, M. et al. Overexpression of E2F-1 in lung and liver metastases of human colon cancer is associated with gene amplification. Cancer Biol. Ther. 3, 395–399 (2004).
pubmed: 14726656 doi: 10.4161/cbt.3.4.733
Khaleel, S. S., Andrews, E. H., Ung, M., DiRenzo, J. & Cheng, C. E2F4 regulatory program predicts patient survival prognosis in breast cancer. Breast Cancer Res. 16, 486 (2014).
pubmed: 25440089 pmcid: 4303196 doi: 10.1186/s13058-014-0486-7
Liu, J. et al. E2F4 promotes the proliferation of hepatocellular carcinoma cells through upregulation of CDCA3. J. Cancer 12, 5173–5180 (2021).
pubmed: 34335934 pmcid: 8317516 doi: 10.7150/jca.53708
Ma, X. et al. Overexpression of E2F1 promotes tumor malignancy and correlates with TNM stages in clear cell renal cell carcinoma. PloS One 8, e73436 (2013).
pubmed: 24023875 pmcid: 3762742 doi: 10.1371/journal.pone.0073436
Zeng, Z., Cao, Z. & Tang, Y. Increased E2F2 predicts poor prognosis in patients with HCC based on TCGA data. BMC Cancer 20, 1037 (2020).
pubmed: 33115417 pmcid: 7594443 doi: 10.1186/s12885-020-07529-2
Zhou, Q., Zhang, F., He, Z. & Zuo, M. Z. E2F2/5/8 serve as potential prognostic biomarkers and targets for human ovarian cancer. Front. Oncol. 9, 161 (2019).
pubmed: 30967995 pmcid: 6439355 doi: 10.3389/fonc.2019.00161
Verduin, M., Hoeben, A., De Ruysscher, D. & Vooijs, M. Patient-derived cancer organoids as predictors of treatment response. Front Oncol. 11, 641980 (2021).
pubmed: 33816288 pmcid: 8012903 doi: 10.3389/fonc.2021.641980
Tiriac, H. et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 8, 1112–1129 (2018).
pubmed: 29853643 pmcid: 6125219 doi: 10.1158/2159-8290.CD-18-0349
Estaras, C., Benner, C. & Jones, K. A. SMADs and YAP compete to control elongation of beta-catenin:LEF-1-recruited RNAPII during hESC differentiation. Mol. Cell 58, 780–793 (2015).
pubmed: 25936800 pmcid: 5315497 doi: 10.1016/j.molcel.2015.04.001
Liang, W. S. et al. Genome-wide characterization of pancreatic adenocarcinoma patients using next generation sequencing. PloS One 7, e43192 (2012).
pubmed: 23071490 pmcid: 3468610 doi: 10.1371/journal.pone.0043192
Gore, A. J., Deitz, S. L., Palam, L. R., Craven, K. E. & Korc, M. Pancreatic cancer-associated retinoblastoma 1 dysfunction enables TGF-beta to promote proliferation. J. Clin. Investig. 124, 338–352 (2014).
pubmed: 24334458 doi: 10.1172/JCI71526
Bagella, L. et al. A small molecule based on the pRb2/p130 spacer domain leads to inhibition of cdk2 activity, cell cycle arrest and tumor growth reduction in vivo. Oncogene 26, 1829–1839 (2007).
pubmed: 17043661 doi: 10.1038/sj.onc.1209987
Cao, L. et al. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 184, 5031–5052.e5026 (2021).
pubmed: 34534465 pmcid: 8654574 doi: 10.1016/j.cell.2021.08.023
Scheel, C. & Weinberg, R. A. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin. Cancer Biol. 22, 396–403 (2012).
pubmed: 22554795 pmcid: 6220425 doi: 10.1016/j.semcancer.2012.04.001
Pauklin, S. & Vallier, L. The cell-cycle state of stem cells determines cell fate propensity. Cell 155, 135–147 (2013).
pubmed: 24074866 pmcid: 3898746 doi: 10.1016/j.cell.2013.08.031
Oki, T. et al. A novel cell-cycle-indicator, mVenus-p27K-, identifies quiescent cells and visualizes G0-G1 transition. Sci. Rep. 4, 4012 (2014).
pubmed: 24500246 pmcid: 3915272 doi: 10.1038/srep04012
Werba, G. et al. Single-cell RNA sequencing reveals the effects of chemotherapy on human pancreatic adenocarcinoma and its tumor microenvironment. Nat. Commun. 14, 797 (2023).
pubmed: 36781852 pmcid: 9925748 doi: 10.1038/s41467-023-36296-4
Thomas, D. & Radhakrishnan, P. Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis. Mol. Cancer 18, 14 (2019).
pubmed: 30665410 pmcid: 6341551 doi: 10.1186/s12943-018-0927-5
Truong, L. H. & Pauklin, S. Pancreatic cancer microenvironment and cellular composition: current understandings and therapeutic approaches. Cancers 13, 5028 (2021).
pubmed: 34638513 pmcid: 8507722 doi: 10.3390/cancers13195028
Wang, D. et al. The extracellular matrix: a key accomplice of cancer stem cell migration, metastasis formation, and drug resistance in PDAC. Cancers 14, 3998 (2022).
pubmed: 36010993 pmcid: 9406497 doi: 10.3390/cancers14163998
Mouti, M. A. et al. KMT2A associates with PHF5A-PHF14-HMG20A-RAI1 subcomplex in pancreatic cancer stem cells and epigenetically regulates their characteristics. Nat. Commun. 14, 5685 (2023).
pubmed: 37709746 pmcid: 10502114 doi: 10.1038/s41467-023-41297-4
Humphreys, P. G. et al. Discovery of a potent, cell penetrant, and selective p300/CBP-associated factor (PCAF)/general control nonderepressible 5 (GCN5) bromodomain chemical probe. J. Med. Chem. 60, 695–709 (2017).
pubmed: 28002667 doi: 10.1021/acs.jmedchem.6b01566
Moustakim, M. et al. Discovery of a PCAF bromodomain chemical probe. Angew. Chem. Int. Ed. Engl. 56, 827–831 (2017).
pubmed: 27966810 doi: 10.1002/anie.201610816
Haque, M. E. et al. The GCN5: its biological functions and therapeutic potentials. Clin. Sci. 135, 231–257 (2021).
doi: 10.1042/CS20200986
Petty, E. L. & Pillus, L. Cell cycle roles for GCN5 revealed through genetic suppression. Biochim. Biophys. Acta Gene Regul. Mech. 1864, 194625 (2021).
pubmed: 32798737 doi: 10.1016/j.bbagrm.2020.194625
Koutelou, E., Farria, A. T. & Dent, S. Y. R. Complex functions of Gcn5 and Pcaf in development and disease. Biochim Biophys. Acta Gene Regul. Mech. 1864, 194609 (2021).
pubmed: 32730897 doi: 10.1016/j.bbagrm.2020.194609
Jin, Q. et al. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J. 30, 249–262 (2011).
pubmed: 21131905 doi: 10.1038/emboj.2010.318
van Amerongen, R., Bowman, A. N. & Nusse, R. Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland. Cell Stem Cell 11, 387–400 (2012).
pubmed: 22863533 doi: 10.1016/j.stem.2012.05.023
Zeng, Y. A. & Nusse, R. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell 6, 568–577 (2010).
pubmed: 20569694 pmcid: 2917779 doi: 10.1016/j.stem.2010.03.020
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).
Neve, R. M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515–527 (2006).
pubmed: 17157791 pmcid: 2730521 doi: 10.1016/j.ccr.2006.10.008
Chavez, K. J., Garimella, S. V. & Lipkowitz, S. Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis. 32, 35–48 (2010).
pubmed: 21778573 pmcid: 3532890 doi: 10.3233/BD-2010-0307
Lambert, A. W. & Weinberg, R. A. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat. Rev. Cancer 21, 325–338 (2021).
pubmed: 33547455 doi: 10.1038/s41568-021-00332-6
Saha, T. & Lukong, K. E. Breast cancer stem-like cells in drug resistance: a review of mechanisms and novel therapeutic strategies to overcome drug resistance. Front. Oncol. 12, 856974 (2022).
pubmed: 35392236 pmcid: 8979779 doi: 10.3389/fonc.2022.856974
Song, K. & Farzaneh, M. Signaling pathways governing breast cancer stem cells behavior. Stem Cell Res Ther. 12, 245 (2021).
pubmed: 33863385 pmcid: 8052733 doi: 10.1186/s13287-021-02321-w
Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).
pubmed: 23562644 pmcid: 3702034 doi: 10.1016/j.cell.2013.03.020
Holland, J. D., Klaus, A., Garratt, A. N. & Birchmeier, W. Wnt signaling in stem and cancer stem cells. Curr. Opin. Cell Biol. 25, 254–264 (2013).
pubmed: 23347562 doi: 10.1016/j.ceb.2013.01.004
Gavin, B. J. & McMahon, A. P. Differential regulation of the Wnt gene family during pregnancy and lactation suggests a role in postnatal development of the mammary gland. Mol. Cell Biol. 12, 2418–2423 (1992).
pubmed: 1373817 pmcid: 364414
Bradbury, J. M., Edwards, P. A., Niemeyer, C. C. & Dale, T. C. Wnt-4 expression induces a pregnancy-like growth pattern in reconstituted mammary glands in virgin mice. Dev. Biol. 170, 553–563 (1995).
pubmed: 7649383 doi: 10.1006/dbio.1995.1236
Brisken, C. et al. Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev. 14, 650–654 (2000).
pubmed: 10733525 pmcid: 316462 doi: 10.1101/gad.14.6.650
Tepera, S. B., McCrea, P. D. & Rosen, J. M. A beta-catenin survival signal is required for normal lobular development in the mammary gland. J. Cell Sci. 116, 1137–1149 (2003).
pubmed: 12584256 doi: 10.1242/jcs.00334
Lane, T. F. & Leder, P. Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene 15, 2133–2144 (1997).
pubmed: 9393971 doi: 10.1038/sj.onc.1201593
Imbert, A., Eelkema, R., Jordan, S., Feiner, H. & Cowin, P. Delta N89 beta-catenin induces precocious development, differentiation, and neoplasia in mammary gland. J. Cell Biol. 153, 555–568 (2001).
pubmed: 11331306 pmcid: 2190562 doi: 10.1083/jcb.153.3.555
Michaelson, J. S. & Leder, P. beta-catenin is a downstream effector of Wnt-mediated tumorigenesis in the mammary gland. Oncogene 20, 5093–5099 (2001).
pubmed: 11526497 doi: 10.1038/sj.onc.1204586
Miyoshi, K. et al. Activation of beta -catenin signaling in differentiated mammary secretory cells induces transdifferentiation into epidermis and squamous metaplasias. Proc. Natl Acad. Sci. USA 99, 219–224 (2002).
pubmed: 11773619 pmcid: 117542 doi: 10.1073/pnas.012414099
Miyoshi, K. et al. Activation of different Wnt/beta-catenin signaling components in mammary epithelium induces transdifferentiation and the formation of pilar tumors. Oncogene 21, 5548–5556 (2002).
pubmed: 12165853 doi: 10.1038/sj.onc.1205686
Rowlands, T. M., Pechenkina, I. V., Hatsell, S. J., Pestell, R. G. & Cowin, P. Dissecting the roles of beta-catenin and cyclin D1 during mammary development and neoplasia. Proc. Natl Acad. Sci. USA 100, 11400–11405 (2003).
pubmed: 13679587 pmcid: 208769 doi: 10.1073/pnas.1534601100
Teuliere, J. et al. Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development 132, 267–277 (2005).
pubmed: 15590737 doi: 10.1242/dev.01583
Malanchi, I. et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481, 85–89 (2012).
doi: 10.1038/nature10694
van Velthoven, C. T. J. & Rando, T. A. Stem cell quiescence: dynamism, restraint, and cellular idling. Cell Stem Cell 24, 213–225 (2019).
pubmed: 30735649 pmcid: 6413865 doi: 10.1016/j.stem.2019.01.001
Rodgers, J. T. et al. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert). Nature 510, 393–396 (2014).
pubmed: 24870234 pmcid: 4065227 doi: 10.1038/nature13255
Laurenti, E. et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell 16, 302–313 (2015).
pubmed: 25704240 pmcid: 4359055 doi: 10.1016/j.stem.2015.01.017
Vetrie, D., Helgason, G. V. & Copland, M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat. Rev. Cancer 20, 158–173 (2020).
pubmed: 31907378 doi: 10.1038/s41568-019-0230-9
Yano, S. et al. A genetically engineered oncolytic adenovirus decoys and lethally traps quiescent cancer stem-like cells in S/G2/M phases. Clin. Cancer Res. 19, 6495–6505 (2013).
pubmed: 24081978 doi: 10.1158/1078-0432.CCR-13-0742
Chittajallu, D. R. et al. In vivo cell-cycle profiling in xenograft tumors by quantitative intravital microscopy. Nat. Methods 12, 577–585 (2015).
pubmed: 25867850 pmcid: 4579269 doi: 10.1038/nmeth.3363
Hsu, J. & Sage, J. Novel functions for the transcription factor E2F4 in development and disease. Cell Cycle 15, 3183–3190 (2016).
pubmed: 27753528 pmcid: 5176148 doi: 10.1080/15384101.2016.1234551
Dick, F. A. & Rubin, S. M. Molecular mechanisms underlying RB protein function. Nat. Rev. Mol. Cell Biol. 14, 297–306 (2013).
pubmed: 23594950 pmcid: 4754300 doi: 10.1038/nrm3567
Hsu, J. et al. E2F4 regulates transcriptional activation in mouse embryonic stem cells independently of the RB family. Nat. Commun. 10, 2939 (2019).
pubmed: 31270324 pmcid: 6610666 doi: 10.1038/s41467-019-10901-x
Polyak, K. & Weinberg, R. A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer 9, 265–273 (2009).
pubmed: 19262571 doi: 10.1038/nrc2620
Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239–252 (2009).
pubmed: 19279573 doi: 10.1038/nrc2618
Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).
pubmed: 19460966 pmcid: 2998180 doi: 10.1126/science.1171362
Steele, N. G. et al. Inhibition of Hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin. Cancer Res. 27, 2023–2037 (2021).
pubmed: 33495315 pmcid: 8026631 doi: 10.1158/1078-0432.CCR-20-3715
Kent, L. N. & Leone, G. The broken cycle: E2F dysfunction in cancer. Nat. Rev. Cancer 19, 326–338 (2019).
pubmed: 31053804 doi: 10.1038/s41568-019-0143-7
Salvador-Barbero, B. et al. CDK4/6 inhibitors impair recovery from cytotoxic chemotherapy in pancreatic adenocarcinoma. Cancer Cell 37, 340–353.e346 (2020).
pubmed: 32109375 doi: 10.1016/j.ccell.2020.01.007
Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019).
pubmed: 30371878 doi: 10.1093/nar/gky1015
Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).
pubmed: 25730490 pmcid: 4393883 doi: 10.1038/nmeth.3312
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).
pubmed: 23287722 pmcid: 3712628 doi: 10.1126/science.1232033
Hockemeyer, D. et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat. Biotechnol. 29, 731–734 (2011).
pubmed: 21738127 pmcid: 3152587 doi: 10.1038/nbt.1927
Krentz, N. A., Nian, C. & Lynn, F. C. TALEN/CRISPR-mediated eGFP knock-in add-on at the OCT4 locus does not impact differentiation of human embryonic stem cells towards endoderm. PloS One 9, e114275 (2014).
pubmed: 25474420 pmcid: 4256397 doi: 10.1371/journal.pone.0114275
Pauklin, S., Madrigal, P., Bertero, A. & Vallier, L. Initiation of stem cell differentiation involves cell cycle-dependent regulation of developmental genes by Cyclin D. Genes Dev. 30, 421–433 (2016).
pubmed: 26883361 pmcid: 4762427 doi: 10.1101/gad.271452.115
Bertero, A. et al. Activin/nodal signaling and NANOG orchestrate human embryonic stem cell fate decisions by controlling the H3K4me3 chromatin mark. Genes Dev. 29, 702–717 (2015).
pubmed: 25805847 pmcid: 4387713 doi: 10.1101/gad.255984.114
Xu, X. et al. A comprehensive ChIP-chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. Genome Res. 17, 1550–1561 (2007).
pubmed: 17908821 pmcid: 2045138 doi: 10.1101/gr.6783507
Veeman, M. T., Slusarski, D. C., Kaykas, A., Louie, S. H. & Moon, R. T. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr. Biol. 13, 680–685 (2003).
pubmed: 12699626 doi: 10.1016/S0960-9822(03)00240-9
Brown, S. et al. Activin/Nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors. Stem Cells 29, 1176–1185 (2011).
pubmed: 21630377 doi: 10.1002/stem.666
Vallier, L. et al. Enhancing and diminishing gene function in human embryonic stem cells. Stem Cells 22, 2–11 (2004).
pubmed: 14688386 doi: 10.1634/stemcells.22-1-2
Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008).
pubmed: 18267078 doi: 10.1016/j.cell.2007.12.033
Cancer Genome Atlas, N. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).
doi: 10.1038/nature11412
Mercatelli, D., Lopez-Garcia, G. & Giorgi, F. M. corto: a lightweight R package for gene network inference and master regulator analysis. Bioinformatics 36, 3916–3917 (2020).
pubmed: 32232425 doi: 10.1093/bioinformatics/btaa223
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
pubmed: 31740819 pmcid: 6884693 doi: 10.1038/s41592-019-0619-0
McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e324 (2019).
pubmed: 30954475 pmcid: 6853612 doi: 10.1016/j.cels.2019.03.003
Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).
pubmed: 30643263 pmcid: 6340744 doi: 10.1038/s41590-018-0276-y
Gao, R. et al. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nat. Biotechnol. 39, 599–608 (2021).
pubmed: 33462507 pmcid: 8122019 doi: 10.1038/s41587-020-00795-2
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e3529 (2021).
pubmed: 34062119 pmcid: 8238499 doi: 10.1016/j.cell.2021.04.048
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).
pubmed: 24658644 pmcid: 4122333 doi: 10.1038/nbt.2859
Garcia-Alonso, L. et al. Single-cell roadmap of human gonadal development. Nature 607, 540–547 (2022).
pubmed: 35794482 pmcid: 9300467 doi: 10.1038/s41586-022-04918-4
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize Implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
pubmed: 24930139 doi: 10.1093/bioinformatics/btu393
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).
pubmed: 27348712 doi: 10.1038/nmeth.3901
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
pubmed: 30423086 pmcid: 6129281 doi: 10.1093/bioinformatics/bty560
de Sena Brandine, G. & Smith, A. D. Falco: high-speed FastQC emulation for quality control of sequencing data. F1000Res 8, 1874 (2019).
pubmed: 33552473 doi: 10.12688/f1000research.21142.1
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Stephens, M. False discovery rates: a new deal. Biostatistics 18, 275–294 (2017).
pubmed: 27756721
Ignatiadis, N., Klaus, B., Zaugg, J. B. & Huber, W. Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nat. methods 13, 577–580 (2016).
pubmed: 27240256 pmcid: 4930141 doi: 10.1038/nmeth.3885
Korotkevich, G., Sukhov, V. & Sergushichev, A. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2016).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47, W191–W198 (2019).
pubmed: 31066453 pmcid: 6602461 doi: 10.1093/nar/gkz369
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50, D543–D552 (2022).
pubmed: 34723319 doi: 10.1093/nar/gkab1038

Auteurs

Chao-Hui Chang (CH)

Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK.

Feng Liu (F)

Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK.

Stefania Militi (S)

Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK.

Svenja Hester (S)

Target Discovery Institute, Nuffield Department of Medicine, Old Road, University of Oxford, Oxford, OX3 7FZ, UK.

Reshma Nibhani (R)

Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK.

Siwei Deng (S)

Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK.

James Dunford (J)

Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK.

Aniko Rendek (A)

Department of Histopathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.

Zahir Soonawalla (Z)

Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals NHS, Oxford, UK.

Roman Fischer (R)

Target Discovery Institute, Nuffield Department of Medicine, Old Road, University of Oxford, Oxford, OX3 7FZ, UK.

Udo Oppermann (U)

Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK.

Siim Pauklin (S)

Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK. siim.pauklin@ndorms.ox.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH