Neutrophils and neutrophil extracellular traps in oral health and disease.


Journal

Experimental & molecular medicine
ISSN: 2092-6413
Titre abrégé: Exp Mol Med
Pays: United States
ID NLM: 9607880

Informations de publication

Date de publication:
01 May 2024
Historique:
received: 08 12 2023
accepted: 20 02 2024
revised: 20 02 2024
medline: 1 5 2024
pubmed: 1 5 2024
entrez: 30 4 2024
Statut: aheadofprint

Résumé

Neutrophils perform essential functions in antimicrobial defense and tissue maintenance at mucosal barriers. However, a dysregulated neutrophil response and, in particular, the excessive release of neutrophil extracellular traps (NETs) are implicated in the pathology of various diseases. In this review, we provide an overview of the basic concepts related to neutrophil functions, including NET formation, and discuss the mechanisms associated with NET activation and function in the context of the prevalent oral disease periodontitis.

Identifiants

pubmed: 38689085
doi: 10.1038/s12276-024-01219-w
pii: 10.1038/s12276-024-01219-w
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Dental and Craniofacial Research (NIDCR)
ID : ZIADE000736
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Dental and Craniofacial Research (NIDCR)
ID : ZIADE000736

Informations de copyright

© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Silva, L. M., Kim, T. S. & Moutsopoulos, N. M. Neutrophils are gatekeepers of mucosal immunity. Immunol. Rev. 314, 125–141 (2023).
pubmed: 36404627 doi: 10.1111/imr.13171
Iglesias-Bartolome, R. et al. Transcriptional signature primes human oral mucosa for rapid wound healing. Sci. Transl. Med. 10, https://doi.org/10.1126/scitranslmed.aap8798 (2018).
Burn, G. L., Foti, A., Marsman, G., Patel, D. F. & Zychlinsky, A. The neutrophil. Immunity 54, 1377–1391 (2021).
pubmed: 34260886 doi: 10.1016/j.immuni.2021.06.006
Herrero-Cervera, A., Soehnlein, O. & Kenne, E. Neutrophils in chronic inflammatory diseases. Cell Mol. Immunol. 19, 177–191 (2022).
pubmed: 35039631 pmcid: 8803838 doi: 10.1038/s41423-021-00832-3
Hajishengallis, G. New developments in neutrophil biology and periodontitis. Periodontol 2000 82, 78–92 (2020).
pubmed: 31850633 doi: 10.1111/prd.12313
Kinane, D. F., Stathopoulou, P. G. & Papapanou, P. N. Periodontal diseases. Nat. Rev. Dis. Prim. 3, 17038 (2017).
pubmed: 28805207 doi: 10.1038/nrdp.2017.38
Summers, C. et al. Neutrophil kinetics in health and disease. Trends Immunol. 31, 318–324 (2010).
pubmed: 20620114 pmcid: 2930213 doi: 10.1016/j.it.2010.05.006
Kohler, A. et al. G-CSF-mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. Blood 117, 4349–4357 (2011).
pubmed: 21224471 pmcid: 3087483 doi: 10.1182/blood-2010-09-308387
Lacy, P. Mechanisms of degranulation in neutrophils. Allergy Asthma Clin. Immunol. 2, 98–108, (2006).
pubmed: 20525154 pmcid: 2876182 doi: 10.1186/1710-1492-2-3-98
Rijkschroeff, P., Loos, B. G. & Nicu, E. A. Oral polymorphonuclear neutrophil contributes to oral health. Curr. Oral. Health Rep. 5, 211–220 (2018).
pubmed: 30524928 pmcid: 6244624 doi: 10.1007/s40496-018-0199-6
Chapple, I. L. C., Hirschfeld, J., Kantarci, A., Wilensky, A. & Shapira, L. The role of the host-Neutrophil biology. Periodontol 2000, https://doi.org/10.1111/prd.12490 (2023).
Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).
pubmed: 15001782 doi: 10.1126/science.1092385
Pilsczek, F. H. et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J. Immunol. 185, 7413–7425 (2010).
pubmed: 21098229 doi: 10.4049/jimmunol.1000675
Urban, C. F., Reichard, U., Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 8, 668–676 (2006).
pubmed: 16548892 doi: 10.1111/j.1462-5822.2005.00659.x
Saitoh, T. et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12, 109–116 (2012).
pubmed: 22817992 doi: 10.1016/j.chom.2012.05.015
Muraro, S. P. et al. Respiratory Syncytial Virus induces the classical ROS-dependent NETosis through PAD-4 and necroptosis pathways activation. Sci. Rep. 8, 14166 (2018).
pubmed: 30242250 pmcid: 6154957 doi: 10.1038/s41598-018-32576-y
Abi Abdallah, D. S. et al. Toxoplasma gondii triggers release of human and mouse neutrophil extracellular traps. Infect. Immun. 80, 768–777 (2012).
pubmed: 22104111 pmcid: 3264325 doi: 10.1128/IAI.05730-11
Silva, J. C. et al. Mac-1 triggers neutrophil DNA extracellular trap formation to Aspergillus fumigatus independently of PAD4 histone citrullination. J. Leukoc. Biol. 107, 69–83 (2020).
pubmed: 31478251 doi: 10.1002/JLB.4A0119-009RR
Fuchs, T. A. et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231–241 (2007).
pubmed: 17210947 pmcid: 2063942 doi: 10.1083/jcb.200606027
Neeli, I. & Radic, M. Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release. Front. Immunol. 4, 38 (2013).
pubmed: 23430963 pmcid: 3576869 doi: 10.3389/fimmu.2013.00038
Keshari, R. S. et al. Neutrophil extracellular traps contain mitochondrial as well as nuclear DNA and exhibit inflammatory potential. Cytom. A 81, 238–247 (2012).
doi: 10.1002/cyto.a.21178
Wang, L. et al. Hyperglycemia induces neutrophil extracellular traps formation through an NADPH oxidase-dependent pathway in diabetic retinopathy. Front Immunol. 9, 3076 (2018).
pubmed: 30671057 doi: 10.3389/fimmu.2018.03076
Etulain, J. et al. P-selectin promotes neutrophil extracellular trap formation in mice. Blood 126, 242–246 (2015).
pubmed: 25979951 pmcid: 4497964 doi: 10.1182/blood-2015-01-624023
Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13, 463–469 (2007).
pubmed: 17384648 doi: 10.1038/nm1565
Yousefi, S., Mihalache, C., Kozlowski, E., Schmid, I. & Simon, H. U. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 16, 1438–1444 (2009).
pubmed: 19609275 doi: 10.1038/cdd.2009.96
Hakkim, A. et al. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat. Chem. Biol. 7, 75–77 (2011).
pubmed: 21170021 doi: 10.1038/nchembio.496
Mohanty, T., Sorensen, O. E. & Nordenfelt, P. NETQUANT: automated quantification of neutrophil extracellular traps. Front Immunol. 8, 1999 (2017).
pubmed: 29379509 doi: 10.3389/fimmu.2017.01999
Azzouz, D., Khan, M. A., Sweezey, N. & Palaniyar, N. Two-in-one: UV radiation simultaneously induces apoptosis and NETosis. Cell Death Discov. 4, 51 (2018).
pubmed: 29736268 pmcid: 5919968 doi: 10.1038/s41420-018-0048-3
Desai, J. et al. PMA and crystal-induced neutrophil extracellular trap formation involves RIPK1-RIPK3-MLKL signaling. Eur. J. Immunol. 46, 223–229 (2016).
pubmed: 26531064 doi: 10.1002/eji.201545605
Hidalgo, A. et al. Neutrophil extracellular traps: from physiology to pathology. Cardiovasc. Res. 118, 2737–2753 (2022).
pubmed: 34648022 doi: 10.1093/cvr/cvab329
Papayannopoulos, V., Metzler, K. D., Hakkim, A. & Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 191, 677–691 (2010).
pubmed: 20974816 pmcid: 3003309 doi: 10.1083/jcb.201006052
Sorvillo, N., Cherpokova, D., Martinod, K. & Wagner, D. D. Extracellular DNA NET-works with dire consequences for health. Circ. Res 125, 470–488 (2019).
pubmed: 31518165 pmcid: 6746252 doi: 10.1161/CIRCRESAHA.119.314581
O’Neil, L. J. et al. Neutrophil-mediated carbamylation promotes articular damage in rheumatoid arthritis. Sci. Adv. 6, https://doi.org/10.1126/sciadv.abd2688 (2020).
Branzk, N. et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 15, 1017–1025 (2014).
pubmed: 25217981 pmcid: 4236687 doi: 10.1038/ni.2987
Schauer, C. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20, 511–517 (2014).
pubmed: 24784231 doi: 10.1038/nm.3547
al-Essa, L., Niwa, M., Kohno, K. & Tsurumi, K. A proposal for purification of salivary polymorphonuclear leukocytes by combination of nylon mesh filtration and density-gradient method: a validation by superoxide- and cyclic AMP-generating responses. Life Sci. 55, PL333–338, (1994).
pubmed: 7934636 doi: 10.1016/0024-3205(94)00773-X
Dutzan, N., Konkel, J. E., Greenwell-Wild, T. & Moutsopoulos, N. M. Characterization of the human immune cell network at the gingival barrier. Mucosal Immunol. 9, 1163–1172 (2016).
pubmed: 26732676 pmcid: 4820049 doi: 10.1038/mi.2015.136
Scully, C. & Wilkinson, P. C. Inflammatory polymorphonuclear neutrophil leukocytes; orientation, chemotactic, locomotor and phagocytic capabilities of neutrophils from the human gingival crevice. J. Clin. Lab Immunol. 17, 69–73 (1985).
pubmed: 3900409
Ryder, M. I. Comparison of neutrophil functions in aggressive and chronic periodontitis. Periodontol 2000 53, 124–137 (2010).
pubmed: 20403109 doi: 10.1111/j.1600-0757.2009.00327.x
Darveau, R. P. Periodontitis: a polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 8, 481–490 (2010).
pubmed: 20514045 doi: 10.1038/nrmicro2337
Silva, L. M., Brenchley, L. & Moutsopoulos, N. M. Primary immunodeficiencies reveal the essential role of tissue neutrophils in periodontitis. Immunol. Rev. 287, 226–235 (2019).
pubmed: 30565245 pmcid: 7015146 doi: 10.1111/imr.12724
Chinwalla, J., Tosi, M. & Bissada, N. F. Severity of localized juvenile periodontitis as related to polymorphonuclear chemotaxis and specific microbial isolates. Periodontal Clin. Investig. 20, 6–11 (1998).
pubmed: 9663117
Kinane, D. F., Cullen, C. F., Johnston, F. A. & Evans, C. W. Neutrophil chemotactic behaviour in patients with early-onset forms of periodontitis (II). Assessment using the under agarose technique. J. Clin. Periodontol. 16, 247–251 (1989).
pubmed: 2715363 doi: 10.1111/j.1600-051X.1989.tb01649.x
Barbosa, M. D. et al. Identification of the homologous beige and Chediak-Higashi syndrome genes. Nature 382, 262–265 (1996).
pubmed: 8717042 pmcid: 2893578 doi: 10.1038/382262a0
Nagle, D. L. et al. Identification and mutation analysis of the complete gene for Chediak-Higashi syndrome. Nat. Genet. 14, 307–311 (1996).
pubmed: 8896560 doi: 10.1038/ng1196-307
Faigle, W. et al. Deficient peptide loading and MHC class II endosomal sorting in a human genetic immunodeficiency disease: the Chediak-Higashi syndrome. J. Cell Biol. 141, 1121–1134 (1998).
pubmed: 9606205 pmcid: 2137185 doi: 10.1083/jcb.141.5.1121
Introne, W., Boissy, R. E. & Gahl, W. A. Clinical, molecular, and cell biological aspects of Chediak-Higashi syndrome. Mol. Genet Metab. 68, 283–303 (1999).
pubmed: 10527680 doi: 10.1006/mgme.1999.2927
Padgett, G. A., Reiquam, C. W., Henson, J. B. & Gorham, J. R. Comparative studies of susceptibility to infection in the Chediak-Higashi syndrome. J. Pathol. Bacteriol. 95, 509–522 (1968).
pubmed: 4172085 doi: 10.1002/path.1700950224
Blume, R. S. & Wolff, S. M. The Chediak-Higashi syndrome: studies in four patients and a review of the literature. Med. (Baltim.) 51, 247–280 (1972).
doi: 10.1097/00005792-197207000-00001
Bailleul-Forestier, I., Monod-Broca, J., Benkerrou, M., Mora, F. & Picard, B. Generalized periodontitis associated with Chediak-Higashi syndrome. J. Periodontol. 79, 1263–1270 (2008).
pubmed: 18597610 doi: 10.1902/jop.2008.070440
Delcourt-Debruyne, E. M., Boutigny, H. R. & Hildebrand, H. F. Features of severe periodontal disease in a teenager with Chediak-Higashi syndrome. J. Periodontol. 71, 816–824 (2000).
pubmed: 10872965 doi: 10.1902/jop.2000.71.5.816
Rezende, K. M., Canela, A. H., Ortega, A. O., Tintel, C. & Bonecker, M. Chediak-Higashi syndrome and premature exfoliation of primary teeth. Braz. Dent. J. 24, 667–670 (2013).
pubmed: 24474367 doi: 10.1590/0103-6440201302258
Boxer, L. A. Severe congenital neutropenia: genetics and pathogenesis. Trans. Am. Clin. Climatol. Assoc. 117, 13–31 (2006). ; discussion 31-12.
pubmed: 18528462 pmcid: 1500938
Xia, J. et al. Prevalence of mutations in ELANE, GFI1, HAX1, SBDS, WAS and G6PC3 in patients with severe congenital neutropenia. Br. J. Haematol. 147, 535–542 (2009).
pubmed: 19775295 pmcid: 2783282 doi: 10.1111/j.1365-2141.2009.07888.x
Ye, Y. et al. Mutations in the ELANE gene are associated with development of periodontitis in patients with severe congenital neutropenia. J. Clin. Immunol. 31, 936–945 (2011).
pubmed: 21796505 pmcid: 3223588 doi: 10.1007/s10875-011-9572-0
Zeidler, C., Germeshausen, M., Klein, C. & Welte, K. Clinical implications of ELA2-, HAX1-, and G-CSF-receptor (CSF3R) mutations in severe congenital neutropenia. Br. J. Haematol. 144, 459–467 (2009).
pubmed: 19120359 doi: 10.1111/j.1365-2141.2008.07425.x
Defraia, E. & Marinelli, A. Oral manifestations of congenital neutropenia or Kostmann syndrome. J. Clin. Pediatr. Dent. 26, 99–102 (2001).
pubmed: 11688822 doi: 10.17796/jcpd.26.1.n1vhq267271378l1
Hanna, S. & Etzioni, A. Leukocyte adhesion deficiencies. Ann. N. Y Acad. Sci. 1250, 50–55 (2012).
pubmed: 22276660 doi: 10.1111/j.1749-6632.2011.06389.x
Meyle, J. Leukocyte adhesion deficiency and prepubertal periodontitis. Periodontol 2000 6, 26–36 (1994).
pubmed: 9673168 doi: 10.1111/j.1600-0757.1994.tb00024.x
Dababneh, R., Al-Wahadneh, A. M., Hamadneh, S., Khouri, A. & Bissada, N. F. Periodontal manifestation of leukocyte adhesion deficiency type I. J. Periodontol. 79, 764–768 (2008).
pubmed: 18380573 doi: 10.1902/jop.2008.070323
Roberts, M. W. & Atkinson, J. C. Oral manifestations associated with leukocyte adhesion deficiency: a five-year case study. Pediatr. Dent. 12, 107–111 (1990).
pubmed: 2133935
Toomes, C. et al. Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis. Nat. Genet 23, 421–424 (1999).
pubmed: 10581027 doi: 10.1038/70525
Haneke, E. The Papillon-Lefevre syndrome: keratosis palmoplantaris with periodontopathy. Report of a case and review of the cases in the literature. Hum. Genet 51, 1–35 (1979).
pubmed: 159254 doi: 10.1007/BF00278288
Ishikawa, I., Umeda, M. & Laosrisin, N. Clinical, bacteriological, and immunological examinations and the treatment process of two Papillon-Lefevre syndrome patients. J. Periodontol. 65, 364–371 (1994).
pubmed: 8195982 doi: 10.1902/jop.1994.65.4.364
Hart, T. C. & Shapira, L. Papillon-Lefevre syndrome. Periodontol 2000 6, 88–100 (1994).
pubmed: 9673173 doi: 10.1111/j.1600-0757.1994.tb00029.x
Moutsopoulos, N. M. et al. Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss. Sci. Transl. Med 6, 229ra240 (2014).
doi: 10.1126/scitranslmed.3007696
Moutsopoulos, N. M. et al. Interleukin-12 and Interleukin-23 Blockade in Leukocyte Adhesion Deficiency Type 1. N. Engl. J. Med 376, 1141–1146 (2017).
pubmed: 28328326 pmcid: 5494261 doi: 10.1056/NEJMoa1612197
Williams, D. W. et al. Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity. Cell 184, 4090–4104 e4015 (2021).
pubmed: 34129837 pmcid: 8359928 doi: 10.1016/j.cell.2021.05.013
Dutzan, N. et al. A dysbiotic microbiome triggers T(H)17 cells to mediate oral mucosal immunopathology in mice and humans. Sci Transl Med 10, https://doi.org/10.1126/scitranslmed.aat0797 (2018).
Eskan, M. A. et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat. Immunol. 13, 465–473 (2012).
pubmed: 22447028 pmcid: 3330141 doi: 10.1038/ni.2260
Shin, J. et al. DEL-1 restrains osteoclastogenesis and inhibits inflammatory bone loss in nonhuman primates. Sci. Transl. Med. 7, 307ra155 (2015).
pubmed: 26424570 pmcid: 4593066 doi: 10.1126/scitranslmed.aac5380
Van Dyke, T. E. & Hoop, G. A. Neutrophil function and oral disease. Crit. Rev. Oral. Biol. Med. 1, 117–133 (1990).
pubmed: 2152247 doi: 10.1177/10454411900010020201
Kim, T. S. et al. Neutrophil extracellular traps and extracellular histones potentiate IL-17 inflammation in periodontitis. J. Exp. Med. 220, https://doi.org/10.1084/jem.20221751 (2023).
Pippin, D. J., Swafford, J. R. & McCunniff, M. D. Morphology of azurophil lysosomes in polymorphonuclear leukocytes from humans with rapidly progressive periodontitis. J. Periodontal. Res. 35, 26–32 (2000).
pubmed: 10791706 doi: 10.1034/j.1600-0765.2000.035001026.x
Kaner, D., Bernimoulin, J. P., Kleber, B. M., Heizmann, W. R. & Friedmann, A. Gingival crevicular fluid levels of calprotectin and myeloperoxidase during therapy for generalized aggressive periodontitis. J. Periodontal. Res. 41, 132–139 (2006).
pubmed: 16499716 doi: 10.1111/j.1600-0765.2005.00849.x
Ujiie, Y., Oida, S., Gomi, K., Arai, T. & Fukae, M. Neutrophil elastase is involved in the initial destruction of human periodontal ligament. J. Periodontal. Res. 42, 325–330 (2007).
pubmed: 17559629 doi: 10.1111/j.1600-0765.2006.00952.x
Emingil, G., Kuula, H., Sorsa, T. & Atilla, G. Gingival crevicular fluid matrix metalloproteinase-25 and -26 levels in periodontal disease. J. Periodontol. 77, 664–671 (2006).
pubmed: 16584348 doi: 10.1902/jop.2006.050288
Lorencini, M., Silva, J. A., de la Hoz, C. L., Carvalho, H. F. & Stach-Machado, D. R. Changes in MMPs and inflammatory cells in experimental gingivitis. Histol. Histopathol. 24, 157–166 (2009).
pubmed: 19085832
Tervahartiala, T. et al. The in vivo expression of the collagenolytic matrix metalloproteinases (MMP-2, -8, -13, and -14) and matrilysin (MMP-7) in adult and localized juvenile periodontitis. J. Dent. Res. 79, 1969–1977 (2000).
pubmed: 11201047 doi: 10.1177/00220345000790120801
Kubota, T., Nomura, T., Takahashi, T. & Hara, K. Expression of mRNA for matrix metalloproteinases and tissue inhibitors of metalloproteinases in periodontitis-affected human gingival tissue. Arch. Oral. Biol. 41, 253–262 (1996).
pubmed: 8735011 doi: 10.1016/0003-9969(95)00126-3
Xu, L. et al. Characteristics of collagenase-2 from gingival crevicular fluid and peri-implant sulcular fluid in periodontitis and peri-implantitis patients: pilot study. Acta Odontol. Scand. 66, 219–224 (2008).
pubmed: 18615324 doi: 10.1080/00016350802183393
Smith, P. C., Munoz, V. C., Collados, L. & Oyarzun, A. D. In situ detection of matrix metalloproteinase-9 (MMP-9) in gingival epithelium in human periodontal disease. J. Periodontal. Res. 39, 87–92 (2004).
pubmed: 15009515 doi: 10.1111/j.1600-0765.2004.00705.x
Gustafsson, A., Ito, H., Asman, B. & Bergstrom, K. Hyper-reactive mononuclear cells and neutrophils in chronic periodontitis. J. Clin. Periodontol. 33, 126–129 (2006).
pubmed: 16441737 doi: 10.1111/j.1600-051X.2005.00883.x
Restaino, C. G. et al. Stimulatory response of neutrophils from periodontitis patients with periodontal pathogens. Oral. Dis. 13, 474–481 (2007).
pubmed: 17714350 doi: 10.1111/j.1601-0825.2006.01323.x
Shapira, L., Gordon, B., Warbington, M. & Van Dyke, T. E. Priming effect of Porphyromonas gingivalis lipopolysaccharide on superoxide production by neutrophils from healthy and rapidly progressive periodontitis subjects. J. Periodontol. 65, 129–133 (1994).
pubmed: 8158509 doi: 10.1902/jop.1994.65.2.129
Magan-Fernandez, A. et al. Neutrophil extracellular traps in periodontitis. Cells 9, https://doi.org/10.3390/cells9061494 (2020).
Vitkov, L., Klappacher, M., Hannig, M. & Krautgartner, W. D. Extracellular neutrophil traps in periodontitis. J. Periodontal Res 44, 664–672 (2009).
pubmed: 19453857 doi: 10.1111/j.1600-0765.2008.01175.x
White, P. C., Chicca, I. J., Cooper, P. R., Milward, M. R. & Chapple, I. L. Neutrophil extracellular traps in periodontitis: a web of intrigue. J. Dent. Res 95, 26–34 (2016).
pubmed: 26442948 doi: 10.1177/0022034515609097
Fine, N. et al. Distinct oral neutrophil subsets define health and periodontal disease states. J. Dent. Res. 95, 931–938 (2016).
pubmed: 27270666 doi: 10.1177/0022034516645564
Moonen, C. G. et al. Periodontal therapy increases neutrophil extracellular trap degradation. Innate Immun. 26, 331–340 (2020).
pubmed: 31757174 doi: 10.1177/1753425919889392
Kaneko, C. et al. Circulating levels of carbamylated protein and neutrophil extracellular traps are associated with periodontitis severity in patients with rheumatoid arthritis: A pilot case-control study. PLoS One 13, e0192365 (2018).
pubmed: 29394286 pmcid: 5796721 doi: 10.1371/journal.pone.0192365
O’Neil, L. J. et al. Anti-Carbamylated LL37 antibodies promote pathogenic bone resorption in rheumatoid arthritis. Front Immunol. 12, 715997 (2021).
pubmed: 34594331 pmcid: 8477029 doi: 10.3389/fimmu.2021.715997
Hirschfeld, J., White, P. C., Milward, M. R., Cooper, P. R. & Chapple, I. L. C. Modulation of Neutrophil Extracellular Trap and Reactive Oxygen Species Release by Periodontal Bacteria. Infect Immun. 85, https://doi.org/10.1128/IAI.00297-17 (2017).
Vitkov, L., Klappacher, M., Hannig, M. & Krautgartner, W. D. Neutrophil fate in gingival crevicular fluid. Ultrastruct. Pathol. 34, 25–30 (2010).
pubmed: 20070150 doi: 10.3109/01913120903419989
Zhang, F., Yang, X. M. & Jia, S. Y. Characteristics of neutrophil extracellular traps in patients with periodontitis and gingivitis. Braz. Oral. Res. 34, e015 (2020).
pubmed: 32130362 doi: 10.1590/1807-3107bor-2020.vol34.0015
Sabbatini, M., Magnelli, V. & Reno, F. NETosis in Wound Healing: When Enough Is Enough. Cells 10, https://doi.org/10.3390/cells10030494 (2021).
Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5, 178ra140 (2013).
doi: 10.1126/scitranslmed.3005580
Wigerblad, G. & Kaplan, M. J. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat. Rev. Immunol. 23, 274–288 (2023).
pubmed: 36257987 doi: 10.1038/s41577-022-00787-0
Czaikoski, P. G. et al. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS One 11, e0148142 (2016).
pubmed: 26849138 pmcid: 4743982 doi: 10.1371/journal.pone.0148142
Margraf, S. et al. Neutrophil-derived circulating free DNA (cf-DNA/NETs): a potential prognostic marker for posttraumatic development of inflammatory second hit and sepsis. Shock 30, 352–358 (2008).
pubmed: 18317404 doi: 10.1097/SHK.0b013e31816a6bb1
Maruchi, Y. et al. Plasma myeloperoxidase-conjugated DNA level predicts outcomes and organ dysfunction in patients with septic shock. Crit. Care 22, 176 (2018).
pubmed: 30005596 pmcid: 6045839 doi: 10.1186/s13054-018-2109-7
Kolaczkowska, E. et al. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat. Commun. 6, 6673 (2015).
pubmed: 25809117 doi: 10.1038/ncomms7673
Mai, S. H. et al. Delayed but not Early Treatment with DNase Reduces Organ Damage and Improves Outcome in a Murine Model of Sepsis. Shock 44, 166–172 (2015).
pubmed: 26009820 doi: 10.1097/SHK.0000000000000396
Rafieian-Kopaei, M., Setorki, M., Doudi, M., Baradaran, A. & Nasri, H. Atherosclerosis: process, indicators, risk factors and new hopes. Int. J. Prev. Med. 5, 927–946 (2014).
pubmed: 25489440 pmcid: 4258672
Drechsler, M., Megens, R. T., van Zandvoort, M., Weber, C. & Soehnlein, O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122, 1837–1845 (2010).
pubmed: 20956207 doi: 10.1161/CIRCULATIONAHA.110.961714
Chistiakov, D. A., Grechko, A. V., Myasoedova, V. A., Melnichenko, A. A. & Orekhov, A. N. The role of monocytosis and neutrophilia in atherosclerosis. J. Cell Mol. Med. 22, 1366–1382 (2018).
pubmed: 29364567 pmcid: 5824421 doi: 10.1111/jcmm.13462
Megens, R. T. et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb. Haemost. 107, 597–598 (2012).
pubmed: 22318427 doi: 10.1160/TH11-09-0650
Warnatsch, A., Ioannou, M., Wang, Q. & Papayannopoulos, V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 349, 316–320 (2015).
pubmed: 26185250 pmcid: 4854322 doi: 10.1126/science.aaa8064
Daugherty, A., Dunn, J. L., Rateri, D. L. & Heinecke, J. W. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J. Clin. Invest. 94, 437–444 (1994).
pubmed: 8040285 pmcid: 296328 doi: 10.1172/JCI117342
Tavora, F. R., Ripple, M., Li, L. & Burke, A. P. Monocytes and neutrophils expressing myeloperoxidase occur in fibrous caps and thrombi in unstable coronary plaques. BMC Cardiovasc. Disord. 9, 27 (2009).
pubmed: 19549340 pmcid: 2708130 doi: 10.1186/1471-2261-9-27
Silvestre-Roig, C. et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature 569, 236–240 (2019).
pubmed: 31043745 pmcid: 6716525 doi: 10.1038/s41586-019-1167-6
Ionita, M. G. et al. High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions. Arterioscler. Thromb. Vasc. Biol. 30, 1842–1848 (2010).
pubmed: 20595650 doi: 10.1161/ATVBAHA.110.209296
Borissoff, J. I. et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler. Thromb. Vasc. Biol. 33, 2032–2040 (2013).
pubmed: 23818485 pmcid: 3806482 doi: 10.1161/ATVBAHA.113.301627
Barnes, B. J. et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J. Exp. Med. 217, https://doi.org/10.1084/jem.20200652 (2020).
Zuo, Y. et al. Neutrophil extracellular traps in COVID-19. JCI Insight 5, https://doi.org/10.1172/jci.insight.138999 (2020).
Al-Kuraishy, H. M. et al. Neutrophil Extracellular Traps (NETs) and Covid-19: A new frontiers for therapeutic modality. Int Immunopharmacol. 104, 108516 (2022).
pubmed: 35032828 pmcid: 8733219 doi: 10.1016/j.intimp.2021.108516
Campos, E. I. & Reinberg, D. Histones: annotating chromatin. Annu. Rev. Genet. 43, 559–599 (2009).
pubmed: 19886812 doi: 10.1146/annurev.genet.032608.103928
Xu, J. et al. Extracellular histones are major mediators of death in sepsis. Nat. Med. 15, 1318–1321 (2009).
pubmed: 19855397 pmcid: 2783754 doi: 10.1038/nm.2053
Hou, W. et al. Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis. 4, e966 (2013).
pubmed: 24336086 pmcid: 3877563 doi: 10.1038/cddis.2013.493
Tsourouktsoglou, T. D. et al. Histones, DNA, and citrullination promote neutrophil extracellular trap inflammation by regulating the localization and activation of TLR4. Cell Rep. 31, 107602 (2020).
pubmed: 32375035 doi: 10.1016/j.celrep.2020.107602
Li, Y. et al. Identification of citrullinated histone H3 as a potential serum protein biomarker in a lethal model of lipopolysaccharide-induced shock. Surgery 150, 442–451 (2011).
pubmed: 21878229 doi: 10.1016/j.surg.2011.07.003
Li, Y. et al. Citrullinated histone H3: a novel target for the treatment of sepsis. Surgery 156, 229–234 (2014).
pubmed: 24957671 doi: 10.1016/j.surg.2014.04.009
Allam, R., Darisipudi, M. N., Tschopp, J. & Anders, H. J. Histones trigger sterile inflammation by activating the NLRP3 inflammasome. Eur. J. Immunol. 43, 3336–3342 (2013).
pubmed: 23964013 doi: 10.1002/eji.201243224
Duce, J. A. et al. Linker histone H1 binds to disease associated amyloid-like fibrils. J. Mol. Biol. 361, 493–505 (2006).
pubmed: 16854430 doi: 10.1016/j.jmb.2006.06.038
Bolton, S. J., Russelakis-Carneiro, M., Betmouni, S. & Perry, V. H. Non-nuclear histone H1 is upregulated in neurones and astrocytes in prion and Alzheimer’s diseases but not in acute neurodegeneration. Neuropathol. Appl. Neurobiol. 25, 425–432 (1999).
pubmed: 10564533 doi: 10.1046/j.1365-2990.1999.00171.x
Bennett, S. A., Tanaz, R., Cobos, S. N. & Torrente, M. P. Epigenetics in amyotrophic lateral sclerosis: a role for histone post-translational modifications in neurodegenerative disease. Transl. Re0.s 204, 19–30 (2019).
De Meyer, S. F., Suidan, G. L., Fuchs, T. A., Monestier, M. & Wagner, D. D. Extracellular chromatin is an important mediator of ischemic stroke in mice. Arterioscler Thromb. Vasc. Biol. 32, 1884–1891 (2012).
pubmed: 22628431 pmcid: 3494463 doi: 10.1161/ATVBAHA.112.250993
O’Neil, L. J. et al. Neutrophil extracellular trap-associated carbamylation and histones trigger osteoclast formation in rheumatoid arthritis. Ann. Rheum. Dis. 82, 630–638 (2023).
pubmed: 36737106 doi: 10.1136/ard-2022-223568
Bryzek, D. et al. Triggering NETosis via protease-activated receptor (PAR)-2 signaling as a mechanism of hijacking neutrophils function for pathogen benefits. PLoS Pathog. 15, e1007773 (2019).
pubmed: 31107907 pmcid: 6544335 doi: 10.1371/journal.ppat.1007773
Alyami, H. M. et al. Role of NOD1/NOD2 receptors in Fusobacterium nucleatum mediated NETosis. Micro. Pathog. 131, 53–64 (2019).
doi: 10.1016/j.micpath.2019.03.036
Silva, L. M. et al. Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier. Science 374, eabl5450 (2021).
pubmed: 34941394 doi: 10.1126/science.abl5450
Silva, L. M., Divaris, K., Bugge, T. H. & Moutsopoulos, N. M. Plasmin-Mediated Fibrinolysis in Periodontitis Pathogenesis. J. Dent. Res 102, 972–978 (2023).
pubmed: 37506226 doi: 10.1177/00220345231171837
Bugge, T. H. et al. Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell 87, 709–719 (1996).
pubmed: 8929539 doi: 10.1016/S0092-8674(00)81390-2
Celkan, T. Plasminogen deficiency. J. Thromb. Thrombolysis 43, 132–138 (2017).
pubmed: 27629020 doi: 10.1007/s11239-016-1416-6
Kitamoto, S. et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell 182, 447–462 e414 (2020).
pubmed: 32758418 pmcid: 7414097 doi: 10.1016/j.cell.2020.05.048
Withana, N. P. et al. Dual-modality activity-based probes as molecular imaging agents for vascular inflammation. J. Nucl. Med. 57, 1583–1590 (2016).
pubmed: 27199363 pmcid: 5367444 doi: 10.2967/jnumed.115.171553
Zayani, Y. et al. Inflammations mediators and circulating levels of matrix metalloproteinases: Biomarkers of diabetes in Tunisians metabolic syndrome patients. Cytokine 86, 47–52 (2016).
pubmed: 27455450 doi: 10.1016/j.cyto.2016.07.009
Alameddine, H. S. & Morgan, J. E. Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases in Inflammation and Fibrosis of Skeletal Muscles. J. Neuromuscul. Dis. 3, 455–473 (2016).
pubmed: 27911334 pmcid: 5240616 doi: 10.3233/JND-160183
Xu, J., Zhang, X., Monestier, M., Esmon, N. L. & Esmon, C. T. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J. Immunol. 187, 2626–2631 (2011).
pubmed: 21784973 doi: 10.4049/jimmunol.1003930
Allam, R. et al. Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J. Am. Soc. Nephrol. 23, 1375–1388 (2012).
pubmed: 22677551 pmcid: 3402284 doi: 10.1681/ASN.2011111077
Wen, Z. et al. Circulating histones exacerbate inflammation in mice with acute liver failure. J. Cell Biochem. 114, 2384–2391 (2013).
pubmed: 23696007 doi: 10.1002/jcb.24588
Semeraro, F. et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 118, 1952–1961 (2011).
pubmed: 21673343 pmcid: 3158722 doi: 10.1182/blood-2011-03-343061

Auteurs

Tae Sung Kim (TS)

Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA. taesung.kim@nih.gov.

Niki M Moutsopoulos (NM)

Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.

Classifications MeSH