How to obtain an integrated picture of the molecular networks involved in adaptation to microgravity in different biological systems?
Journal
NPJ microgravity
ISSN: 2373-8065
Titre abrégé: NPJ Microgravity
Pays: United States
ID NLM: 101703605
Informations de publication
Date de publication:
01 May 2024
01 May 2024
Historique:
received:
19
12
2022
accepted:
08
04
2024
medline:
2
5
2024
pubmed:
2
5
2024
entrez:
1
5
2024
Statut:
epublish
Résumé
Periodically, the European Space Agency (ESA) updates scientific roadmaps in consultation with the scientific community. The ESA SciSpacE Science Community White Paper (SSCWP) 9, "Biology in Space and Analogue Environments", focusses in 5 main topic areas, aiming to address key community-identified knowledge gaps in Space Biology. Here we present one of the identified topic areas, which is also an unanswered question of life science research in Space: "How to Obtain an Integrated Picture of the Molecular Networks Involved in Adaptation to Microgravity in Different Biological Systems?" The manuscript reports the main gaps of knowledge which have been identified by the community in the above topic area as well as the approach the community indicates to address the gaps not yet bridged. Moreover, the relevance that these research activities might have for the space exploration programs and also for application in industrial and technological fields on Earth is briefly discussed.
Identifiants
pubmed: 38693246
doi: 10.1038/s41526-024-00395-3
pii: 10.1038/s41526-024-00395-3
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
50Informations de copyright
© 2024. The Author(s).
Références
Afshinnekoo, E. et al. Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration. Cell 183, 1162–1184 (2020).
doi: 10.1016/j.cell.2020.10.050
pubmed: 33242416
pmcid: 8441988
Benoit, M. R. & Klaus, D. M. Microgravity, bacteria, and the influence of motility. Adv. Space Res. 39, 1225–1232 (2007).
doi: 10.1016/j.asr.2006.10.009
Huang, B., Li, D.-G., Huang, Y. & Liu, C.-T. Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Mil. Med Res. 5, 18 (2018).
pubmed: 29807538
pmcid: 5971428
Weronika, E. & Łukasz, K. Tardigrades in Space Research - Past and Future. Orig. Life Evol. Biosph. 47, 545–553 (2017).
doi: 10.1007/s11084-016-9522-1
pubmed: 27766455
Aubert, A. E. et al. Towards human exploration of space: the THESEUS review series on cardiovascular, respiratory, and renal research priorities. NPJ Microgravity 2, 16031 (2016).
doi: 10.1038/npjmgrav.2016.31
pubmed: 28725739
pmcid: 5515532
Ma, L., Ma, J. & Xu, K. Effect of spaceflight on the circadian rhythm, lifespan and gene expression of Drosophila melanogaster. PLoS One 10, e0121600 (2015).
doi: 10.1371/journal.pone.0121600
pubmed: 25798821
pmcid: 4370389
Sharma, G. & Curtis, P. D. The impacts of microgravity on bacterial metabolism. Life 12, 774 (2022).
doi: 10.3390/life12060774
pubmed: 35743807
pmcid: 9225508
Higashibata, A. et al. Microgravity elicits reproducible alterations in cytoskeletal and metabolic gene and protein expression in space-flown Caenorhabditis elegans. NPJ Microgravity 2, 15022 (2016).
doi: 10.1038/npjmgrav.2015.22
pubmed: 28725720
pmcid: 5515518
Stein, T. P. et al. Energy expenditure and balance during spaceflight on the space shuttle. Am. J. Physiol. 276, R1739–R1748 (1999).
pubmed: 10362755
Altman, P. L. & Talbot, J. M. Nutrition and metabolism in spaceflight. J. Nutr. 117, 421–427 (1987).
doi: 10.1093/jn/117.3.421
pubmed: 3572555
da Silveira, W. A. et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell 183, 1185–1201.e20 (2020).
doi: 10.1016/j.cell.2020.11.002
pubmed: 33242417
pmcid: 7870178
Yang, J., Zhang, G., Dong, D. & Shang, P. Effects of Iron Overload and Oxidative Damage on the Musculoskeletal System in the Space Environment: Data from Spaceflights and Ground-Based Simulation Models. Int. J. Mol. Sci. 19, (2018).
Goodwin, T. J. & Christofidou-Solomidou, M. Oxidative Stress and Space Biology: An Organ-Based Approach. Int J Mol Sci 19, (2018).
Sugimoto, M. et al. Genome-wide expression analysis of reactive oxygen species gene network in Mizuna plants grown in long-term spaceflight. BMC Plant Biol. 14, 4 (2014).
doi: 10.1186/1471-2229-14-4
pubmed: 24393219
pmcid: 3927260
Ray, S. et al. GeneLab: Omics database for spaceflight experiments. Bioinformatics 35, 1753–1759 (2019).
doi: 10.1093/bioinformatics/bty884
pubmed: 30329036
Scott, R. T. et al. Advancing the Integration of Biosciences Data Sharing to Further Enable Space Exploration. Cell Rep. 33, 108441 (2020).
doi: 10.1016/j.celrep.2020.108441
pubmed: 33242404
Deane, C. S. et al. Space omics research in Europe: Contributions, geographical distribution and ESA member states funding schemes. iScience 25, 103920 (2022).
doi: 10.1016/j.isci.2022.103920
pubmed: 35265808
pmcid: 8898910
Manzano, A. et al. Enhancing European capabilities for application of multi-omics studies in biology and medicine space research. iScience 25, 107289 (2022).
Scott, A. et al. C. elegans in microgravity: An omics perspective. iScience 25, 107180 (2022).
Bradbury, P. et al. Modeling the impact of microgravity at the cellular level: implications for human disease. Front Cell Dev. Biol. 8, 96 (2020).
doi: 10.3389/fcell.2020.00096
pubmed: 32154251
pmcid: 7047162
Rutter, L. et al. A new era for space life science: international standards for space omics processing. Patterns 1, 100148 (2020).
doi: 10.1016/j.patter.2020.100148
pubmed: 33336201
pmcid: 7733874
Soni, P. et al. Spaceflight Induces Strength Decline in Caenorhabditis elegans. Cells 12, 2470 (2023).
doi: 10.3390/cells12202470
pubmed: 37887314
pmcid: 10605753
Vitry, G. et al. Muscle atrophy phenotype gene expression during spaceflight is linked to a metabolic crosstalk in both the liver and the muscle in mice. iScience 25, 105213 (2022).
doi: 10.1016/j.isci.2022.105213
pubmed: 36267920
pmcid: 9576569
Cope, H. et al. Routine omics collection is a golden opportunity for European human research in space and analogue enviornments. iScience 25, 100550 (2022).
Mathyk, B. A. et al. Spaceflight alters insulin and estrogen signaling pathways. Research square https://doi.org/10.21203/rs.3.rs-2362750/v1 (2023).
Li, K. et al. Explainable machine learning identifies multi-omics signatures of muscle response to spaceflight in mice. npj Microgravity 9, 90 (2023).
doi: 10.1038/s41526-023-00337-5
pubmed: 38092777
pmcid: 10719374
Cope, H. et al. More than a Feeling: Dermatological Changes Impacted by Spaceflight. Research square https://doi.org/10.21203/rs.3.rs-2367727/v1 (2023).
Regev, A. et al. The Human Cell Atlas. Elife 6, (2017).
Overbey, E. G. Collection of Biospecimens from the Inspiration4 Mission Establishes the Standards fro the Space Omics and Medical Atlas (SOMA). bioRxiv https://doi.org/10.1101/2023.05.02.539108 (2023).
Strollo, F. et al. Recent Progress in Space Physiology and Aging. Front Physiol. 9, 1551 (2018).
doi: 10.3389/fphys.2018.01551
pubmed: 30483144
pmcid: 6240610
Vernikos, J. & Schneider, V. S. Space, gravity and the physiology of aging: parallel or convergent disciplines? A mini-review. Gerontology 56, 157–166 (2010).
doi: 10.1159/000252852
pubmed: 19851058
Nangalia, V., Prytherch, D. R. & Smith, G. B. Health technology assessment review: remote monitoring of vital signs–current status and future challenges. Crit. Care 14, 233 (2010).
doi: 10.1186/cc9208
pubmed: 20875149
pmcid: 3219238
Castro-Wallace, S. L. et al. Nanopore DNA sequencing and genome assembly on the international space station. Sci. Rep. 7, 18022 (2017).
doi: 10.1038/s41598-017-18364-0
pubmed: 29269933
pmcid: 5740133
Mongan, A. E., Tuda, J. S. B. & Runtuwene, L. R. Portable sequencer in the fight against infectious disease. J. Hum. Genet 65, 35–40 (2020).
doi: 10.1038/s10038-019-0675-4
pubmed: 31582773