Direct esterification of amides by the dimethylsulfate-mediated activation of amide C-N bonds.


Journal

Communications chemistry
ISSN: 2399-3669
Titre abrégé: Commun Chem
Pays: England
ID NLM: 101725670

Informations de publication

Date de publication:
27 Apr 2024
Historique:
received: 10 01 2024
accepted: 16 04 2024
medline: 28 4 2024
pubmed: 28 4 2024
entrez: 27 4 2024
Statut: epublish

Résumé

Amides are important intermediates in organic chemistry and the pharmaceutical industry, but their low reactivity requires catalysts and/or severe reaction conditions for esterification. Here, a novel approach was devised to convert amides into esters without the use of transition metals. The method effectively overcomes the inherent low reactivity of amides by employing dimethylsulfate-mediated reaction to activate the C-N bonds. To confirm the proposed reaction mechanism, control experiments and density functional theory (DFT) calculations were conducted. The method demonstrates a wide array of substrates, including amides with typical H/alkyl/aryl substitutions, N,N-disubstituted amides, amides derived from alkyl, aryl, or vinyl carboxylic acids, and even amino acid substrates with stereocentres. Furthermore, we have shown the effectiveness of dimethylsulfate in removing acyl protective groups in amino derivatives. This study presents a method that offers efficiency and cost-effectiveness in broadening the esterification capabilities of amides, thereby facilitating their increased utilization as synthetic compounds in diverse transformations.

Identifiants

pubmed: 38678046
doi: 10.1038/s42004-024-01180-9
pii: 10.1038/s42004-024-01180-9
doi:

Types de publication

Journal Article

Langues

eng

Pagination

93

Informations de copyright

© 2024. The Author(s).

Références

Bode, J. Emerging methods for the synthesis of amide and peptide bonds. Curr. Opin. Drug Discovery Dev. 9, 765–775 (2006).
Clayden, J. Book Review: The Amide Linkage Structural Significance in Chemistry, Biochemistry, and Materials Science. Edited by Arthur Greenberg, Curt M. Breneman and Joel F. Liebman. Angew. Chem. Int. Ed. 42, 1788–1789 (2003).
doi: 10.1002/anie.200390389
Cupido, T. et al. The synthesis of naturally occurring peptides and their analogs. Curr. Opin. Drug Discovery Dev. 10, 768–783 (2007).
Greenberg, A., Breneman, C. M. & Liebman, J. F. The amide linkage: Structural significance in chemistry, biochemistry, and materials science. 76–79 (John Wiley & Sons Inc.; Hoboken, NJ, USA, 2000).
Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins: two hydrogenbonded helical configurations of the polypeptide chain. Proc. Natl Acad. Sci. USA 37, 205–211 (1951).
doi: 10.1073/pnas.37.4.205 pubmed: 14816373 pmcid: 1063337
Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals: miniperspective. J. Med. Chem. 57, 10257–10274 (2014).
doi: 10.1021/jm501100b pubmed: 25255204
Greenberg, A., Breneman, C. M. & Liebman, J. F. (eds) The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science. 33–58 (John Wiley & Sons Inc.; Hoboken, NJ, USA, 2003)
Basch, H. & Hoz, S. Resonance in formamide: resolution of contending models. Chem. Phys. Lett. 294, 117–125 (1998).
doi: 10.1016/S0009-2614(98)00846-X
Ilieva, S., Hadjieva, B. & Galabov, B. Theory supplemented by experiment. Electronic effects on the rotational stability of the amide group in p-substituted acetanilides. J. Org. Chem. 67, 6210–6215 (2002).
doi: 10.1021/jo025791x pubmed: 12182662
Kemnitz, C. R. & Loewen, M. J. Amide resonance correlates with a breadth of C− N rotation barriers. J. Am. Chem. Soc. 129, 2521–2528 (2007).
doi: 10.1021/ja0663024 pubmed: 17295481
Lauvergnat, D. & Hiberty, P. C. Role of conjugation in the stabilities and rotational barriers of formamide and thioformamide. An ab initio valence-bond study. J. Am. Chem. Soc 119, 9478–9482 (1997).
doi: 10.1021/ja9639426
Quiñonero, D. et al. The resonance model in amides: a ̀ combined crystallographic and ab initio investigation. New J. Chem. 25, 259–261 (2001).
doi: 10.1039/b008260k
Eisenberg, D. The discovery of the α-helix and β-sheet, the principal structural features of proteins. Proc. Natl Acad. Sci. USA 100, 11207–11210 (2003).
doi: 10.1073/pnas.2034522100 pubmed: 12966187 pmcid: 208735
Ouyang, K. et al. Transition-metal-catalyzed cleavage of C-N single bonds. Chem. Rev. 115, 12045–12090 (2015).
doi: 10.1021/acs.chemrev.5b00386 pubmed: 26423200
Wang, Q. et al. Transition-metal catalysed C–N bond activation. Chem. Soc. Rev. 45, 1257–1272 (2016).
doi: 10.1039/C5CS00534E pubmed: 26764537
Deguchi, T. et al. Direct catalytic alcoholysis of unactivated 8-aminoquinoline amides. ACS Catal. 7, 3157–3161 (2017).
doi: 10.1021/acscatal.7b00442
Kita, Y. et al. Zinc-catalyzed amide cleavage and esterification of β-hydroxyethylamides. Angew. Chem. Int. Ed. 51, 5723–5726 (2012).
doi: 10.1002/anie.201201789
Kita, Y. et al. Combined catalytic system of scandium triflate and boronic ester for amide bond cleavage. Adv. Synth. Catal. 355, 3391–3395 (2013).
doi: 10.1002/adsc.201300819
Hirai, T. et al. Esterification of tertiary amides: remarkable additive effects of potassium alkoxides for generating hetero manganese–potassium dinuclear active species. Chem. Eur. J. 26, 10735 (2020).
doi: 10.1002/chem.202001447 pubmed: 32346933
Hie, L. et al. Conversion of amides to esters by the nickel-catalysed activation of amide C–N bonds. Nature 524, 79–83 (2015).
doi: 10.1038/nature14615 pubmed: 26200342 pmcid: 4529356
Hie, L. et al. Nickel-catalyzed esterification of aliphatic amides. Angew. Chem. Int. Ed. 55, 15129–15132 (2016).
doi: 10.1002/anie.201607856
Bourne-Branchu, Y., Gosmini, C. & Danoun, G. Cobalt-catalyzed esterification of amides. Chem. Eur. J. 23, 10043–10047 (2017).
doi: 10.1002/chem.201702608 pubmed: 28594064
Li, G., Lei, P. & Szostak, M. Transition-metal-free esterification of amides via selective N-C cleavage under mild conditions. Org. Lett. 20, 5622–5625 (2018).
doi: 10.1021/acs.orglett.8b02323 pubmed: 30178673
Ye, D. et al. Cesium carbonate catalyzed esterification of N-benzyl-N-boc-amides under ambient conditions. Org. Lett. 21, 6888–6892 (2019).
doi: 10.1021/acs.orglett.9b02513 pubmed: 31407912
Huang, C. et al. Hydrogen-bond-assisted transition-metal-free catalytic transformation of amides to esters. Sci. China Chem. 64, 66–71 (2021).
doi: 10.1007/s11426-020-9883-3
Wu, H. et al. Fluoride-catalyzed esterification of amides. Chem. Eur. J. 24, 3444–3447 (2018).
doi: 10.1002/chem.201800336 pubmed: 29369460
Sheehan, J. C. & Nafssi, V. M. M. α-Lactams. VIII. O-Alkylation of α-Lactams. J. Org. Chem. 35, 4246–4248 (1970).
doi: 10.1021/jo00837a630
Kiessling, A. & McClure, C. K. S. The Conversion of Amides to Esters with Meerwein’S Reagent. Application to the Synthesis of a Carfentanil Precursor. Synth. Commun. 27, 923–937 (1997).
doi: 10.1080/00397919708004212
Hanessian, S. Selective hydrolysis of amide bonds in acetamido deoxy sugars. o-Ethyl acetamidium fluoroborates. Tetrahedron Lett. 8, 1549–1552 (1967).
doi: 10.1016/S0040-4039(00)90999-7
Kishi, Y. et al. Synthetic studies on tetrodotoxin and related compounds. IV. Stereospecific total syntheses of DL-tetrodotoxin. J. Am. Chem. Soc. 94, 9219–9221 (1972).
doi: 10.1021/ja00781a039 pubmed: 4642371
Menezes, R. & Smith, M. B. A mild and facile route to ω-amino esters. Synth. Commun. 18, 1625–1636 (1988).
doi: 10.1080/00397918808081323
Keck, G. E., McLaws, M. D. & Wager, T. T. A direct and mild conversion of tertiary aryl amides to methyl esters using trimethyloxonium tetrafluoroborate: a very useful complement to directed metalation reactions. Tetrahedron 56, 9875–9883 (2000).
doi: 10.1016/S0040-4020(00)00969-8
Dimethyl suphate-Hazardous Substance Fact Sheet. 1–6 https://nj.gov/health/eoh/rtkweb/documents/fs/0768.pdf (2007).
Zhang, J. et al. Dimethyl sulfate poisoning in China: a fatal case and a 45-year retrospective study. Forensic. Sci. Med. Pathol. Published online November 4 1–8 (2023).
Lunn, G. & Sansone, E. B. Validation of techniques for the destruction of dimethyl sulfate. Am Ind Hyg Assoc J. 46, 111–114 (1985).
doi: 10.1080/15298668591394518 pubmed: 3993540
Lee, S. J. et al. Cu-mediated aminoquinoline-directed radiofluorination of aromatic C-H bonds with K8 F. Angew. Chem. Int. Ed. 58, 3119–3122 (2019).
doi: 10.1002/anie.201812701
Mondal, S. & Hajra, A. Ruthenium(II)-catalyzed remote C-H addition of 8-aminoquinoline amide to activated aldehyde. Org. Biomol. Chem. 16, 2846–2850 (2018).
doi: 10.1039/C8OB00537K pubmed: 29623330
Ghosh, T., Maity, P. & Ranu, B. C. Cu(OAc)2-promoted ortho C(sp(2))-H amidation of 8-aminoquinoline benzamide with acyl azide: selective formation of aroyl or acetyl amide based on catalyst loading. J. Org. Chem. 83, 11758–11767 (2018).
doi: 10.1021/acs.joc.8b01654 pubmed: 30211551
Zhang, Z. Z. et al. Synthesis of Bicyclo n.1.0 alkanes by a Cobalt-Catalyzed Multiple C(sp(3))-H Activation Strategy. Angew. Chem. Int. Ed. 56, 13145–13149 (2017).
doi: 10.1002/anie.201707638
Xia, H. et al. Palladium-catalyzed direct sulfonylation of C-H bonds with the insertion of sulfur dioxide. Chem. Commun 53, 12548–12551 (2017).
doi: 10.1039/C7CC07279A
Nguyen, T. T. & Daugulis, O. Palladiumcatalyzed, aminoquinoline-directed arylation of phosphonamidate and phosphinic amide sp(3) C-H bonds. Chem. Commun 53, 4609–4611 (2017).
doi: 10.1039/C7CC02063E
Nguyen, T. T., Grigorjeva, L. & Daugulis, O. Cobalt catalyzed, aminoquinoline-directed functionalization of phosphinic amide sp(2) C-H Bonds. ACS Catal 6, 551–554 (2016).
doi: 10.1021/acscatal.5b02391 pubmed: 27525171
Sattar, M. et al. Functionalization of ferrocene-carboxylic acid by using 8-Aminoquinoline as a Removable Directing Group. Adv. Synth. Catal 358, 240–253 (2016).
doi: 10.1002/adsc.201500791

Auteurs

Hongjian Qin (H)

Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, PR China.
University of Chinese Academy of Sciences, Beijing, PR China.

Zijian Han (Z)

University of Chinese Academy of Sciences, Beijing, PR China.
CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China.

Emmanuel Mintah Bonku (EM)

University of Chinese Academy of Sciences, Beijing, PR China.
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China.

Haiguo Sun (H)

University of Chinese Academy of Sciences, Beijing, PR China.
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China.

Abdullajon Odilov (A)

University of Chinese Academy of Sciences, Beijing, PR China.
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China.

Fuqiang Zhu (F)

Topharman Shanghai Co., Ltd., Shanghai, PR China.

Safomuddin Abduahadi (S)

University of Chinese Academy of Sciences, Beijing, PR China.
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China.

Weiliang Zhu (W)

University of Chinese Academy of Sciences, Beijing, PR China. wlzhu@simm.ac.cn.
CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China. wlzhu@simm.ac.cn.

Jingshan Shen (J)

University of Chinese Academy of Sciences, Beijing, PR China. shenjingshan@simm.ac.cn.
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China. shenjingshan@simm.ac.cn.

Haji A Aisa (HA)

Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, PR China. haji@ms.xjb.ac.cn.
University of Chinese Academy of Sciences, Beijing, PR China. haji@ms.xjb.ac.cn.

Classifications MeSH