Proteome reorganization and amino acid metabolism during germination and seedling establishment in Lupinus albus.
Lupinus albus protein annotation database
amino acid metabolism
germination
glyoxylate cycle
nitrogen resource allocation
proteomics
Journal
Journal of experimental botany
ISSN: 1460-2431
Titre abrégé: J Exp Bot
Pays: England
ID NLM: 9882906
Informations de publication
Date de publication:
30 Apr 2024
30 Apr 2024
Historique:
received:
29
11
2023
medline:
30
4
2024
pubmed:
30
4
2024
entrez:
30
4
2024
Statut:
aheadofprint
Résumé
During germination plants rely entirely on their seed storage compounds to provide energy and precursors for the synthesis of macromolecular structures until the seedling has emerged from the soil and photosynthesis can be established. Lupin seeds use proteins as their major storage compounds, accounting for up to 40% of the seed dry weight. Lupins are therefore a valuable complement to soy as a source of plant protein for human and animal nutrition. The aim of this study was to elucidate how storage protein metabolism is coordinated with other metabolic processes to meet the requirements of the growing seedling. In a quantitative approach, we analyzed seedling growth, as well as alterations in biomass composition, the proteome, and metabolite profiles during germination and seedling establishment in Lupinus albus. The reallocation of nitrogen resources from seed storage proteins to functional seed proteins was mapped based on a manually curated functional protein annotation database. Although classified as a protein crop, Lupinus albus does not use amino acids as a primary substrate for energy metabolism during germination. However, fatty acid and amino acid metabolism may be integrated at the level of malate synthase to combine stored carbon from lipids and proteins into gluconeogenesis.
Identifiants
pubmed: 38686677
pii: 7660064
doi: 10.1093/jxb/erae197
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.