Clinical heterogeneity within the ALS-FTD spectrum in a family with a homozygous optineurin mutation.
Journal
Annals of clinical and translational neurology
ISSN: 2328-9503
Titre abrégé: Ann Clin Transl Neurol
Pays: United States
ID NLM: 101623278
Informations de publication
Date de publication:
30 Apr 2024
30 Apr 2024
Historique:
revised:
24
03
2024
received:
19
10
2023
accepted:
01
04
2024
medline:
1
5
2024
pubmed:
1
5
2024
entrez:
1
5
2024
Statut:
aheadofprint
Résumé
Mutations in the gene encoding for optineurin (OPTN) have been reported in the context of different neurodegenerative diseases including the amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) spectrum. Based on single case reports, neuropathological data in OPTN mutation carriers have revealed transactive response DNA-binding protein 43 kDa (TDP-43) pathology, in addition to accumulations of tau and alpha-synuclein. Herein, we present two siblings from a consanguineous family with a homozygous frameshift mutation in the OPTN gene and different clinical presentations. Both affected siblings underwent (i) clinical, (ii) neurophysiological, (iii) neuropsychological, (iv) radiological, and (v) laboratory examinations, and (vi) whole-exome sequencing (WES). Postmortem histopathological examination was conducted in the index patient, who deceased at the age of 41. The index patient developed rapidly progressing clinical features of upper and lower motor neuron dysfunction as well as apathy and cognitive deterioration at the age of 41. Autopsy revealed an ALS-FTLD pattern associated with prominent neuronal and oligodendroglial TDP-43 pathology, and an atypical limbic 4-repeat tau pathology reminiscent of argyrophilic grain disease. The brother of the index patient exhibited behavioral changes and mnestic deficits at the age of 38 and was diagnosed with behavioral FTD 5 years later, without any evidence of motor neuron dysfunction. WES revealed a homozygous frameshift mutation in the OPTN gene in both siblings (NM_001008212.2: c.1078_1079del; p.Lys360ValfsTer18). OPTN mutations can be associated with extensive TDP-43 pathology and limbic-predominant tauopathy and present with a heterogeneous clinical phenotype within the ALS-FTD spectrum within the same family.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.
Références
Maruyama H, Morino H, Ito H, et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature. 2010;465(7295):223‐226.
Pottier C, Bieniek KF, Finch N, et al. Whole‐genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol. 2015;130(1):77‐92.
Dominguez J, Yu JT, Tan YJ, et al. Novel Optineurin frameshift insertion in a family with frontotemporal dementia and parkinsonism without amyotrophic lateral sclerosis. Front Neurol. 2021;12:645913.
Shen WC, Li HY, Chen GC, Chern Y, Tu PH. Mutations in the ubiquitin‐binding domain of OPTN/optineurin interfere with autophagy‐mediated degradation of misfolded proteins by a dominant‐negative mechanism. Autophagy. 2015;11(4):685‐700.
Nakazawa S, Oikawa D, Ishii R, et al. Linear ubiquitination is involved in the pathogenesis of optineurin‐associated amyotrophic lateral sclerosis. Nat Commun. 2016;7(1):12547.
Ito Y, Ofengeim D, Najafov A, et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science. 2016;353(6299):603‐608.
Ayaki T, Ito H, Komure O, et al. Multiple Proteinopathies in familial ALS cases with Optineurin mutations. J Neuropathol Exp Neurol. 2017;77(2):128‐138.
Kamada M, Izumi Y, Ayaki T, et al. Clinicopathologic features of autosomal recessive amyotrophic lateral sclerosis associated with optineurin mutation. Neuropathology. 2013;34(1):64‐70.
Ito H, Nakamura M, Komure O, et al. Clinicopathologic study on an ALS family with a heterozygous E478G optineurin mutation. Acta Neuropathol. 2011;122(2):223‐229.
Li H, Durbin R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics. 2009;25(14):1754‐1760.
Danecek P, Bonfield JK, Liddle J, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10(2):1‐4.
Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired‐end short reads. Bioinformatics. 2009;25(21):2865‐2871.
Brunet T, Jech R, Brugger M, et al. De novo variants in neurodevelopmental disorders—experiences from a tertiary care center. Clin Genet. 2021;100(1):14‐28.
König T, Wurm R, Parvizi T, et al. C9orf72 repeat length might influence clinical sub‐phenotypes in dementia patients. Neurobiol Dis. 2022;175:105927.
Shefner JM, Al‐Chalabi A, Baker MR, et al. A proposal for new diagnostic criteria for ALS. Clin Neurophysiol. 2020;131(8):1975‐1978.
Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(9):2456‐2477.
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405‐423.
Brettschneider J, Tredici KD, Toledo JB, et al. Stages of pTDP‐43 pathology in amyotrophic lateral sclerosis. Ann Neurol. 2013;74(1):20‐38.
Mackenzie IRA, Neumann M, Baborie A, et al. A harmonized classification system for FTLD‐TDP pathology. Acta Neuropathol. 2011;122(1):111‐113.
Mackenzie IR, Neumann M. Subcortical TDP‐43 pathology patterns validate cortical FTLD‐TDP subtypes and demonstrate unique aspects of C9orf72 mutation cases. Acta Neuropathol. 2020;139(1):83‐98.
Bo RD, Tiloca C, Pensato V, et al. Novel optineurin mutations in patients with familial and sporadic amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2011;82(11):1239‐1243.
Iida A, Hosono N, Sano M, et al. Optineurin mutations in Japanese amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2012;83(2):233‐235.
Nolan M, Barbagallo P, Turner MR, et al. Isolated homozygous R217X OPTN mutation causes knock‐out of functional C‐terminal optineurin domains and associated oligodendrogliopathy‐dominant ALS–TDP. J Neurol Neurosurg Psychiatry. 2021;92(9):1022‐1024.
Tunca C, Şeker T, Akçimen F, et al. Revisiting the complex architecture of ALS in Turkey: expanding genotypes, shared phenotypes, molecular networks, and a public variant database. Hum Mutat. 2020;41(8):e7‐e45.
Feng S, Che C, Feng S, et al. Novel mutation in optineurin causing aggressive ALS+/−frontotemporal dementia. Ann Clin Transl Neurol. 2019;6(12):2377‐2383.
Pottier C, Rampersaud E, Baker M, et al. Identification of compound heterozygous variants in OPTN in an ALS‐FTD patient from the CReATe consortium: a case report. Amyotroph Lat Scl Fr. 2018;19(5–6):469‐471.
Mol MO, van Rooij JGJ, Wong TH, et al. Underlying genetic variation in familial frontotemporal dementia: sequencing of 198 patients. Neurobiol Aging. 2021;97:148.e9‐148.e16.
Kacem I, Sghaier I, Peverelli S, et al. Optineurin in patients with amyotrophic lateral sclerosis associated to atypical parkinsonism in Tunisian population. Amyotroph Lateral Scler Front Degener. 2024;25(1–2):128‐134.
Schiava M, Ikenaga C, Villar‐Quiles RN, et al. Genotype–phenotype correlations in valosin‐containing protein disease: a retrospective muticentre study. J Neurol Neurosurg Psychiatry. 2022;93(10):1099‐1111.
Kimonis VE, Fulchiero E, Vesa J, Watts G. VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. Biochim Biophys Acta. 2008;1782(12):744‐748.
Moore KM, Nicholas J, Grossman M, et al. Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurol. 2020;19(2):145‐156.
Volk AE, Weishaupt JH, Andersen PM, Ludolph AC, Kubisch C. Current knowledge and recent insights into the genetic basis of amyotrophic lateral sclerosis. Med Genet. 2018;30(2):252‐258.
Liu Q, Liu F, Cui B, et al. Mutation spectrum of Chinese patients with familial and sporadic amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2016;87(11):1272‐1274.
Farhan SMK, Gendron TF, Petrucelli L, Hegele RA, Strong MJ. OPTN p.Met468Arg and ATXN2 intermediate length polyQ extension in families with C9orf72 mediated amyotrophic lateral sclerosis and frontotemporal dementia. Am J Méd Genet Part B Neuropsychiatr Genet. 2018;177(1):75‐85.
Saito Y, Ruberu NN, Sawabe M, et al. Staging of Argyrophilic grains: an age‐associated Tauopathy. J Neuropathol Exp Neurol. 2004;63(9):911‐918.
Llibre‐Guerra JJ, Lee SE, Suemoto CK, et al. A novel temporal‐predominant neuro‐astroglial tauopathy associated with TMEM106B gene polymorphism in FTLD/ALS‐TDP. Brain Pathol. 2021;31(2):267‐282.
Borrego‐Écija S, Turon‐Sans J, Ximelis T, et al. Cognitive decline in amyotrophic lateral sclerosis: neuropathological substrate and genetic determinants. Brain Pathol. 2021;31(3):e12942.
Gelpi E, Aldecoa I, Lopez‐Villegas D, et al. Atypical astroglial pTDP‐43 pathology in astroglial predominant tauopathy. Neuropathol Appl Neurobiol. 2021;47(7):1109‐1113.
Koga S, Zhou X, Murakami A, et al. Concurrent tau pathologies in frontotemporal lobar degeneration with TDP‐43 pathology. Neuropathol Appl Neurobiol. 2022;48(2):e12778.
Takeuchi R, Toyoshima Y, Tada M, et al. Globular glial mixed four repeat tau and TDP‐43 Proteinopathy with motor neuron disease and frontotemporal dementia: GGT with TDP‐43 pathology. Brain Pathol. 2015;26(1):82‐94.
Chornenkyy Y, Fardo DW, Nelson PT. Tau and TDP‐43 proteinopathies: kindred pathologic cascades and genetic pleiotropy. Lab Investig. 2019;99(7):993‐1007.
Smith AM, Sewell GW, Levine AP, et al. Disruption of macrophage pro‐inflammatory cytokine release in Crohn's disease is associated with reduced optineurin expression in a subset of patients. Immunology. 2015;144(1):45‐55.
Lee WS, Kato M, Sugawara E, et al. Protective role of Optineurin against joint destruction in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol. 2020;72(9):1493‐1504.
Wang J, Wang J, Hong W, et al. Optineurin modulates the maturation of dendritic cells to regulate autoimmunity through JAK2‐STAT3 signaling. Nat Commun. 2021;12(1):6198.