Cold-induced expression of a truncated adenylyl cyclase 3 acts as rheostat to brown fat function.


Journal

Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592

Informations de publication

Date de publication:
29 Apr 2024
Historique:
received: 16 08 2022
accepted: 25 03 2024
medline: 30 4 2024
pubmed: 30 4 2024
entrez: 29 4 2024
Statut: aheadofprint

Résumé

Promoting brown adipose tissue (BAT) activity innovatively targets obesity and metabolic disease. While thermogenic activation of BAT is well understood, the rheostatic regulation of BAT to avoid excessive energy dissipation remains ill-defined. Here, we demonstrate that adenylyl cyclase 3 (AC3) is key for BAT function. We identified a cold-inducible promoter that generates a 5' truncated AC3 mRNA isoform (Adcy3-at), whose expression is driven by a cold-induced, truncated isoform of PPARGC1A (PPARGC1A-AT). Male mice lacking Adcy3-at display increased energy expenditure and are resistant to obesity and ensuing metabolic imbalances. Mouse and human AC3-AT are retained in the endoplasmic reticulum, unable to translocate to the plasma membrane and lack enzymatic activity. AC3-AT interacts with AC3 and sequesters it in the endoplasmic reticulum, reducing the pool of adenylyl cyclases available for G-protein-mediated cAMP synthesis. Thus, AC3-AT acts as a cold-induced rheostat in BAT, limiting adverse consequences of cAMP activity during chronic BAT activation.

Identifiants

pubmed: 38684889
doi: 10.1038/s42255-024-01033-8
pii: 10.1038/s42255-024-01033-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
ID : 675014
Organisme : EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
ID : PROTEOFIT
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : 33444
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : 28416
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : 33444
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : 28416
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : 33444
Organisme : Deutscher Akademischer Austauschdienst (German Academic Exchange Service)
ID : A/12/97620
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : TRR333/1 (450149205)
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : TRR333/1 (450149205)
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : TRR333/1 (450149205)
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB 1454 (432325352)
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : TRR83
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SPP1926
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SPP1726
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : FOR2743
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB1123-B10
Organisme : European Molecular Biology Organization (EMBO)
ID : 676-2021

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Kusminski, C. M., Bickel, P. E. & Scherer, P. E. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat. Rev. Drug Discov. 15, 639–660 (2016).
pubmed: 27256476 doi: 10.1038/nrd.2016.75
Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).
pubmed: 14715917 doi: 10.1152/physrev.00015.2003
van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).
pubmed: 19357405 doi: 10.1056/NEJMoa0808718
Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).
pubmed: 19357406 pmcid: 2859951 doi: 10.1056/NEJMoa0810780
Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).
pubmed: 19357407 doi: 10.1056/NEJMoa0808949
Yoneshiro, T. et al. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 123, 3404–3408 (2013).
pubmed: 23867622 pmcid: 3726164 doi: 10.1172/JCI67803
Cypess, A. M. et al. Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab. 21, 33–38 (2015).
pubmed: 25565203 pmcid: 4298351 doi: 10.1016/j.cmet.2014.12.009
Mueller, E. Browning and graying: novel transcriptional regulators of brown and beige fat tissues and aging. Front. Endocrinol. 7, 19 (2016).
doi: 10.3389/fendo.2016.00019
Marti-Solano, M. et al. Combinatorial expression of GPCR isoforms affects signalling and drug responses. Nature 587, 650–656 (2020).
pubmed: 33149304 pmcid: 7611127 doi: 10.1038/s41586-020-2888-2
Ceddia, R. P. & Collins, S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin. Sci. 134, 473–512 (2020).
doi: 10.1042/CS20190579
Kajimura, S., Spiegelman, B. M. & Seale, P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 22, 546–559 (2015).
pubmed: 26445512 pmcid: 4613812 doi: 10.1016/j.cmet.2015.09.007
Blondin, D. P. et al. Human brown adipocyte thermogenesis is driven by beta2-AR stimulation. Cell Metab. 32, 287–300 (2020).
pubmed: 32755608 doi: 10.1016/j.cmet.2020.07.005
Khannpnavar, B., Mehta, V., Qi, C. & Korkhov, V. Structure and function of adenylyl cyclases, key enzymes in cellular signaling. Curr. Opin. Struct. Biol. 63, 34–41 (2020).
pubmed: 32334344 doi: 10.1016/j.sbi.2020.03.003
Reverte-Salisa, L., Sanyal, A. & Pfeifer, A. Role of cAMP and cGMP signaling in brown fat. Handb. Exp. Pharmacol. 251, 161–182 (2019).
pubmed: 29633180 doi: 10.1007/164_2018_117
Wu, L., Shen, C., Seed Ahmed, M., Ostenson, C. G. & Gu, H. F. Adenylate cyclase 3: a new target for anti-obesity drug development. Obes. Rev. 17, 907–914 (2016).
pubmed: 27256589 doi: 10.1111/obr.12430
Stergiakouli, E. et al. Genome-wide association study of height-adjusted BMI in childhood identifies functional variant in ADCY3. Obesity 22, 2252–2259 (2014).
pubmed: 25044758 doi: 10.1002/oby.20840
Saeed, S. et al. Loss-of-function mutations in ADCY3 cause monogenic severe obesity. Nat. Genet. 50, 175–179 (2018).
pubmed: 29311637 doi: 10.1038/s41588-017-0023-6
Grarup, N. et al. Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes. Nat. Genet. 50, 172–174 (2018).
pubmed: 29311636 pmcid: 5828106 doi: 10.1038/s41588-017-0022-7
Toumba, M. et al. Molecular modelling of novel ADCY3 variant predicts a molecular target for tackling obesity. Int. J. Mol. Med. 49, 10 (2022).
pubmed: 34821371 doi: 10.3892/ijmm.2021.5065
Tong, T., Shen, Y., Lee, H. W., Yu, R. & Park, T. Adenylyl cyclase 3 haploinsufficiency confers susceptibility to diet-induced obesity and insulin resistance in mice. Sci. Rep. 6, 34179 (2016).
pubmed: 27678003 pmcid: 5039768 doi: 10.1038/srep34179
Wang, Z. et al. Adult type 3 adenylyl cyclase-deficient mice are obese. PLoS ONE 4, e6979 (2009).
pubmed: 19750222 pmcid: 2735775 doi: 10.1371/journal.pone.0006979
Wong, S. T. et al. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27, 487–497 (2000).
pubmed: 11055432 doi: 10.1016/S0896-6273(00)00060-X
Pitman, J. L. et al. A gain-of-function mutation in adenylate cyclase 3 protects mice from diet-induced obesity. PLoS ONE 9, e110226 (2014).
pubmed: 25329148 pmcid: 4199629 doi: 10.1371/journal.pone.0110226
Chen, X. et al. Ablation of type III adenylyl cyclase in mice causes reduced neuronal activity, altered sleep pattern, and depression-like phenotypes. Biol. Psychiatry 80, 836–848 (2016).
pubmed: 26868444 doi: 10.1016/j.biopsych.2015.12.012
Chao, Y. et al. Regulatory roles and mechanisms of alternative RNA splicing in adipogenesis and human metabolic health. Cell Biosci. 11, 66 (2021).
pubmed: 33795017 pmcid: 8017860 doi: 10.1186/s13578-021-00581-w
Lin, J. C., Lu, Y. H., Liu, Y. R. & Lin, Y. J. RBM4a-regulated splicing cascade modulates the differentiation and metabolic activities of brown adipocytes. Sci. Rep. 6, 20665 (2016).
pubmed: 26857472 pmcid: 4746625 doi: 10.1038/srep20665
Vernia, S. et al. An alternative splicing program promotes adipose tissue thermogenesis. eLife 5, e17672 (2016).
pubmed: 27635635 pmcid: 5026472 doi: 10.7554/eLife.17672
Engelhard, C. A., Khani, S., Derdak, S., Bilban, M. & Kornfeld, J. W. Nanopore sequencing unveils the complexity of the cold-activated murine brown adipose tissue transcriptome. iScience 26, 107190 (2023).
pubmed: 37564700 pmcid: 10410515 doi: 10.1016/j.isci.2023.107190
Ruas, J. L. et al. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151, 1319–1331 (2012).
pubmed: 23217713 pmcid: 3520615 doi: 10.1016/j.cell.2012.10.050
Jannig, P. R., Dumesic, P. A., Spiegelman, B. M. & Ruas, J. L. SnapShot: regulation and biology of PGC-1α. Cell 185, 1444 (2022).
pubmed: 35427500 doi: 10.1016/j.cell.2022.03.027
Li, Y. et al. Comparative transcriptome profiling of cold exposure and beta3-AR agonist CL316,243-induced browning of white fat. Front. Physiol. 12, 667698 (2021).
pubmed: 34017267 pmcid: 8129586 doi: 10.3389/fphys.2021.667698
Omori, K. & Kotera, J. Overview of PDEs and their regulation. Circ. Res. 100, 309–327 (2007).
pubmed: 17307970 doi: 10.1161/01.RES.0000256354.95791.f1
Granneman, J. G. Expression of adenylyl cyclase subtypes in brown adipose tissue: neural regulation of type III. Endocrinology 136, 2007–2012 (1995).
pubmed: 7720648 doi: 10.1210/endo.136.5.7720648
Son, Y. et al. REEP6 knockout leads to defective beta-adrenergic signaling in adipocytes and promotes obesity-related metabolic dysfunction. Metabolism 130, 155159 (2022).
pubmed: 35150731 doi: 10.1016/j.metabol.2022.155159
Sun, W. et al. snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 587, 98–102 (2020).
pubmed: 33116305 doi: 10.1038/s41586-020-2856-x
Perdikari, A. et al. BATLAS: deconvoluting brown adipose tissue. Cell Rep. 25, 784–797 (2018).
pubmed: 30332656 doi: 10.1016/j.celrep.2018.09.044
Eguchi, J. et al. Transcriptional control of adipose lipid handling by IRF4. Cell Metab. 13, 249–259 (2011).
pubmed: 21356515 pmcid: 3063358 doi: 10.1016/j.cmet.2011.02.005
Hamann, A., Flier, J. S. & Lowell, B. B. Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia. Endocrinology 137, 21–29 (1996).
pubmed: 8536614 doi: 10.1210/endo.137.1.8536614
Li, F. et al. Epigenetic interaction between UTX and DNMT1 regulates diet-induced myogenic remodeling in brown fat. Nat. Commun. 12, 6838 (2021).
pubmed: 34824202 pmcid: 8617140 doi: 10.1038/s41467-021-27141-7
Schmidt, E. et al. LincRNA H19 protects from dietary obesity by constraining expression of monoallelic genes in brown fat. Nat. Commun. 9, 3622 (2018).
pubmed: 30190464 pmcid: 6127097 doi: 10.1038/s41467-018-05933-8
Oliverio, M. et al. Dicer1-miR-328-Bace1 signalling controls brown adipose tissue differentiation and function. Nat. Cell Biol. 18, 328–336 (2016).
pubmed: 26900752 doi: 10.1038/ncb3316
Feldmann, H. M., Golozoubova, V., Cannon, B. & Nedergaard, J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9, 203–209 (2009).
pubmed: 19187776 doi: 10.1016/j.cmet.2008.12.014
Cao, W. et al. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell. Biol. 24, 3057–3067 (2004).
pubmed: 15024092 pmcid: 371122 doi: 10.1128/MCB.24.7.3057-3067.2004
Lindquist, J. M. & Rehnmark, S. Ambient temperature regulation of apoptosis in brown adipose tissue. Erk1/2 promotes norepinephrine-dependent cell survival. J. Biol. Chem. 273, 30147–30156 (1998).
pubmed: 9804770 doi: 10.1074/jbc.273.46.30147
Hattori, K. et al. beta-adrenergic receptor signaling evokes the PKA-ASK axis in mature brown adipocytes. PLoS ONE 15, e0232645 (2020).
pubmed: 33108364 pmcid: 7591029 doi: 10.1371/journal.pone.0232645
Ji, H. et al. CDK7 mediates the beta-adrenergic signaling in thermogenic brown and white adipose tissues. iScience 23, 101163 (2020).
pubmed: 32464595 pmcid: 7256631 doi: 10.1016/j.isci.2020.101163
Roh, H. C. et al. Warming induces significant reprogramming of beige, but not brown, adipocyte cellular identity. Cell Metab. 27, 1121–1137 (2018).
pubmed: 29657031 pmcid: 5932137 doi: 10.1016/j.cmet.2018.03.005
Pan, D. et al. Jmjd3-mediated H3K27me3 dynamics orchestrate brown fat development and regulate white fat plasticity. Dev. Cell 35, 568–583 (2015).
pubmed: 26625958 pmcid: 4679478 doi: 10.1016/j.devcel.2015.11.002
Brunmeir, R. et al. Comparative transcriptomic and epigenomic analyses reveal new regulators of murine brown adipogenesis. PLoS Genet. 12, e1006474 (2016).
pubmed: 27923061 pmcid: 5140063 doi: 10.1371/journal.pgen.1006474
Engelhard, C. A. et al. Comprehensive transcriptional profiling and mouse phenotyping reveals dispensable role for adipose tissue selective long noncoding RNA Gm15551. Noncoding RNA 8, 32 (2022).
pubmed: 35645339 pmcid: 9149892
Darcy, J. & Tseng, Y. H. ComBATing aging-does increased brown adipose tissue activity confer longevity? Geroscience 41, 285–296 (2019).
pubmed: 31230192 pmcid: 6702504 doi: 10.1007/s11357-019-00076-0
Crossthwaite, A. J., Ciruela, A., Rayner, T. F. & Cooper, D. M. A direct interaction between the N terminus of adenylyl cyclase AC8 and the catalytic subunit of protein phosphatase 2A. Mol. Pharmacol. 69, 608–617 (2006).
pubmed: 16258073 doi: 10.1124/mol.105.018275
Ding, Q., Gros, R., Chorazyczewski, J., Ferguson, S. S. & Feldman, R. D. Isoform-specific regulation of adenylyl cyclase function by disruption of membrane trafficking. Mol. Pharmacol. 67, 564–571 (2005).
pubmed: 15547246 doi: 10.1124/mol.104.006817
Freeze, H. H. & Kranz, C. Endoglycosidase and glycoamidase release of N-linked glycans. Curr. Protoc. Immunol. 8, 8.15.1–8.15.26 (2010).
Lang, T. Imaging SNAREs at work in ‘unroofed’ cells–approaches that may be of general interest for functional studies on membrane proteins. Biochem. Soc. Trans. 31, 861–864 (2003).
pubmed: 12887322 doi: 10.1042/bst0310861
Lin, J., Handschin, C. & Spiegelman, B. M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361–370 (2005).
pubmed: 16054085 doi: 10.1016/j.cmet.2005.05.004
Huang, P. I. et al. PGC-1α mediates differentiation of mesenchymal stem cells to brown adipose cells. J. Atheroscler. Thromb. 18, 966–980 (2011).
pubmed: 21817823 doi: 10.5551/jat.7401
Liu, Z. et al. N-terminal truncated peroxisome proliferatoractivated receptor gamma coactivator 1 alpha alleviates phenylephrineinduced mitochondrial dysfunction and decreases lipid droplet accumulation in neonatal rat cardiomyocytes. Mol. Med. Rep. 18, 2142–2152 (2018).
pubmed: 29901150 pmcid: 6072228
Zhang, J. W., Klemm, D. J., Vinson, C. & Lane, M. D. Role of CREB in transcriptional regulation of CCAAT/enhancer-binding protein beta gene during adipogenesis. J. Biol. Chem. 279, 4471–4478 (2004).
pubmed: 14593102 doi: 10.1074/jbc.M311327200
Zhang, Y. et al. Alternative mRNA splicing produces a novel biologically active short isoform of PGC-1α. J. Biol. Chem. 284, 32813–32826 (2009).
pubmed: 19773550 pmcid: 2781698 doi: 10.1074/jbc.M109.037556
Kim, J. et al. NT-PGC-1α deficiency attenuates high-fat diet-induced obesity by modulating food intake, fecal fat excretion and intestinal fat absorption. Sci. Rep. 11, 1323 (2021).
pubmed: 33446719 pmcid: 7809341 doi: 10.1038/s41598-020-79823-9
Martinez-Redondo, V., Pettersson, A. T. & Ruas, J. L. The hitchhiker’s guide to PGC-1α isoform structure and biological functions. Diabetologia 58, 1969–1977 (2015).
pubmed: 26109214 doi: 10.1007/s00125-015-3671-z
Finck, B. N. & Kelly, D. P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 116, 615–622 (2006).
pubmed: 16511594 pmcid: 1386111 doi: 10.1172/JCI27794
Durham, A. L., Speer, M. Y., Scatena, M., Giachelli, C. M. & Shanahan, C. M. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc. Res. 114, 590–600 (2018).
pubmed: 29514202 pmcid: 5852633 doi: 10.1093/cvr/cvy010
Clement, N., Glorian, M., Raymondjean, M., Andreani, M. & Limon, I. PGE2 amplifies the effects of IL-1beta on vascular smooth muscle cell de-differentiation: a consequence of the versatility of PGE2 receptors 3 due to the emerging expression of adenylyl cyclase 8. J. Cell. Physiol. 208, 495–505 (2006).
pubmed: 16741924 doi: 10.1002/jcp.20673
Keuylian, Z. et al. The Notch pathway attenuates interleukin 1β (IL1β)-mediated induction of adenylyl cyclase 8 (AC8) expression during vascular smooth muscle cell (VSMC) trans-differentiation. J. Biol. Chem. 287, 24978–24989 (2012).
pubmed: 22613711 pmcid: 3408176 doi: 10.1074/jbc.M111.292516
Hewer, R. C., Sala-Newby, G. B., Wu, Y. J., Newby, A. C. & Bond, M. PKA and Epac synergistically inhibit smooth muscle cell proliferation. J. Mol. Cell. Cardiol. 50, 87–98 (2011).
pubmed: 20971121 pmcid: 3093616 doi: 10.1016/j.yjmcc.2010.10.010
McKean, J. S. et al. The cAMP-producing agonist beraprost inhibits human vascular smooth muscle cell migration via exchange protein directly activated by cAMP. Cardiovasc. Res. 107, 546–555 (2015).
pubmed: 26092100 pmcid: 4540143 doi: 10.1093/cvr/cvv176
Vallin, B. et al. Novel short isoforms of adenylyl cyclase as negative regulators of cAMP production. Biochim. Biophys. Acta Mol. Cell. Res. 1865, 1326–1340 (2018).
pubmed: 29940197 doi: 10.1016/j.bbamcr.2018.06.012
Hu, B., Nakata, H., Gu, C., De Beer, T. & Cooper, D. M. A critical interplay between Ca
pubmed: 12065575 doi: 10.1074/jbc.M112373200
Montminy, M. Transcriptional regulation by cyclic AMP. Annu. Rev. Biochem. 66, 807–822 (1997).
pubmed: 9242925 doi: 10.1146/annurev.biochem.66.1.807
Li, Y. et al. Clenbuterol upregulates histone demethylase JHDM2a via the beta2-adrenoceptor/cAMP/PKA/p-CREB signaling pathway. Cell. Signal. 24, 2297–2306 (2012).
pubmed: 22820505 doi: 10.1016/j.cellsig.2012.07.010
Muglia, L. M. et al. The 5′-flanking region of the mouse adenylyl cyclase type VIII gene imparts tissue-specific expression in transgenic mice. J. Neurosci. 19, 2051–2058 (1999).
pubmed: 10066258 pmcid: 6782540 doi: 10.1523/JNEUROSCI.19-06-02051.1999
Chao, J. R. et al. Characterization of the mouse adenylyl cyclase type VIII gene promoter: regulation by cAMP and CREB. Eur. J. Neurosci. 16, 1284–1294 (2002).
pubmed: 12405989 doi: 10.1046/j.1460-9568.2002.02186.x
Chinsomboon, J. et al. The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc. Natl Acad. Sci. USA 106, 21401–21406 (2009).
pubmed: 19966219 pmcid: 2795492 doi: 10.1073/pnas.0909131106
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).
pubmed: 23287718 pmcid: 3795411 doi: 10.1126/science.1231143
Zhang, M. et al. Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: disease mechanisms and pharmacological rescue. Proc. Natl Acad. Sci USA 111, 5383–5392 (2014).
doi: 10.1073/pnas.1419553111
Stutz, A., Horvath, G. L., Monks, B. G. & Latz, E. ASC speck formation as a readout for inflammasome activation. Methods Mol. Biol. 1040, 91–101 (2013).
pubmed: 23852599 doi: 10.1007/978-1-62703-523-1_8
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
pubmed: 28263959 pmcid: 5600148 doi: 10.1038/nmeth.4197
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521 (2015).
pubmed: 26925227 doi: 10.12688/f1000research.7563.1
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308 doi: 10.1093/bioinformatics/btp616
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
pubmed: 22455463 pmcid: 3339379 doi: 10.1089/omi.2011.0118
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242 pmcid: 6137996 doi: 10.1093/bioinformatics/bty191
Hahne, F. & Ivanek, R. Visualizing genomic data using Gviz and Bioconductor. Methods Mol. Biol. 1418, 335–351 (2016).
pubmed: 27008022 doi: 10.1007/978-1-4939-3578-9_16
Sieckmann, K. et al. AdipoQ-a simple, open-source software to quantify adipocyte morphology and function in tissues and in vitro. Mol. Biol. Cell 33, br22 (2022).
pubmed: 35947507 pmcid: 9635306 doi: 10.1091/mbc.E21-11-0592
Pichlo, M. et al. High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor. J. Cell Biol. 206, 541–557 (2014).
Jespersen, N. Z. et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans Cell Metab. 17, 798–805 (2013).
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
pubmed: 33885785 pmcid: 8265157 doi: 10.1093/nar/gkab301
Meredith, R. W. et al. Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).
pubmed: 21940861 doi: 10.1126/science.1211028
Perelman, P. et al. A molecular phylogeny of living primates. PLoS Genet. 7, e1001342 (2011).
pubmed: 21436896 pmcid: 3060065 doi: 10.1371/journal.pgen.1001342
Swanson, M. T., Oliveros, C. H. & Esselstyn, J. A. A phylogenomic rodent tree reveals the repeated evolution of masseter architectures. Proc. Biol. Sci. 286, 20190672 (2019).
pubmed: 31064307 pmcid: 6532498
Pradas-Juni, M. et al. A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism. Nat. Commun. 11, 644 (2020).
pubmed: 32005828 pmcid: 6994702 doi: 10.1038/s41467-020-14323-y
Tang, A. D. et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat. Commun. 11, 1438 (2020).
pubmed: 32188845 pmcid: 7080807 doi: 10.1038/s41467-020-15171-6

Auteurs

Sajjad Khani (S)

Institute for Genetics, University of Cologne, Cologne, Germany.
Max Planck Institute for Metabolism Research, Cologne, Germany.

Hande Topel (H)

Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign), University of Southern Denmark, Odense, Denmark.

Ronja Kardinal (R)

Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.

Ana Rita Tavanez (AR)

Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign), University of Southern Denmark, Odense, Denmark.

Ajeetha Josephrajan (A)

Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign), University of Southern Denmark, Odense, Denmark.

Bjørk Ditlev Marcher Larsen (BDM)

Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.

Michael James Gaudry (MJ)

Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.

Philipp Leyendecker (P)

Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.

Nadia Meincke Egedal (NM)

Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign), University of Southern Denmark, Odense, Denmark.

Aylin Seren Güller (AS)

Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.

Natasa Stanic (N)

Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign), University of Southern Denmark, Odense, Denmark.

Phillip M M Ruppert (PMM)

Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.

Isabella Gaziano (I)

Max Planck Institute for Metabolism Research, Cologne, Germany.

Nils Rouven Hansmeier (NR)

Max Planck Institute for Metabolism Research, Cologne, Germany.

Elena Schmidt (E)

Max Planck Institute for Metabolism Research, Cologne, Germany.

Paul Klemm (P)

Max Planck Institute for Metabolism Research, Cologne, Germany.

Lara-Marie Vagliano (LM)

Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.

Rainer Stahl (R)

Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.

Fraser Duthie (F)

Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.

Jens-Henning Krause (JH)

Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.

Ana Bici (A)

Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.

Christoph Andreas Engelhard (CA)

Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.

Sabrina Gohlke (S)

Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.

Peter Frommolt (P)

Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Thorsten Gnad (T)

Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany.

Alvaro Rada-Iglesias (A)

Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/University of Cantabria, Santander, Spain.

Marta Pradas-Juni (M)

Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), Copenhagen, Denmark.

Tim Julius Schulz (TJ)

Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.
German Center for Diabetes Research (DZD), München-Neuherberg, Germany.

Frank Thomas Wunderlich (FT)

Max Planck Institute for Metabolism Research, Cologne, Germany.

Alexander Pfeifer (A)

Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany.

Alexander Bartelt (A)

Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.
Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
Department of Molecular Metabolism and Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Martin Jastroch (M)

Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.

Dagmar Wachten (D)

Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany. dwachten@uni-bonn.de.

Jan-Wilhelm Kornfeld (JW)

Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark. janwilhelmkornfeld@bmb.sdu.dk.
Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign), University of Southern Denmark, Odense, Denmark. janwilhelmkornfeld@bmb.sdu.dk.

Classifications MeSH