Inhibition of mammalian mtDNA transcription acts paradoxically to reverse diet-induced hepatosteatosis and obesity.
Journal
Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592
Informations de publication
Date de publication:
30 Apr 2024
30 Apr 2024
Historique:
received:
03
11
2022
accepted:
28
03
2024
medline:
1
5
2024
pubmed:
1
5
2024
entrez:
30
4
2024
Statut:
aheadofprint
Résumé
The oxidative phosphorylation system
Identifiants
pubmed: 38689023
doi: 10.1038/s42255-024-01038-3
pii: 10.1038/s42255-024-01038-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2015-00418
Organisme : Swedish Cancer Foundation
ID : CAN2018/602
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF20OC006316
Organisme : European Molecular Biology Organization (EMBO)
ID : ALTF570-2019
Organisme : European Molecular Biology Organization (EMBO)
ID : ALTF399-2021
Informations de copyright
© 2024. The Author(s).
Références
Fernandez‐Vizarra, E. & Zeviani, M. Mitochondrial disorders of the OXPHOS system. FEBS Lett. 595, 1062–1106 (2021).
doi: 10.1002/1873-3468.13995
pubmed: 33159691
Spinelli, J. B. & Haigis, M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 20, 745–754 (2018).
doi: 10.1038/s41556-018-0124-1
pubmed: 29950572
pmcid: 6541229
Martínez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 102 (2020).
doi: 10.1038/s41467-019-13668-3
pubmed: 31900386
pmcid: 6941980
Heiden, M. G. V., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).
doi: 10.1126/science.1160809
Vasan, K., Werner, M. & Chandel, N. S. Mitochondrial metabolism as a target for cancer therapy. Cell Metab. https://doi.org/10.1016/j.cmet.2020.06.019 (2020).
doi: 10.1016/j.cmet.2020.06.019
pubmed: 32668195
pmcid: 7483781
Bonekamp, N. A. et al. Small-molecule inhibitors of human mitochondrial DNA transcription. Nature 588, 712–716 (2020).
doi: 10.1038/s41586-020-03048-z
pubmed: 33328633
Grundlingh, J., Dargan, P. I., El-Zanfaly, M. & Wood, D. M. 2,4-Dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. J. Med. Toxicol. 7, 205 (2011).
doi: 10.1007/s13181-011-0162-6
pubmed: 21739343
pmcid: 3550200
Tainter, M. L., Cutting, W. C. & Stockton, A. B. Use of dinitrophenol in nutritional disorders: a critical survey of clinical results. Am. J. Public Health Nations Health 24, 1045–1053 (1934).
doi: 10.2105/AJPH.24.10.1045
pubmed: 18014064
pmcid: 1558869
Cutting, W. C., Mehrtens, H. G. & Tainter, M. L. Actions and uses of dinitrophenol: promising metabolic applications. J. Am. Med. Assoc. 101, 193–195 (1933).
doi: 10.1001/jama.1933.02740280013006
Pernicova, I. & Korbonits, M. Metformin—mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10, 143–156 (2014).
doi: 10.1038/nrendo.2013.256
pubmed: 24393785
Feng, J. et al. Mitochondria as an important target of metformin: the mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol. Res. 177, 106114 (2022).
doi: 10.1016/j.phrs.2022.106114
pubmed: 35124206
Bridges, H. R., Jones, A. J. Y., Pollak, M. N. & Hirst, J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem. J. 462, 475–487 (2014).
doi: 10.1042/BJ20140620
pubmed: 25017630
Bridges, H. R. et al. Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides. Science 379, 351–357 (2023).
doi: 10.1126/science.ade3332
pubmed: 36701435
pmcid: 7614227
Elgendy, M. et al. Combination of hypoglycemia and metformin impairs tumor metabolic plasticity and growth by modulating the PP2A–GSK3β–MCL-1 axis. Cancer Cell https://doi.org/10.1016/j.ccell.2019.03.007 (2019).
doi: 10.1016/j.ccell.2019.03.007
pubmed: 31031016
To, T.-L. et al. A compendium of genetic modifiers of mitochondrial dysfunction reveals intra-organelle buffering. Cell 179, 1222–1238 (2019).
doi: 10.1016/j.cell.2019.10.032
pubmed: 31730859
pmcid: 7053407
Kim, J. E. et al. Similarities and differences in constipation phenotypes between Lep knockout mice and high fat diet-induced obesity mice. PLoS ONE 17, e0276445 (2022).
doi: 10.1371/journal.pone.0276445
pubmed: 36548335
pmcid: 9778951
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).
doi: 10.1038/nature05414
pubmed: 17183312
Müller, T. D., Klingenspor, M. & Tschöp, M. H. Revisiting energy expenditure: how to correct mouse metabolic rate for body mass. Nat. Metab. 3, 1134–1136 (2021).
doi: 10.1038/s42255-021-00451-2
pubmed: 34489606
Mina, A. I. et al. CalR: a web-based analysis tool for indirect calorimetry experiments. Cell Metab. 28, 656–666 (2018).
doi: 10.1016/j.cmet.2018.06.019
pubmed: 30017358
pmcid: 6170709
Butler, A. A. & Kozak, L. P. A recurring problem with the analysis of energy expenditure in genetic models expressing lean and obese phenotypes. Diabetes 59, 323–329 (2010).
doi: 10.2337/db09-1471
pubmed: 20103710
pmcid: 2809965
Kuhl, I. et al. POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA. Sci. Adv. 2, e1600963 (2016).
doi: 10.1126/sciadv.1600963
pubmed: 27532055
pmcid: 4975551
Wanrooij, S. et al. Human mitochondrial RNA polymerase primes lagging-strand DNA synthesis in vitro. PNAS 105, 11122–11127 (2008).
doi: 10.1073/pnas.0805399105
pubmed: 18685103
pmcid: 2516254
Gustafsson, C. M., Falkenberg, M. & Larsson, N.-G. Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem. 85, 133–160 (2016).
doi: 10.1146/annurev-biochem-060815-014402
pubmed: 27023847
Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, gkaa1011 (2020).
Mourier, A., Ruzzenente, B., Brandt, T., Kühlbrandt, W. & Larsson, N.-G. Loss of LRPPRC causes ATP synthase deficiency. Hum. Mol. Genet. 23, 2580–2592 (2014).
doi: 10.1093/hmg/ddt652
pubmed: 24399447
pmcid: 3990160
Kühl, I. et al. Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals. eLife 6, 1494 (2017).
doi: 10.7554/eLife.30952
Murphy, M. P. & Chouchani, E. T. Why succinate? Physiological regulation by a mitochondrial coenzyme Q sentinel. Nat. Chem. Biol. 18, 461–469 (2022).
doi: 10.1038/s41589-022-01004-8
pubmed: 35484255
pmcid: 9150600
Larsson, N.-G. et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18, 231–236 (1998).
doi: 10.1038/ng0398-231
pubmed: 9500544
Rigoulet, M., Mourier, A., Galinier, A., Casteilla, L. & Devin, A. Electron competition process in respiratory chain: Regulatory mechanisms and physiological functions. Biochim. Biophys. Acta Bioenerg. 1797, 671–677 (2010).
doi: 10.1016/j.bbabio.2010.01.030
Molinié, T. et al. MDH2 produced OAA is a metabolic switch rewiring the fuelling of respiratory chain and TCA cycle. Biochim. Biophys. Acta Bioenerg. 1863, 148532 (2022).
doi: 10.1016/j.bbabio.2022.148532
pubmed: 35063410
Kraus, D., Yang, Q. & Kahn, B. Lipid extraction from mouse feces. BIO-Protoc. 5, e1375 (2015).
doi: 10.21769/BioProtoc.1375
pubmed: 27110587
Milenkovic, D. et al. Preserved respiratory chain capacity and physiology in mice with profoundly reduced levels of mitochondrial respirasomes. Cell Metab. https://doi.org/10.1016/j.cmet.2023.07.015 (2023).
doi: 10.1016/j.cmet.2023.07.015
pubmed: 37633273
Mourier, A., Matic, S., Ruzzenente, B., Larsson, N.-G. & Milenkovic, D. The respiratory chain supercomplex organization is independent of COX7a2l isoforms. Cell Metab. 20, 1069–1075 (2014).
doi: 10.1016/j.cmet.2014.11.005
pubmed: 25470551
pmcid: 4261080
Jiang, S. et al. GGPPS‐mediated Rab27A geranylgeranylation regulates β cell dysfunction during type 2 diabetes development by affecting insulin granule docked pool formation. J. Pathol. 238, 109–119 (2016).
doi: 10.1002/path.4652
pubmed: 26434932
Charbord, J. et al. In vivo screen identifies a SIK inhibitor that induces β cell proliferation through a transient UPR. Nat. Metab. 3, 682–700 (2021).
doi: 10.1038/s42255-021-00391-x
pubmed: 34031592
pmcid: 9756392
Tyanova, S. & Cox, J. Cancer systems biology, methods and protocols. Methods Mol. Biol. 1711, 133–148 (2018).
doi: 10.1007/978-1-4939-7493-1_7
pubmed: 29344888
Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. & Zhang, B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 47, W199–W205 (2019).
doi: 10.1093/nar/gkz401
pubmed: 31114916
pmcid: 6602449
Ahola, S. et al. OMA1-mediated integrated stress response protects against ferroptosis in mitochondrial cardiomyopathy. Cell Metab. 34, 1875–1891 (2022).
doi: 10.1016/j.cmet.2022.08.017
pubmed: 36113464
He, L. et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137, 635–646 (2009).
doi: 10.1016/j.cell.2009.03.016
pubmed: 19450513
pmcid: 2775562
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2021).
doi: 10.1093/nar/gkab1038
pmcid: 8728295