The glycosaminoglycan-binding chemokine fragment CXCL9(74-103) reduces inflammation and tissue damage in mouse models of coronavirus infection.
betacoronavirus
chemokine
coronavirus
glycosaminoglycan
inflammation
neutrophil
Journal
Frontiers in immunology
ISSN: 1664-3224
Titre abrégé: Front Immunol
Pays: Switzerland
ID NLM: 101560960
Informations de publication
Date de publication:
2024
2024
Historique:
received:
29
01
2024
accepted:
29
03
2024
medline:
30
4
2024
pubmed:
30
4
2024
entrez:
30
4
2024
Statut:
epublish
Résumé
Pulmonary diseases represent a significant burden to patients and the healthcare system and are one of the leading causes of mortality worldwide. Particularly, the COVID-19 pandemic has had a profound global impact, affecting public health, economies, and daily life. While the peak of the crisis has subsided, the global number of reported COVID-19 cases remains significantly high, according to medical agencies around the world. Furthermore, despite the success of vaccines in reducing the number of deaths caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there remains a gap in the treatment of the disease, especially in addressing uncontrolled inflammation. The massive recruitment of leukocytes to lung tissue and alveoli is a hallmark factor in COVID-19, being essential for effectively responding to the pulmonary insult but also linked to inflammation and lung damage. In this context, mice models are a crucial tool, offering valuable insights into both the pathogenesis of the disease and potential therapeutic approaches. Here, we investigated the anti-inflammatory effect of the glycosaminoglycan (GAG)-binding chemokine fragment CXCL9(74-103), a molecule that potentially decreases neutrophil transmigration by competing with chemokines for GAG-binding sites, in two models of pneumonia caused by coronavirus infection. In a murine model of betacoronavirus MHV-3 infection, the treatment with CXCL9(74-103) decreased the accumulation of total leukocytes, mainly neutrophils, to the alveolar space and improved several parameters of lung dysfunction 3 days after infection. Additionally, this treatment also reduced the lung damage. In the SARS-CoV-2 model in K18-hACE2-mice, CXCL9(74-103) significantly improved the clinical manifestations of the disease, reducing pulmonary damage and decreasing viral titers in the lungs. These findings indicate that CXCL9(74-103) resulted in highly favorable outcomes in controlling pneumonia caused by coronavirus, as it effectively diminishes the clinical consequences of the infections and reduces both local and systemic inflammation.
Identifiants
pubmed: 38686377
doi: 10.3389/fimmu.2024.1378591
pmc: PMC11056509
doi:
Substances chimiques
Glycosaminoglycans
0
Chemokine CXCL9
0
Cxcl9 protein, mouse
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1378591Informations de copyright
Copyright © 2024 Oliveira, Queiroz-Junior, Hoorelbeke, Santos, Chaves, Teixeira, Russo, Proost, Costa, Struyf and Amaral.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.
Références
Blood. 2020 Sep 3;136(10):1169-1179
pubmed: 32597954
Viruses. 2022 Nov 03;14(11):
pubmed: 36366543
Nat Commun. 2023 Jan 13;14(1):199
pubmed: 36639383
BMC Infect Dis. 2022 Nov 28;22(1):891
pubmed: 36443688
Cell Death Differ. 2021 Nov;28(11):3125-3139
pubmed: 34031543
Science. 2022 Mar 11;375(6585):1122-1127
pubmed: 35271343
Eur Respir J. 2020 Dec 24;56(6):
pubmed: 32943404
Nature. 2020 Mar;579(7798):270-273
pubmed: 32015507
Eur Respir Rev. 2021 Mar 17;30(159):
pubmed: 33731328
Pharmacol Ther. 2006 Oct;112(1):139-49
pubmed: 16720046
Nat Commun. 2019 Jul 31;10(1):3422
pubmed: 31366921
N Engl J Med. 2021 Feb 25;384(8):693-704
pubmed: 32678530
Trends Immunol. 2019 Jun;40(6):472-481
pubmed: 31006548
Am J Respir Crit Care Med. 2007 Sep 15;176(6):556-64
pubmed: 17600276
Clin Exp Med. 2021 May;21(2):167-179
pubmed: 33128197
Annu Rev Immunol. 2014;32:659-702
pubmed: 24655300
Int J Mol Sci. 2022 Mar 27;23(7):
pubmed: 35409036
Cell. 2021 Jan 21;184(2):460-475.e21
pubmed: 33278358
Biochimie. 2020 Dec;179:85-100
pubmed: 32971147
BMJ. 2020 Sep 4;370:m3379
pubmed: 32887691
Hepatol Commun. 2021 Oct;5(10):1737-1754
pubmed: 34532999
Mediators Inflamm. 2020 Dec 2;2020:8829674
pubmed: 33343232
Nat Med. 2020 Jun;26(6):842-844
pubmed: 32398875
J Infect Dis. 2014 May 1;209(9):1331-42
pubmed: 24065148
Cell Mol Immunol. 2018 Apr;15(4):324-334
pubmed: 29375126
J Biol Chem. 2021 Jan-Jun;296:100306
pubmed: 33476648
Viruses. 2021 Mar 05;13(3):
pubmed: 33807592
Biomolecules. 2015 Aug 21;5(3):2003-22
pubmed: 26308067
Nature. 2003 Nov 27;426(6965):450-4
pubmed: 14647384
Lancet Infect Dis. 2023 Jun;23(6):683-695
pubmed: 36796397
Cell Mol Immunol. 2023 Mar;20(3):217-251
pubmed: 36725964
PLoS One. 2019 Jul 24;14(7):e0220126
pubmed: 31339932
Nat Rev Immunol. 2020 Sep;20(9):515-516
pubmed: 32728221
Front Immunol. 2021 Jun 02;12:680134
pubmed: 34149717
Cell. 2020 Nov 12;183(4):1043-1057.e15
pubmed: 32970989
Am J Physiol Lung Cell Mol Physiol. 2018 Jun 1;314(6):L1010-L1025
pubmed: 29469612
Nature. 2020 May;581(7809):465-469
pubmed: 32235945
J Exp Med. 2020 Dec 7;217(12):
pubmed: 32926098
Infect Dis Ther. 2021 Dec;10(4):1907-1931
pubmed: 34296386
Chem Biol. 2005 Mar;12(3):267-77
pubmed: 15797210
Front Pharmacol. 2020 Oct 09;11:572009
pubmed: 33162887
J Interferon Cytokine Res. 2011 May;31(5):409-13
pubmed: 21235417
Front Immunol. 2020 Aug 26;11:2037
pubmed: 32983152
J Gen Virol. 2016 Feb;97(2):344-355
pubmed: 26602089
Front Pharmacol. 2020 Jun 05;11:870
pubmed: 32581816
Virol Sin. 2014 Dec;29(6):393-402
pubmed: 25547683
Respir Med. 2013 Apr;107(4):524-33
pubmed: 23433769
Front Immunol. 2020 Mar 31;11:483
pubmed: 32296423
JACS Au. 2023 Mar 02;3(3):628-656
pubmed: 37006755
Nat Rev Rheumatol. 2021 Jun;17(6):315-332
pubmed: 33903743
Immunity. 2021 Aug 10;54(8):1636-1651
pubmed: 34348117
Viruses. 2020 Aug 12;12(8):
pubmed: 32806708
Nat Rev Microbiol. 2009 Jun;7(6):439-50
pubmed: 19430490
J Virol. 2006 Nov;80(21):10382-94
pubmed: 17041219
Immunol Cell Biol. 2015 Apr;93(4):372-83
pubmed: 25708536
Methods Enzymol. 2009;461:3-29
pubmed: 19480912
Front Immunol. 2023 Feb 13;14:1100869
pubmed: 36860872
Pulmonology. 2021 Sep-Oct;27(5):423-437
pubmed: 33867315
Am J Respir Cell Mol Biol. 2012 May;46(5):566-72
pubmed: 22323365
J Virol. 2010 Feb;84(3):1289-301
pubmed: 19906920
J Virol. 2004 Jan;78(2):585-94
pubmed: 14694090
Nat Biotechnol. 2020 Aug;38(8):970-979
pubmed: 32591762
Immunol Rev. 2019 May;289(1):9-30
pubmed: 30977202
Int J Mol Sci. 2022 Jun 02;23(11):
pubmed: 35682923
Am J Respir Crit Care Med. 2015 May 1;191(9):1001-11
pubmed: 25695403
Front Immunol. 2017 May 10;8:530
pubmed: 28539925
Front Cell Infect Microbiol. 2022 Jan 05;11:792584
pubmed: 35096645
Biochem Pharmacol. 2016 Jan 15;100:73-85
pubmed: 26551597
J Virol. 2021 Oct 27;95(22):e0127621
pubmed: 34495692
J Leukoc Biol. 2018 Aug;104(2):413-422
pubmed: 29733455
Adv Virus Res. 1983;28:35-112
pubmed: 6362367
Am J Respir Crit Care Med. 2021 Jan 1;203(1):24-36
pubmed: 33146552
Clin Exp Immunol. 2004 Apr;136(1):95-103
pubmed: 15030519
Nature. 2020 May;581(7807):215-220
pubmed: 32225176
J Immunol. 2004 Sep 15;173(6):4030-9
pubmed: 15356152
J Clin Virol. 2017 May;90:32-37
pubmed: 28334685
Nat Rev Drug Discov. 2020 Apr;19(4):253-275
pubmed: 31969717
Nat Immunol. 2020 Nov;21(11):1327-1335
pubmed: 32839612
J Leukoc Biol. 2016 Jun;99(6):935-53
pubmed: 26701132
J Biol Chem. 2015 Aug 28;290(35):21292-304
pubmed: 26183778
Clin Exp Allergy. 2018 Oct;48(10):1333-1344
pubmed: 29978510