Nicotinamide Mononucleotide and Nicotinamide Riboside Reverse Ovarian Aging in Rats Via Rebalancing Mitochondrial Fission and Fusion Mechanisms.
NAD+ precursor
anti-aging
dynamine-related protein 1
mitochondrial dynamics
sirtuins
Journal
Pharmaceutical research
ISSN: 1573-904X
Titre abrégé: Pharm Res
Pays: United States
ID NLM: 8406521
Informations de publication
Date de publication:
29 Apr 2024
29 Apr 2024
Historique:
received:
03
02
2024
accepted:
16
04
2024
medline:
30
4
2024
pubmed:
30
4
2024
entrez:
29
4
2024
Statut:
aheadofprint
Résumé
This study examined the effects of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) on folliculogenesis and mitochondrial dynamics (fission and fusion mechanisms) in ovaries of middle-aged female rats. Experimental groups were young, middle-aged (control), middle-aged + NMN and middle-aged + NR. NMN was administered at a concentration of 500 mg/kg intraperitoneally but NR at a concentration of 200 mg/kg by gavage. Follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels were analyzed by ELISA. Hematoxylin-eosin staining sections were used for histopathological examination and follicles-counting. Expression levels of mitochondrial fission (Drp1, Mff and Fis1) and fusion (Mfn1, Mfn2, Opa1, Fam73a and Fam73b) genes as well as Sirt1 gene were analyzed by RT-PCR. Expression levels of fission-related proteins (DRP1, MFF, FIS1 and SIRT1) were analyzed by Western Blot. Higher ovarian index, more corpus luteum and antral follicles were detected in NMN and NR groups compared to the control. NMN or NR could rebalance LH/FSH ratio. The control group was determined to possess higher expression levels of fission genes and lower expression levels of fusion genes when compared the young group. In comparison with the control group, both NMN and NR group were found to exhibit less mitochondrial fission but more mitochondrial fussion. Higher gene and protein levels for Sirt1 were measured in NMN and NR groups compared to the control group. This study reveals that NMN alone or NR alone can rebalance mitochondrial dynamics by decreasing excessive fission in middle-aged rat ovaries, thus alleviating mitochondrial stress and correcting aging-induced folliculogenesis abnormalities.
Identifiants
pubmed: 38684562
doi: 10.1007/s11095-024-03704-3
pii: 10.1007/s11095-024-03704-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Atatürk Üniversitesi
ID : TDK-2021-9146
Informations de copyright
© 2024. The Author(s).
Références
Suárez-Rivero JM, Villanueva-Paz M, de la Cruz-Ojeda P, De la Mata M, Cotán D, Oropesa-Ávila M, et al. Mitochondrial dynamics in mitochondrial diseases. Diseases. 2016;5:1.
pubmed: 28933354
pmcid: 5456341
doi: 10.3390/diseases5010001
Tilokani L, Nagashima S, Paupe V, Prudent J. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. 2018;62:341–60.
pubmed: 30030364
pmcid: 6056715
doi: 10.1042/EBC20170104
Chan DC. Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol. 2006;22:79–99.
pubmed: 16704336
doi: 10.1146/annurev.cellbio.22.010305.104638
Westermann B. Molecular machinery of mitochondrial fusion and fission. J Biol Chem. 2008;283:13501–5.
pubmed: 18372247
doi: 10.1074/jbc.R800011200
Grohm J, Kim SW, Mamrak U, Tobaben S, Cassidy-Stone A, Nunnari J, et al. Inhibition of Drp1 provides neuroprotection in vitro and in vivo. Cell Death Differ. 2012;19:1446–58.
pubmed: 22388349
pmcid: 3422469
doi: 10.1038/cdd.2012.18
Ježek J, Cooper KF, Strich R. Reactive oxygen species and mitochondrial dynamics: the yin and yang of mitochondrial dysfunction and cancer progression. Antioxidants. 2018;7:13.
pubmed: 29337889
pmcid: 5789323
doi: 10.3390/antiox7010013
Arslan NP, Keles ON, Gonul-Baltaci N. Effect of titanium dioxide and silver nanoparticles on mitochondrial dynamics in mouse testis tissue. Biol Trace Elem Res. 2022;200:1650–8.
pubmed: 34105085
doi: 10.1007/s12011-021-02763-6
Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol. 2007;8:870–9.
pubmed: 17928812
doi: 10.1038/nrm2275
Liu XM, Zhang YP, Ji SY, Li BT, Tian X, Li D, Fan HY. Mitoguardin-1 and-2 promote maturation and the developmental potential of mouse oocytes by maintaining mitochondrial dynamics and functions. Oncotarget. 2016;7:1155.
pubmed: 26716412
doi: 10.18632/oncotarget.6713
Liu XM, Zhang YL, Ji SY, Zhao LW, Shang WN, Li D, Fan HY. Mitochondrial function regulated by mitoguardin-1/2 is crucial for ovarian endocrine functions and ovulation. Endocrinology. 2017;158:3988–99.
pubmed: 28938432
doi: 10.1210/en.2017-00487
Youle RJ, Van Der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337:1062–5.
pubmed: 22936770
pmcid: 4762028
doi: 10.1126/science.1219855
Ren L, Chen X, Chen X, Li J, Cheng B, Xia J. Mitochondrial dynamics: fission and fusion in fate determination of mesenchymal stem cells. Front Cell Dev Biol. 2020;8:580070.
pubmed: 33178694
pmcid: 7593605
doi: 10.3389/fcell.2020.580070
Cerveny KL, Tamura Y, Zhang Z, Jensen RE, Sesaki H. Regulation of mitochondrial fusion and division. Trends Cell Biol. 2007;17:563–9.
pubmed: 17959383
doi: 10.1016/j.tcb.2007.08.006
Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, Mihara K. Mff is an essential factor for mitochondrial recruitment. J Cell Biol. 2010;191:1141–58.
pubmed: 21149567
pmcid: 3002033
doi: 10.1083/jcb.201007152
Losón OC, Song Z, Chen H. Chan DC Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell. 2013;24:659–67.
pubmed: 23283981
pmcid: 3583668
doi: 10.1091/mbc.e12-10-0721
Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404:1–13.
pubmed: 17447894
doi: 10.1042/BJ20070140
Ding M, Feng NA, Tang D, Feng J, Li Z, Jia M, Pei J. Melatonin prevents D rp1-mediated mitochondrial fission in diabetic hearts through SIRT 1-PGC 1α pathway. J Pineal Res. 2018;65:e12491.
pubmed: 29575122
pmcid: 6099285
doi: 10.1111/jpi.12491
Amanvermez R, Tosun M. An update on ovarian aging and ovarian reserve tests. Int J Fertil Steril. 2016;9:411.
pubmed: 26985328
Sasaki H, Hamatani T, Kamijo S, Iwai M, Kobanawa M, Ogawa S, Tanaka M. Impact of oxidative stress on age-associated decline in oocyte developmental competence. Front Endocrinol. 2019;10:811.
doi: 10.3389/fendo.2019.00811
Cajas YN, Cañón-Beltrán K, Ladrón de Guevara M, Millán de la Blanca MG, Ramos-Ibeas P, Gutiérrez-Adán A, et al. Antioxidant nobiletin enhances oocyte maturation and subsequent embryo development and quality. Int J Mol Sci. 2021;21:5340.
doi: 10.3390/ijms21155340
Park SU, Walsh L, Berkowitz KM. Mechanisms of ovarian aging. Reproduction. 2021;162:R19–33.
pubmed: 33999842
pmcid: 9354567
doi: 10.1530/REP-21-0022
Ansere VA, Ali-Mondal S, Sathiaseelan R, Garcia DN, Isola JV, Henseb JD, et al. Cellular hallmarks of aging emerge in the ovary prior to primordial follicle depletion. Mech Ageing Dev. 2021;194:111425.
pubmed: 33383072
doi: 10.1016/j.mad.2020.111425
Sharma A, Smith HJ, Yao P, Mair WB. Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Rep. 2019;20:e48395.
pubmed: 31667999
pmcid: 6893295
doi: 10.15252/embr.201948395
Wu NN, Zhang Y, Ren J. Mitophagy, mitochondrial dynamics, and homeostasis in cardiovascular aging. Oxid Med Cell Longev. 2019;2019:9825061.
pubmed: 31781358
pmcid: 6875274
doi: 10.1155/2019/9825061
Chiang JL, Shukla P, Pagidas K, Ahmed NS, Karri S, Gunn DD, et al. Mitochondria in ovarian aging and reproductive longevity. Ageing Res Rev. 2020;63:101168.
pubmed: 32896666
pmcid: 9375691
doi: 10.1016/j.arr.2020.101168
Amartuvshin O, Lin CH, Hsu SC, Kao SH, Chen A, Tang WC, Hsu HJ. Aging shifts mitochondrial dynamics toward fission to promote germline stem cell loss. Aging Cell. 2020;19:e13191.
pubmed: 32666649
pmcid: 7431834
doi: 10.1111/acel.13191
Bertoldo MJ, Listijono DR, Ho WHJ, Riepsamen AH, Goss DM, Richani D, Wu LE. NAD+ repletion rescues female fertility during reproductive aging. Cell Rep. 2020;30:1670–81.
pubmed: 32049001
pmcid: 7063679
doi: 10.1016/j.celrep.2020.01.058
Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Cantó C, Auwerx J. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell. 2013;154:430–41.
pubmed: 23870130
pmcid: 3753670
doi: 10.1016/j.cell.2013.06.016
Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Zou B. NAD
Cantó C, Menzies KJ, Auwerx J. NAD
pubmed: 26118927
pmcid: 4487780
doi: 10.1016/j.cmet.2015.05.023
Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metabol. 2018;27:529–47.
doi: 10.1016/j.cmet.2018.02.011
Yang L, Lin X, Tang H, Fan Y, Zeng S, Jia L, Liu X. Mitochondrial DNA mutation exacerbates female reproductive aging via impairment of the NADH/NAD+ redox. Aging Cell. 2020;19:e13206.
pubmed: 32744417
pmcid: 7511885
doi: 10.1111/acel.13206
Yoshino J, Baur JA, Imai SI. NAD+ intermediates: the biology and therapeutic potential of NMN and NR. Cell Metabol. 2018;27:513–28.
doi: 10.1016/j.cmet.2017.11.002
Yoshino J, Mills KF, Yoon MJ, Imai SI. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet-and age-induced diabetes in mice. Cell Metabol. 2011;14:528–36.
doi: 10.1016/j.cmet.2011.08.014
Lautrup S, Sinclair DA, Mattson MP, Fang EF. NAD+ in brain aging and neurodegenerative disorders. Cell Metab. 2019;30:630–55.
pubmed: 31577933
pmcid: 6787556
doi: 10.1016/j.cmet.2019.09.001
Nadeeshani H, Li J, Ying T, Zhang B, Lu J. Nicotinamide mononucleotide (NMN) as an anti-aging health product–promises and safety concerns. J Adv Res. 2021;37:267–78.
pubmed: 35499054
pmcid: 9039735
doi: 10.1016/j.jare.2021.08.003
Long AN, Owens K, Schlappal AE, Kristian T, Fishman PS, Schuh RA. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurol. 2015;15:1–14.
doi: 10.1186/s12883-015-0272-x
Lee HJ, Yang SJ. Nicotinamide riboside regulates inflammation and mitochondrial markers in AML12 hepatocytes. Nutr Res Pract. 2019;13:3–10.
pubmed: 30788050
doi: 10.4162/nrp.2019.13.1.3
Mehmel M, Jovanović N, Spitz U. Nicotinamide riboside—the current state of research and therapeutic uses. Nutrients. 2020;12:1616.
pubmed: 32486488
pmcid: 7352172
doi: 10.3390/nu12061616
Luo LL, Huang J, Fu YC, Xu JJ, Qian YS. Effects of tea polyphenols on ovarian development in rats. J Endocrinol Invest. 2008;31:1110–8.
pubmed: 19246979
doi: 10.1007/BF03345661
Liu WJ, Zhang XM, Wang N, Zhou XL, Fu YC, Luo LL. Calorie restriction inhibits ovarian follicle development and follicle loss through activating SIRT1 signaling in mice. Eur J Med Res. 2015;20:22.
pubmed: 25889584
pmcid: 4367909
doi: 10.1186/s40001-015-0114-8
Park MJ, Han SE, Kim HJ, Choi HJ, Ha KT, Yang SW, et al. Paeonia lactiflora improves ovarian function and oocyte quality in aged female mice. Anim Reprod. 2020;17:e20200013.
pubmed: 32714461
pmcid: 7375873
doi: 10.1590/1984-3143-ar2020-0013
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2021;25:402–8.
doi: 10.1006/meth.2001.1262
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
pubmed: 942051
doi: 10.1016/0003-2697(76)90527-3
Broekmans FJ, Soules MR, Fauser BC. Ovarian aging: mechanisms and clinical consequences. Endocr Rev. 2009;30:465–93.
pubmed: 19589949
doi: 10.1210/er.2009-0006
Akarsu S, Gode F, Isik AZ, Celenk H, Tamer FB, Erkilinc S. Comparison of the morphokinetic parameters of embryos according to ovarian reserve in IVF cycles. Gynecol Endocrinol. 2017;33:733–6.
pubmed: 28412866
doi: 10.1080/09513590.2017.1312327
Albu AI, Albu D. The impact of aging on fertility: similarities and differences between ovaries and testes. In: Darwish AM, editors. Testes and ovaries- functional and clinical differences and similarities. IntechOpen; 2017.
Goldman RH, Farland LV, Thomas AM, Zera CA, Ginsburg ES. The combined impact of maternal age and body mass index on cumulative live birth following in vitro fertilization. Am J Obstet Gynecol. 2019;221:617-e1-617.e13.
pubmed: 31163133
doi: 10.1016/j.ajog.2019.05.043
Te Velde ER, Scheffer GJ, Dorland M, Broekmans FJ, Fauser BCJM. Developmental and endocrine aspects of normal ovarian aging. Mol Cell Endocrinol. 1998;145:67–73.
doi: 10.1016/S0303-7207(98)00171-3
Thompson JE. The eggsploitation of the united states’ organ and egg donation systems. Val UL Rev. 2013;48:469.
Greely HT. The end of sex and the future of human reproduction. Cambridge: Harvard University Press; 2016.
doi: 10.4159/9780674545755
Dai DF, Chiao YA, Marcinek DJ, Szeto HH, Rabinovitch PS. Mitochondrial oxidative stress in aging and healthspan. Longev Healthspan. 2014;3:1–22.
doi: 10.1186/2046-2395-3-6
Srivastava S. The mitochondrial basis of aging and age-related disorders. Genes. 2017;8:398.
pubmed: 29257072
pmcid: 5748716
doi: 10.3390/genes8120398
Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757.
pubmed: 29731617
pmcid: 5927356
doi: 10.2147/CIA.S158513
Cantó C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, Auwerx J. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012;15:838–47.
pubmed: 22682224
pmcid: 3616313
doi: 10.1016/j.cmet.2012.04.022
Uddin GM, Youngson NA, Doyle BM, Sinclair DA, Morris MJ. Nicotinamide mononucleotide (NMN) supplementation ameliorates the impact of maternal obesity in mice: comparison with exercise. Sci Rep. 2017;7:1–11.
doi: 10.1038/s41598-017-14866-z
McTavish KJ, Jimenez M, Walters KA, Spaliviero J, Groome NP, Themmen AP, Allan CM. Rising follicle-stimulating hormone levels with age accelerate female reproductive failure. Endocrinology. 2007;148:4432–9.
pubmed: 17540727
doi: 10.1210/en.2007-0046
Li S, Liu M, Ma H, Jin Q, Ma Y, Wang C, Dai Y. Ameliorative effect of recombinant human lactoferrin on the premature ovarian failure in rats after cyclophosphamide treatments. J Ovarian Res. 2021;14:1–18.
doi: 10.1186/s13048-020-00763-z
Acuña E, Fornes R, Fernandois D, Garrido MP, Greiner M, Lara HE, Paredes AH. Increases in norepinephrine release and ovarian cyst formation during ageing in the rat. Reprod Biol Endocrinol. 2009;7:1–13.
doi: 10.1186/1477-7827-7-64
Cruz G, Fernandois D, Paredes AH. Ovarian function and reproductive senescence in the rat: role of ovarian sympathetic innervation. Reproduction. 2017;153:R59–68.
pubmed: 27799628
doi: 10.1530/REP-16-0117
Şükür YE, Kıvançlı İB, Özmen B. Ovarian aging and premature ovarian failure. J Turk Ger Gynecol Assoc. 2014;15:190.
pubmed: 25317048
pmcid: 4195330
doi: 10.5152/jtgga.2014.0022
Saadia Z. Follicle stimulating hormone (LH: FSH) ratio in polycystic ovary syndrome (PCOS)-obese vs. Non-obese women. Med Arch. 2020;74:289.
pubmed: 33041447
pmcid: 7520057
doi: 10.5455/medarh.2020.74.289-293
Steger RW, Peluso JJ. Effects of age on hormone levels and in vitro steroidogenesis by rat ovary and adrenal. Exp Aging Res. 1982;8:203–8.
pubmed: 6820341
doi: 10.1080/03610738208260367
Gruenewald DA, Naaı MA, Marck BT, Matsumoto AM. Age-related decrease in hypothalmic gonadotropin-releasing hormone (GnRH) gene expression, but not pituitary responsiveness to gnrh, in the male brown norway rat. J Androl. 2000;21:2–84.
doi: 10.1002/j.1939-4640.2000.tb03278.x
Alsafi WG. The correlation between female age and ovarian reserve biomarkers (FSH & AMH) and Its’ effect on the response to controlled ovarian hyper-stimulation (COS) and pregnancy rate following ıntracytoplasm sperm injection (ICSI). East J Med. 2021;26:555–60.
doi: 10.5505/ejm.2021.48303
Zhang M, Bener MB, Jiang Z, Wang T, Esencan E, Scott R III, Seli E. Mitofusin 2 plays a role in oocyte and follicle development, and is required to maintain ovarian follicular reserve during reproductive aging. Aging (Albany NY). 2019;11:3919.
pubmed: 31204316
doi: 10.18632/aging.102024
Reddy PH, Reddy TP, Manczak M, Calkins MJ, Shirendeb U, Mao P. Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res Rev. 2011;67:103–18.
pubmed: 21145355
doi: 10.1016/j.brainresrev.2010.11.004
Bravo-Sagua R, Parra V, López-Crisosto C, Díaz P, Quest AF, Lavandero S. Calcium transport and signaling in mitochondria. Compr Physiol. 2017;16:623–34.
doi: 10.1002/cphy.c160013
Liu YJ, McIntyre RL, Janssens GE, Houtkooper RH. Mitochondrial fission and fusion: A dynamic role in aging and potential target for age-related disease. Mech Ageing Dev. 2020;186:111212.
pubmed: 32017944
doi: 10.1016/j.mad.2020.111212
Li F, Zhou J, Li Y, Sun K, Chen J. Mitochondrial damage and Drp1 overexpression in rifampicin-and isoniazid-induced liver injury cell model. J Clin Transl Hepatol. 2019;7:40.
pubmed: 30944818
pmcid: 6441640
doi: 10.14218/JCTH.2018.00052
Gandre-Babbe S, van der Bliek AM. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell. 2008;19:2402–12.
pubmed: 18353969
pmcid: 2397315
doi: 10.1091/mbc.e07-12-1287
Zhang Z, Liu L, Wu S, Xing D. Drp1, Mff, Fis1, and MiD51 are coordinated to mediate mitochondrial fission during UV irradiation-induced apoptosis. FASEB J. 2016;30:466–76.
pubmed: 26432782
doi: 10.1096/fj.15-274258
Luo LL, Chen XC, Fu YC, Xu JJ, Li L, Lin XH, Zhang XM. The effects of caloric restriction and a high-fat diet on ovarian lifespan and the expression of SIRT1 and SIRT6 proteins in rats. Aging Clin Exp Res. 2012;24:125–33.
pubmed: 21502801
doi: 10.1007/BF03654792
Zhang XM, Li L, Xu JJ, Wang N, Liu WJ, Lin XH, Luo LL. Rapamycin preserves the follicle pool reserve and prolongs the ovarian lifespan of female rats via modulating mTOR activation and sirtuin expression. Gene. 2013;523:82–7.
pubmed: 23566837
doi: 10.1016/j.gene.2013.03.039
Tatone C, Di Emidio G, Vitti M, Di Carlo M, Santini S, D’Alessandro AM, et al. Sirtuin functions in female fertility: possible role in oxidative stress and aging. Oxid Med Cell Longev. 2015;2015:65987.
doi: 10.1155/2015/659687
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D. Melatonin mitigates mitochondrial meltdown: interactions with SIRT3. Int J Mol Sci. 2018;19:2439.
pubmed: 30126181
pmcid: 6121285
doi: 10.3390/ijms19082439
Iljas JD, Wei Z, Homer HA. Sirt1 sustains female fertility by slowing age-related decline in oocyte quality required for post-fertilization embryo development. Aging Cell. 2020;19:e13204.
pubmed: 32729989
pmcid: 7511857
doi: 10.1111/acel.13204
Imai SI, Guarente L. NAD
pubmed: 24786309
pmcid: 4112140
doi: 10.1016/j.tcb.2014.04.002
Johnson S, Imai SI. NAD
Bonkowski MS, Sinclair DA. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol. 2016;17(11):679–90.
pubmed: 27552971
pmcid: 5107309
doi: 10.1038/nrm.2016.93
Song Q, Zhou X, Xu K, Liu S, Zhu X, Yang J. The safety and anti-ageing effects of nicotinamide mononucleotide in human clinical trials: an update. Adv Nutr. 2023;14(6):1416–35.
pubmed: 37619764
pmcid: 10721522
doi: 10.1016/j.advnut.2023.08.008
Cros C, Cannelle H, Laganier L, Grozio A, Canault M. Safety evaluation after acute and sub-chronic oral administration of high purity nicotinamide mononucleotide (NMN-C®) in Sprague-Dawley rats. Food Chem Toxicol. 2021;150:112060.
pubmed: 33587977
doi: 10.1016/j.fct.2021.112060
Conze DB, Crespo-Barreto J, Kruger CL. Safety assessment of nicotinamide riboside, a form of vitamin B3. Hum Exp Toxicol. 2016;35(11):1149–60.
pubmed: 26791540
doi: 10.1177/0960327115626254
Yi L, Maier AB, Tao R, Lin Z, Vaidya A, Pendse S, Thasma S, Andhalkar N, Avhad G, Kumbhar V. The efficacy and safety of β-nicotinamide mononucleotide (NMN) supplementation in healthy middle-aged adults: a randomized, multicenter, double-blind, placebo-controlled, parallel-group, dose-dependent clinical trial. Geroscience. 2023;45(1):29–43.
pubmed: 36482258
doi: 10.1007/s11357-022-00705-1